首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the antimutagenicity of WR-1065 added after irradiation of cells of cell lines differing in their ability to rejoin radiation-induced DNA double-strand breaks (DSBs). The postirradiation antimutagenicity of WR-1065 at the thymidine kinase locus was demonstrated for L5178Y (LY)-S1 cells that are deficient in repair of DNA DSBs. Less postirradiation antimutagenicity of WR-1065 was observed in LY-R16 and LY-SR1 cells, which are relatively efficient in DSB repair. Postirradiation treatment with WR-1065 had only a small stimulatory effect on DSB rejoining. A 3-h incubation of irradiated LY cells with WR-1065 caused slight changes in the distribution of cells in the phases of the cell cycle that differed between LY-S1 and LY-SR1 cells. Both LY-S1 and LY-SR1 cells were protected against the cytotoxic and mutagenic effects of radiation when WR-1065 was present 30 min before and during the irradiation. We conclude that the differential postirradiation effects of WR-1065 in the LY-S1 and LY-SR1 cells are not caused by differences in cellular uptake of the radioprotector or in its radical scavenging activity. Possible mechanisms for the postirradiation antimutagenicity of WR-1065 are discussed.  相似文献   

2.
The ability of the aminothiol WR-1065 [N-(2-mercaptoethyl)-1,3-diaminopropane] to protect L5178Y (LY) cells against the cytotoxic and mutagenic effects of exposure to accelerated (56)Fe ions (1.08 GeV/nucleon) was determined. It was found that while WR-1065 reduced the mutagenicity in both cell lines when it was present during the irradiation, the addition of WR-1065 after the exposure had no effect on the mutagenicity of the radiation in either cell line. No marked protection against the cytotoxic effects of exposure to (56)Fe ions was provided by WR-1065 when added either during or after irradiation in either cell line. We reported previously that WR-1065 protected the LY-S1 and LY-SR1 cell lines against both the cytotoxicity and mutagenicity of X radiation when present during exposure, but that its protection when administered after exposure was limited to the mutagenic effects in the radiation-hypersensitive cell line, LY-S1. The results indicate that the mechanisms involved differ in the protection against cytotoxic compared to mutagenic effects and in the protection against damage caused by accelerated (56)Fe ions compared to X radiation.  相似文献   

3.
We have examined the radioprotective effect of WR-1065 on cultured Chinese hamster ovary cells. The effects of the drug on the induction and rejoining of gamma-ray-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) were measured using alkaline (pH 12.1) and neutral (pH 7.0) elution, respectively. Molecular protection factors (PFs) calculated from these data allowed us to determine whether the degree of modification of strand breakage accurately predicted the PFs measured using the biological end point of cell survival. The drug did protect against the induction of both SSBs and DSBs, although to an extent that did not appear to fully account for the degree of radioprotection in terms of cell killing measured under identical conditions. It is therefore unlikely that radioprotection by WR-1065 occurs simply as a consequence of a general lowering of all types of gamma-ray-induced DNA lesions, and it is possible that the drug could differentially protect against the induction of subsets of these DNA lesions. The rate of SSB rejoining was retarded following preirradiation treatment of cells with WR-1065, but there was no effect on DSB rejoining. Postirradiation treatment with WR-1065 also appeared to retard SSB rejoining but without an accompanying effect on either DSB rejoining or cell survival; however, this effect was largely reversed by the addition of catalase and was therefore probably a result of H2O2 generated by autoxidation of the drug. Based on these observations, it would appear that the molecular actions of aminothiol radioprotective compounds that lead to reduced cell killing are much more complex than previously thought.  相似文献   

4.
M059J is a radiosensitive cell line established from a human glioblastoma tumor that fails to express the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs, now known as PRKDC). Another cell line, M059K, established from the same tumor is radioresistant. Neither M059J nor M059K cells have been fully characterized, beyond the lack of expression of PRKDC and low expression of ATM in M059J cells. To determine whether its radiosensitive phenotype is due to a defect in the gene that encodes PRKDC, we show here that M059J cells can be complemented with the PRKDC gene by introducing a fragment of human chromosome 8 containing a copy of the human PRKDC gene. Two hybrid cell lines that retain an extra copy of PRKDC display active kinase activity and are radioresistant, demonstrating that the primary defect in M059J cells is in PRKDC. In addition, these cell lines derived from M059J cells provide us with a closer genetic match to M059J than M059K cells in studies to elucidate the function of DNA-PK.  相似文献   

5.
We have studied two X-ray-sensitive mutants xrs 5 and xrs 6 (derived from the CHO-K1 cell line), known to be defective in repair of double-strand breaks, for cell killing and frequency of the chromosomal aberrations induced by X-irradiation. The survival experiments showed that mutants are very sensitive to X-rays, the D0, for the wild-type CHO-K1 was 6-fold higher than D0 value for the mutants. The modal number of chromosomes (2 n = 23) and the frequency of spontaneously occurring chromosomal aberrations were similar in all 3 cell lines. X-Irradiation of synchronized mutant cells in G1-phase significantly induced both chromosome- and chromatid-type of aberrations. The frequency of aberrations in xrs mutants was 12-fold more than in the wild-type CHO-K1 cells. X-Irradiation of G2-phase cells also yielded higher frequency of aberrations in the mutants, namely 7-8-fold in xrs 5 and about 3.5-fold in xrs 6 compared to the wild-type CHO-K1 cells. There was a good correlation between relative inability to repair of DNA double-strand breaks and induction of aberrations. The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase on the frequency of X-ray-induced chromosomal aberrations in these 3 cell lines was also studied. 3AB potentiated the frequency of aberrations in G1 and G2 in all the cell types. In the mutants, 3AB had a potentiating effect on the frequency of X-ray-induced chromosomal aberrations only at low doses. X-Ray-induced G2 arrest and its release by caffeine was studied by cytofluorometric methods. The relative speed with which irradiated S-G2 cells progressed into mitosis in the presence of caffeine was CHO-K1 greater than xrs 5 greater than xrs 6. Caffeine could counteract G2 delay induced by X-rays in CHO-K1 and xrs 5 but not in xrs 6. Large differences in potentiation by caffeine were observed among these cells subjected to X-rays and caffeine post-treatment for different durations. These responses and possible reasons for the increased radiosensitivity of xrs mutants are discussed and compared to ataxia telangiectasia (A-T) cells and a radiosensitive mutant mouse lymphoma cell line.  相似文献   

6.
The DNA-dependent protein kinase (DNA-PK) is composed of a large catalytic subunit (DNA-PKcs) and a DNA-binding protein, Ku. Cells lacking DNA-PK activity are radiosensitive and are defective in DNA double-strand break repair and V(D)J recombination. Although much information regarding the interactions of Ku with DNA ends is available, relatively little is known about the interaction of DNA-PKcs with DNA-bound Ku. Here we show, using electrophoretic mobility shift assays, that chemical crosslinkers enhance the formation of protein-DNA complexes containing DNA-PKcs, Ku and other proteins in extracts from cells of normal human cell lines. Extracts from cells of the radiosensitive human cell line M059J, which lacks DNA-PKcs, are not competent to form these protein-DNA complexes, while addition of purified DNA-PKcs protein restores complex formation. This assay may be useful for screening for DNA-PK function in cells of human cell lines and for identifying proteins that interact with the DNA-PK-DNA complex. We also show that Ku protein in rodent cells can interact with human DNA-PKcs; however, this assay may be less useful for studying Ku/DNA-PKcs interactions in cells of rodent cell lines due to the low abundance of DNA-PKcs in these cells.  相似文献   

7.
Background: The aminothiol WR1065 is a highly effective free radical scavenger which can protect cells from the cytotoxic effects of ionizing radiation. Currently, WR1065 is used clinically to protect patients from radiation injury occurring during radiation therapy protocols. However, it is becoming increasingly clear that WR1065 can alter radiosensitivity through a mechanism which is independent of its ability to function as a free radical scavenger. Here, we examined the ability of WR1065 to directly regulate signaling pathways involved in the DNA damage response. Methodology: The ability of WR1065 to enhance the survival of irradiated bone marrow cells and primary cultures was established. DNA damage signaling was monitored by measuring activation of the ATM kinase by western blot analysis and activation of Tip60 using an in vitro acetylation assay. Tip60 function was abrogated by expression of a catalytically inactive Tip60, and the effect on radiosensitivity evaluated. Principal findings: Treatment of cells with WR1065 led to a small but significant increase in the kinase activity of ATM. Further, WR1065 robustly activated the Tip60 acetyltransferase, which is a key upstream regulator of the ATM kinase. In addition, WR1065 directly activated the acetyltransferase activity of purified Tip60 in vitro, indicating a direct interaction between WR1065 and Tip60. Finally, cells with reduced levels of Tip60 activity exhibited a significant reduction in radioprotection by WR1065. Conclusions: Direct regulation of Tip60''s acetyltransferase activity by WR1065 makes a significant contribution to the radioprotective effects of WR1065. Activators of Tip60 may therefore make effective clinical radioprotectors.  相似文献   

8.
Cellular survival following ionising radiation-mediated damage is primarily a function of the ability to successfully detect and repair DNA double-strand breaks (DSBs). Previous studies have demonstrated that radiosensitivity, determined as a reduction in colony forming ability in vitro, may be related to the incorrect repair (misrepair) of DSBs. The novel rapid dual fluorescence (RDF) assay is a plasmid-based reporter system that rapidly assesses the correct rejoining of a restriction-enzyme produced DSBs within transfected cells. We have utilised this novel assay to determine the fidelity of DSB repair in the prostate tumour cell line LNCaP, the bladder tumour cell line MGH-U1 and a radiosensitive subclone S40b. The two bladder cell lines have been shown in previous studies to differ in their ability to correctly repair plasmids containing a single DSB. Using the RDF assay we found that a substantial portion of LNCaP cells [80.4 ± 5.3(standard error)%] failed to reconstitute reporter gene expression; however, there was little difference in this measure of DSB repair fidelity between the two bladder cell lines (48.3 ± 3.5% for MGH-U1; 39.9 ± 8.2% for S40b). The RDF assay has potential to be developed to study the relationship between DSB repair fidelity and radiosensitivity as well as the mechanisms associated with this type of repair defect.  相似文献   

9.
Compounds that can protect cells from the effects of radiation are important for clinical use, in the event of an accidental or terrorist-generated radiation event, and for astronauts traveling in space. One of the major concerns regarding the use of radio-protective agents is that they may protect cells initially, but predispose surviving cells to increased genomic instability later. In this study we used WR-1065, the active metabolite of amifostine, to determine how protection from direct effects of high- and low-LET radiation exposure influences genomic stability. When added 30 min before irradiation and in high concentrations, WR-1065 protected cells from immediate radiation-induced effects as well as from delayed genomic instability. Lower, nontoxic concentrations of WR-1065 did not protect cells from death; however, it was effective in significantly decreasing delayed genomic instability in the progeny of irradiated cells. The observed increase in manganese superoxide dismutase protein levels and activity may provide an explanation for this effect. These results confirm that WR-1065 is protective against both low- and high-LET radiation-induced genomic instability in surviving cells.  相似文献   

10.
Compounds that can protect cells from the effects of radiation are important for clinical use, in the event of an accidental or terrorist-generated radiation event, and for astronauts traveling in space. One of the major concerns regarding the use of radio-protective agents is that they may protect cells initially, but predispose surviving cells to increased genomic instability later. In this study we used WR-1065, the active metabolite of amifostine, to determine how protection from direct effects of high- and low-LET radiation exposure influences genomic stability. When added 30 min before irradiation and in high concentrations, WR-1065 protected cells from immediate radiation-induced effects as well as from delayed genomic instability. Lower, nontoxic concentrations of WR-1065 did not protect cells from death; however, it was effective in significantly decreasing delayed genomic instability in the progeny of irradiated cells. The observed increase in manganese superoxide dismutase protein levels and activity may provide an explanation for this effect. These results confirm that WR-1065 is protective against both low- and high-LET radiation-induced genomic instability in surviving cells.  相似文献   

11.
The major mechanism for the repair of DNA double-strand breaks (DSBs) in mammalian cells is non-homologous end-joining (NHEJ), a process that involves the DNA-dependent protein kinase [1] [2], XRCC4 and DNA ligase IV [3] [4] [5] [6]. Rodent cells and mice defective in these components are radiation-sensitive and defective in V(D)J-recombination, showing that NHEJ also functions to rejoin DSBs introduced during lymphocyte development [7] [8]. 180BR is a radiosensitive cell line defective in DSB repair, which was derived from a leukaemia patient who was highly sensitive to radiotherapy [9] [10] [11]. We have identified a mutation within a highly conserved motif encompassing the active site in DNA ligase IV from 180BR cells. The mutated protein is severely compromised in its ability to form a stable enzyme-adenylate complex, although residual activity can be detected at high ATP concentrations. Our results characterize the first patient with a defect in an NHEJ component and suggest that a significant defect in NHEJ that leads to pronounced radiosensitivity is compatible with normal human viability and does not cause any major immune dysfunction. The defect, however, may confer a predisposition to leukaemia.  相似文献   

12.
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is the key functional element in the DNA-PK complex that drives nonhomologous end joining (NHEJ), the predominant DNA double-strand break (DSB) repair mechanism operating to rejoin such breaks in mammalian cells after exposure to ionizing radiation. It has been reported that DNA-PKcs phosphorylation and kinase activity are critical determinants of radiosensitivity, based on responses reported after irradiation of asynchronously dividing populations of various mutant cell lines. In the present study, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase activity) were examined after exposure of synchronized G(1) cells to (137)Cs γ rays. DNA-PKcs mutant cells defective in phosphorylation at multiple sites within the T2609 cluster or within the PI3K domain displayed extreme radiosensitivity. Cells defective at the S2056 cluster or T2609 single site alone were only mildly radiosensitive, but cells defective at even one site in both the S2056 and T2609 clusters were maximally radiosensitive. Thus a synergism between the capacity for phosphorylation at the S2056 and T2609 clusters was found to be critical for induction of radiosensitivity.  相似文献   

13.
Induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) was studied in wild-type Chinese hamster ovary (CHO-K1) cells and its 2 X-ray-sensitive mutants xrs 5 and xrs 6 (known to be deficient in repair of DNA double-strand breaks (DSBs] by restriction endonucleases (REs) and inhibitors of DNA topoisomerase II known to induce DNA strand breaks. Five different types of REs, namely CfoI, EcoRI, HpaII (which induce cohesive DSBs), HaeIII and AluI (which induce blunt DSBs) were employed. REs that induce blunt-end DNA DSBs were found to be more efficient in inducing chromosomal aberrations than those inducing cohesive breaks. xrs 5 and xrs 6 mutants responded with higher sensitivity (50-100% increase in the frequency of aberrations per aberrant cell) to these REs than wild-type CHO-K1 cells. All these REs were also tested for their ability to induce SCEs. The frequency of SCEs increased in wild-type as well as mutant CHO cells, the induced frequency being about 2-fold higher in xrs mutants than in the wild-type cells. We also studied the effect of inhibitors of DNA topoisomerase II, namely 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposid (VP 16), at different stages of the cell cycle of these 3 types of cells. Both drugs increased the frequency of chromosomal aberrations in G2 cells. The mutants showed increased sensitivity to m-AMSA and VP 16, xrs 6 cells being 10- and 2-fold more sensitive than wild-type CHO-K1 cells respectively, and xrs 5 responding with 2-fold higher sensitivity than xrs 6 cells. G1 treatment of CHO cells with m-AMSA increased both chromosome- and chromatid-type aberrations, xrs mutants being about 3-fold more sensitive than CHO-K1 cells. The frequency of SCEs increased also after treatment of exponentially growing and S-phase CHO cells with m-AMSA and the higher sensitivity of xrs mutants (2-fold) was evident. The S-phase appeared to be a specific stage which is most prone for the induction of SCEs by m-AMSA. The results indicate that DNA DSBs induced by REs and inhibitors of DNA topoisomerase II correlate closely with induced chromosomal aberrations and SCEs in these cell lines, indicating that DSBs are responsible for the production of these 2 genetic endpoints.  相似文献   

14.
The cell killing and induction of sister-chromatid exchanges (SCEs) by X-rays and short-wave ultraviolet (UV) irradiation in combination with inhibitors of DNA repair, 3-aminobenzamide (3AB), cytosine arabinoside (ara-C) or aphidicolin (APC) were studied in wild-type CHO-K1 and two X-ray-sensitive mutants, xrs 5 and xrs 6 cells. The spontaneous frequency of SCEs was similar in the mutants and the wild-type CHO-K1 cells (8.4-10.3 SCEs/cell). Though X-rays are known to be poor inducers of SCEs, a dose-dependent increase in the frequency of SCEs in xrs 6 cells (doubling at 150 rad) was found in comparison to a small increase in xrs 5 and no increase in wild-type CHO-K1 cells. 3AB, an inhibitor of poly(ADP-ribose) synthetase increased the spontaneous frequency of SCEs in all the cell types. 3AB did not potentiate the X-ray-induced frequency of SCEs in any of the cell lines. Ara-C, an inhibitor of DNA polymerase alpha, increased the frequency of SCEs in all the cell lines. In combined treatment with X-rays, ara-C had no synergistic effect in xrs 5 and xrs 6 cells, but the frequency of SCEs increased in X-irradiated wild-type CHO-K1 cells post-treated with ara-C. For the induced frequency of SCEs, CHO-K1 cells treated with X-rays plus ara-C behaved like xrs 6 cells treated with X-rays alone, suggesting a possible defect in DNA base damage repair in xrs 6 cells, in addition to the known defective repair of DNA double-strand breaks (DSBs). Survival experiments revealed higher sensitivity of xrs 5 and xrs 6 mutant cells to the cell killing effect of X-rays in S-phase when compared to wild-type CHO-K1 cells. The mutants responded with lesser sensitivity to cell killing effect of ara-C and APC than CHO-K1 cells, the relative sensitivity to ara-C or APC being CHO-K1 greater than xrs 5 greater than xrs 6 cells. When X-irradiation was coupled with ara-C, the results obtained for survival were similar to those of the SCE test, i.e., unlike wild-type CHO-K1, no synergistic effect was observed in xrs 5 or xrs 6 cells. After UV-irradiation, the frequency of SCEs increased similarly in wild-type CHO-K1 and xrs 6 cells, but xrs 5 cells responded with lower frequency of SCEs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Ionizing radiation induces a variety of different DNA lesions; in addition to the most critical DNA damage, the DSB, numerous base alterations, SSBs and other modifications of the DNA double-helix are formed. When several non-DSB lesions are clustered within a short distance along DNA, or close to a DSB, they may interfere with the repair of DSBs and affect the measurement of DSB induction and repair. We have shown previously that a substantial fraction of DSBs measured by pulsed-field gel electrophoresis (PFGE) are in fact due to heat-labile sites within clustered lesions, thus reflecting an artifact of preparation of genomic DNA at elevated temperature. To further characterize the influence of heat-labile sites on DSB induction and repair, cells of four human cell lines (GM5758, GM7166, M059K, U-1810) with apparently normal DSB rejoining were tested for biphasic rejoining after gamma irradiation. When heat-released DSBs were excluded from the measurements, the fraction of fast rejoining decreased to less than 50% of the total. However, the half-times of the fast (t(1/2) = 7-8 min) and slow (t(1/2) = 2.5 h) DSB rejoining were not changed significantly. At t = 0, the heat-released DSBs accounted for almost 40% of the DSBs, corresponding to 10 extra DSBs per cell per Gy in the initial DSB yield. These heat-released DSBs were repaired within 60-90 min in all cells tested, including M059K cells treated with wortmannin and DNA-PKcs-defective M059J cells. Furthermore, cells lacking XRCC1 or poly(ADP-ribose) polymerase 1 (PARP1) rejoined both total DSBs and heat-released DSBs similarly to normal cells. In summary, the presence of heat-labile sites has a substantial impact on DSB induction and DSB rejoining rates measured by pulsed-field gel electrophoresis, and heat-labile sites repair is independent of DNA-PKcs, XRCC1 and PARP.  相似文献   

16.
The radioprotector WR-1065 (2-[(aminopropyl)amino]ethanethiol) is known to protect mammalian cells from the cytotoxic and mutagenic effects of radio- and chemotherapeutic agents, but the exact mechanisms involved in this protection are not fully known. To help determine the effects of WR-1065 alone on cells, we examined its effect on a variety of cellular processes. Incubation of AA8 cells in 4 mM WR-1065 did not significantly affect the rate of DNA synthesis. Autoradiographic analysis of heavily labeled (S-phase population) nuclei of AA8 cells showed no significant difference in the S-phase population of WR-1065-treated versus control cells for up to 3 h. An examination of the effect of WR-1065 on repair synthesis, as measured by unscheduled DNA synthesis (UDS) in cells exposed to 15 Gy, showed no difference between treated and sham-treated cells for up to 2 h exposure. A significant reduction in the amount of UDS was seen in cells treated with the protector for 2.5 and 3 h. Incubation of cells in WR-1065 did alter the cell cycle distributions. An increase in the G2-phase population with a corresponding decrease in the G1-phase population was observed in cells incubated up to 3 h in the presence of 4 mM WR-1065. After the removal of WR-1065 at 3 h, a redistribution of the cells throughout the cell cycle occurred as has been observed in cells treated with other synchronization agents. These data suggest that perturbations in cell cycle progression, rather than direct effects on the rate of DNA synthesis, could play a role in the increased survival and reduced mutation frequencies observed in the presence of WR-1065.  相似文献   

17.
The role of UV-induced DNA lesions and their repair in the formation of chromosomal aberrations in the xrs mutant cell lines xrs 5 and xrs 6 and their wild-type counterpart, CHO-K1 cells, were studied. The extent of induction of DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs) due to UV irradiation in the presence or absence of 1-beta-D-arabinofuranosylcytosine (ara-C) and hydroxyurea (HU) was determined using the alkaline and neutral elution methods. Results of these experiments were compared with the frequencies of induced chromosomal aberrations in UV-irradiated G1 cells treated under similar conditions. Xrs 6 cells showed a defect in their ability to perform the incision step of nucleotide repair after UV irradiation. Accumulation of breaks 2 h after UV irradiation in xrs 6 cells in the presence of HU and ara-C remained at the level of incision breaks estimated after 20 min, which was about 35% of that found in wild-type CHO-K1 cells. In UV-irradiated CHO-K1 and xrs 5 cells, more incision breaks were present after 2 h compared with 20 min post-treatment with ara-C, a further increase was evident when HU was added to the combined treatment. The level of incision breaks induced under these conditions in xrs 5 was about 80% of that observed in CHO-K1 cells. UV irradiation itself did not induce any detectable DNA strand breaks. Accumulation of SSBs in UV-irradiated cells post-treated with ara-C and HU coincides with the increase in the frequency of chromosomal aberrations. These data suggest that accumulated SSBs when converted to DSBs in G1 give rise to chromosome-type aberrations, whereas strand breaks persisting until S-phase result in chromatid-type aberrations. Xrs 6 appeared to be the first ionizing-radiation-sensitive mutant with a partial defect in the incision step of DNA repair of UV-induced damage.  相似文献   

18.
Non-homologous end joining (NHEJ) is one of the primary pathways for the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) in mammalian cells. Proteins required for NHEJ include the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku, XRCC4 and DNA ligase IV. Current models predict that DNA-PKcs, Ku, XRCC4 and DNA ligase IV assemble at DSBs and that the protein kinase activity of DNA-PKcs is essential for NHEJ-mediated repair of DSBs in vivo. We previously identified a cluster of autophosphorylation sites between amino acids 2609 and 2647 of DNA-PKcs. Cells expressing DNA-PKcs in which these autophosphorylation sites have been mutated to alanine are highly radiosensitive and defective in their ability to repair DSBs in the context of extrachromosomal assays. Here, we show that cells expressing DNA-PKcs with mutated autophosphorylation sites are also defective in the repair of IR-induced DSBs in the context of chromatin. Purified DNA-PKcs proteins containing serine/threonine to alanine or aspartate mutations at this cluster of autophosphorylation sites were indistinguishable from wild-type (wt) protein with respect to protein kinase activity. However, mutant DNA-PKcs proteins were defective relative to wt DNA-PKcs with respect to their ability to support T4 DNA ligase-mediated intermolecular ligation of DNA ends. We propose that autophosphorylation of DNA-PKcs at this cluster of sites is important for remodeling of DNA-PK complexes at DNA ends prior to DNA end joining.  相似文献   

19.
To analyze relationships between replication and homologous recombination in mammalian cells, we used replication inhibitors to treat mouse and hamster cell lines containing tandem repeat recombination substrates. In the first step, few double-strand breaks (DSBs) are produced, recombination is slightly increased, but cell lines defective in non-homologous end-joining (NHEJ) affected in ku86 (xrs6) or xrcc4 (XR-1) genes show enhanced sensitivity to replication inhibitors. In the second step, replication inhibition leads to coordinated kinetics of DSB accumulation, Rad51 foci formation and RAD51-dependent gene conversion stimulation. In xrs6 as well as XR-1 cell lines, Rad51 foci accumulate more rapidly compared with their respective controls. We propose that replication inhibition produces DSBs, which are first processed by the NHEJ; then, following DSB accumulation, RAD51 recombination can act.  相似文献   

20.
DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is responsible for the DNA double-strand break repair. Cells lacking or with dysfunctional DNA-PK are often associated with mis-repair, chromosome aberrations, and complex exchanges, all of which are known to contribute to the development of human cancers including glioblastoma. Two human glioblastoma cell lines were used in the experiment, M059J cells lacking the catalytic subunit of DNA-PK, and their isogenic but DNA-PK proficient counterpart, M059K. We found that M059K cells were much more sensitive to staurosporine (STS) treatment than M059J cells, as demonstrated by MTT assay, TUNEL detection, and annexin-V and propidium iodide (PI) staining. A possible mechanism responsible for the different sensitivity in these two cell lines was explored by the examination of Bcl-2, Bax, Bak, and Fas. The cell death stimulus increased anti-apoptotic Bcl-2 and decreased pro-apoptotic Bcl-2 members (Bak and Bax) and Fas in glioblastoma cells deficient in DNA-PK. Activation of DNA-PK is known to promote cell death of human tumor cells via modulation of p53, which can down-regulate the anti-apoptotic Bcl-2 member proteins, induce pro-apoptotic Bcl-2 family members and promote a Bax-Bak interaction. Our experiment also demonstrated that the mode of glioblastoma cell death induced by STS consisted of both apoptosis and necrosis and the percentage of cell death in both modes was similar in glioblastoma cell lines either lacking DNA-PK or containing intact DNA-PK. Taken together, our findings suggest that DNA-PK has a positive role in the regulation of apoptosis in human glioblastomas. The aberrant expression of Bcl-2 family members and Fas was, at least in part, responsible for decreased sensitivity of DNA-PK deficient glioblastoma cells to cell death stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号