首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell cycle inhibitor p57Kip2 induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases. p57, although active as a cyclin A-CDK2 inhibitor, is largely unfolded or intrinsically disordered as shown by circular dichroism and fluorescence spectra characteristic of an unfolded protein and a hydrodynamic radius consistent with an unfolded structure. In addition, the N-terminal domain of p57 is both functionally independent as a cyclin A-CDK2 inhibitor and unstructured, as demonstrated by circular dichroism and fluorescence spectra indicative of unfolded proteins, a lack of 1H chemical shift dispersion and a hydrodynamic radius consistent with a highly unfolded structure. The amino acid compositions of full-length p57 and the excised QT domain of p57 exhibit significant deviations from the average composition of globular proteins that are consistent with the observed intrinsic disorder. However, the amino acid composition of the CDK inhibition domain of p57 does not exhibit such a striking deviation from the average values observed for proteins, implying that a general low level of hydrophobicity, rather than depletion or enrichment in specific amino acids, contributes to the intrinsic disorder of the excised p57 CDK inhibition domain.  相似文献   

2.
Adkins JN  Lumb KJ 《Biochemistry》2000,39(45):13925-13930
Progression through the eukaryotic cell cycle is regulated by phosphorylation, which is catalyzed by cyclin-dependent kinases. Cyclin-dependent kinases are regulated through several mechanisms, including negative regulation by p21 (variously called CAP20, Cip1, Sdi1, and WAF1). It has been proposed that multiple p21 molecules are required to inhibit cyclin-dependent kinases, such that p21 acts as a sensitive buffer of cyclin-dependent kinase activity or as an assembly factor for the complexes formed by the cyclins and cyclin-dependent kinases. Using purified, full-length proteins of known concentration (determined by absorbance) and cyclin A-Cdk2 of known activity (calibrated with staurosporine), we find that a 1:1 molar ratio of p21 to cyclin A-Cdk2 is able to inhibit Cdk2 activity both in the binary cyclin A-Cdk2 complex and in the presence of proliferating cell nuclear antigen (PCNA). Our results indicate that the mechanism of p21 inhibition of cyclin A-Cdk2 does not involve multiple molecules of bound p21.  相似文献   

3.
The usefulness of molecular dynamics to assess the structural integrity of mutants containing several mutations has been investigated. Our goal was to determine whether molecular dynamics would be able to discriminate mutants of a protein having a close-to-wild-type fold, from those that are not folded under the same conditions. We used as a model the B1 domain of protein G in which we replaced the unique central alpha-helix by the sequence of the second beta-hairpin, which has a strong intrinsic propensity to form this secondary structure in solution. In the resulting protein, one-third of the secondary structure has been replaced by a non-native one. Models of the mutants were built based on the three-dimensional structure of the wild-type GB1 domain. During 2 ns of molecular dynamics simulations on these models, mutants containing up to 10 mutations in the helix retained the native fold, while another mutant with an additional mutation unfolded. This result is in agreement with our circular dichroism and NMR experiments, which indicated that the former mutants fold into a structure similar to the wild-type, as opposed to the latter mutant which is partly unfolded. Additionally, a mutant containing six mutations scattered through the surface of the domain, and which is unfolded, was also detected by the simulation. This study suggests that molecular dynamics calculations could be performed on molecular models of mutants of a protein to evaluate their foldability, prior to a mutagenesis experiment.  相似文献   

4.
5.
Unfolding domains of recombinant fusion alpha alpha-tropomyosin.   总被引:1,自引:1,他引:0       下载免费PDF全文
The thermal unfolding of the coiled-coil alpha-helix of recombinant alpha alpha-tropomyosin from rat striated muscle containing an additional 80-residue peptide of influenza virus NS1 protein at the N-terminus (fusion-tropomyosin) was studied with circular dichroism and fluorescence techniques. Fusion-tropomyosin unfolded in four cooperative transitions: (1) a pretransition starting at 35 degrees C involving the middle of the molecule; (2) a major transition at 46 degrees C involving no more than 36% of the helix from the C-terminus; (3) a major transition at 56 degrees C involving about 46% of the helix from the N-terminus; and (4) a transition from the nonhelical fusion domain at about 70 degrees C. Rabbit skeletal muscle tropomyosin, which lacks the fusion peptide but has the same tropomyosin sequence, does not exhibit the 56 degrees C or 70 degrees C transition. The very stable fusion unfolding domain of fusion-tropomyosin, which appears in electron micrographs as a globular structural domain at one end of the tropomyosin rod, acts as a cross-link to stabilize the adjacent N-terminal domain. The least stable middle of the molecule, when unfolded, acts as a boundary to allow the independent unfolding of the C-terminal domain at 46 degrees C from the stabilized N-terminal unfolding domain at 56 degrees C. Thus, strong localized interchain interactions in coiled-coil molecules can increase the stability of neighboring domains.  相似文献   

6.
The binding of divalent copper ions to the full-length recombinant murine prion protein PrP23-231 at neutral pH was studied using vibrational Raman optical activity (ROA) and ultraviolet circular dichroism (UV CD). The effect of the Cu2+ ions on PrP structure depends on whether they are added after refolding of the protein in water or are present during the refolding process. In the first case ROA reveals that the hydrated alpha-helix is lost, with UV CD revealing a drop from approximately 25% to approximately 18% in the total alpha-helix content. The lost alpha-helix could be that comprising residues 145-156, located within the region associated with scrapie PrP formation. In the second case, ROA reveals the protein's structure to be almost completely disordered/irregular, with UV CD revealing a drop in total alpha-helix content to approximately 5%. Hence, although Cu2+ binding takes place exclusively within the unfolded/disordered N-terminal region, it can profoundly affect the structure of the folded/alpha-helical C-terminal region. This is supported by the finding that refolding in the presence of Cu2+ of a mutant in which the first six histidines associated with copper binding to the N-terminal region are replaced by alanine has a similar alpha-helix content to the metal-free protein. In contrast, when the protein is refolded in the presence of divalent manganese ions, ROA indicates the alpha-helix is reinforced, with UV CD revealing an increase in total alpha-helix content to approximately 30%. The very different influence of Cu2+ and Mn2+ ions on prion protein structure may originate in the different stability constants and geometries of their complexes.  相似文献   

7.
The HIV-1 viral infectivity factor (Vif) is required for productive infection of non-permissive cells, including most natural HIV-1 targets, where it counteracts the antiviral activities of the cellular cytosine deaminases APOBEC-3G (A3G) and A3F. Vif is a multimeric protein and the conserved proline-rich domain (161)PPLP(164) regulating Vif oligomerization is crucial for its function and viral infectivity. Here, we expressed and purified wild-type Vif and a mutant protein in which alanines were substituted for the proline residues of the (161)PPLP(164) domain. Using dynamic light scattering, circular dichroism and fluorescence spectroscopy, we established the impact of these mutations on Vif oligomerization, secondary structure content and nucleic acids binding properties. In vitro, wild-type Vif formed oligomers of five to nine proteins, while Vif AALA formed dimers and/or trimers. Up to 40% of the unbound wild-type Vif protein appeared to be unfolded, but binding to the HIV-1 TAR apical loop promoted formation of β-sheets. Interestingly, alanine substitutions did not significantly affect the secondary structure of Vif, but they diminished its binding affinity and specificity for nucleic acids. Dynamic light scattering showed that Vif oligomerization, and interaction with folding-promoting nucleic acids, favor formation of high molecular mass complexes. These properties could be important for Vif functions involving RNAs.  相似文献   

8.
Apoptosis of SK-HEP-1 human hepatoma cells induced by treatment with ginsenoside Rh2 (G-Rh2) is associated with rapid and selective activation of cyclin A-associated cyclin-dependent kinase 2 (Cdk2). Here, we show that in apoptotic cells, the Cdk inhibitory protein p21(WAF1/CIP1), which is associated with the cyclin A-Cdk2 complex, undergoes selective proteolytic cleavage. In contrast, another Cdk inhibitory protein, p27(KIP1), which is associated with cyclin A-Cdk2 and cyclin E-Cdk2 complexes, remained unaltered during apoptosis. Ectopic overexpression of p21(WAF1/CIP1) suppressed apoptosis as well as cyclin A-Cdk2 activity induced by treatment of SK-HEP-1 cells with G-Rh2. The suppressive effects of p21(WAF1/CIP1) were much higher in the cells transfected with p21D112N, an expression vector that encodes a p21(WAF1/CIP1) mutant resistant to caspase 3 cleavage. Overexpression of cyclin A in SK-HEP-1 cells dramatically up-regulated cyclin A-Cdk2 activity and accordingly enhances apoptosis induced by treatment with G-Rh2. These up-regulating effects were blocked by coexpression of a dominant negative allele of cdk2. Furthermore, olomoucine, a specific inhibitor of Cdks, also blocked G-Rh2-induced apoptosis. These data suggest that the induction of apoptosis in human hepatoma cells treated with G-Rh2 occurs by a mechanism that involves the activation of cyclin A-Cdk2 by caspase 3-mediated cleavage of p21(WAF1/CIP1).  相似文献   

9.
Caveolin is an integral membrane protein that is found in high abundance in caveolae. Both the N- and C- termini lie on the same side of the membrane, and the transmembrane domain has been postulated to form an unusual intra-membrane horseshoe configuration. To probe the structure of the transmembrane domain, we have prepared a construct of caveolin-1 that encompasses residues 96–136 (the entire intact transmembrane domain). Caveolin-1(96–136) was over-expressed and isotopically labeled in E. coli, purified to homogeneity, and incorporated into lyso-myristoylphosphatidylglycerol micelles. Circular dichroism and NMR spectroscopy reveal that the transmembrane domain of caveolin-1 is primarily α-helical (57–65%). Furthermore, chemical shift indexing reveals that the transmembrane domain has a helix–break–helix structure which could be critical for the formation of the intra-membrane horseshoe conformation predicted for caveolin-1. The break in the helix spans residues 108 to 110, and alanine scanning mutagenesis was carried out to probe the structural significance of these residues. Our results indicate that mutation of glycine 108 to alanine does not disrupt the structure, but mutation of isoleucine 109 and proline 110 to alanine dramatically alters the helix–break–helix structure. To explore the structural determinants further, additional mutagenesis was performed. Glycine 108 can be substituted with other small side chain amino acids (i.e. alanine), leucine 109 can be substituted with other β-branched amino acids (i.e. valine), and proline 110 cannot be substituted without disrupting the helix–break–helix structure.  相似文献   

10.
Proline for alanine substitutions in the C-peptide helix of ribonuclease A   总被引:4,自引:0,他引:4  
The effect on overall alpha-helix content of substituting proline for alanine has been determined at 5 positions (1, 2, 4, 5, and 13) of a 13-residue peptide related in sequence to residues 1-13 of ribonuclease A. The helix content falls off rapidly as proline is moved inward, and the proline residue effectively truncates the helix. No helix-stabilizing effect of proline is found at positions 2 or 4 within the first turn of the helix. Proline substitution at either end position (1, 13) has little effect on overall helix content, in agreement with an earlier study of glycine for alanine substitutions. The two end residues of the helix appear to be strongly frayed.  相似文献   

11.
Differential scanning calorimetry and circular dichroism experiments were performed to study structural differences among the common isoforms of human apolipoprotein E (apoE2, apoE3, and apoE4) and their N-terminal, 22-kDa fragments. Here, we examine thermodynamic properties that characterize the structural differences among isoforms, and also differences in their unfolding behavior. The 22-kDa fragments and their full-length counterparts were found to exhibit similar differences in thermal stability (apoE4相似文献   

12.
Stable enzyme-substrate interaction has been recognized as a major mechanism underlying the substrate preferences of cyclin-dependent kinases (Cdks). To learn the relationship between stability of physical association and efficiency of phosphorylation, we studied DP1 phosphorylation by cyclin A-Cdk2 in multiprotein complexes. When DP1 was connected to cyclin A-Cdk2 through E2F4 and p107, its phosphorylation was very inefficient, although its association with cyclin A-Cdk2 was stable. In contrast, DP1 was efficiently phosphorylated when weakly connected to cyclin A-Cdk2 via E2F1 or E2F4 with a fused cyclin A binding domain of E2F1. The transactivation activity of E2F4-DP1 heterodimers was reduced when DP1 was phosphorylated, while a phosphorylation deficient mutant of DP1 resisted this down-regulation. Phosphorylation and functional regulation of DP1 were not due to nuclear localization. Thus, stronger physical association between the kinase and the substrate does not necessarily lead to more efficient phosphorylation than weaker interaction does.  相似文献   

13.
The cyclin-dependent kinase inhibitors (CKIs) bind to and directly regulate the catalytic activity of cyclin-dependent kinase (Cdk)/cyclin complexes involved in cell cycle control and do not regulate other, closely related Cdks. We showed previously that the CKI, p27, binds to Cdk2/cyclin A though a sequential mechanism that involves folding-on-binding. The first step in the kinetic mechanism is interaction of a small, highly dynamic domain of p27 (domain 1) with the cyclin subunit of the Cdk2/cyclin A complex, followed by much slower binding of a more lengthy and less flexible domain (domain 2) to Cdk2. The second step requires folding of domain 2 into the kinase inhibitory conformation. Rapid binding of p27 domain 1 to cyclin A tethers the inhibitor to the binary Cdk2/cyclin A complex, which reduces the entropic barrier associated with slow binding of domain 2 to the catalytic subunit. We show here that p27/cyclin interactions are an important determinant of p27 specificity towards cell cycle Cdks. We used surface plasmon resonance, limited proteolysis, mass spectrometry, and NMR spectroscopy to study the interaction of p27 with Cdk2/cyclin A, and with another Cdk complex, Cdk5/p25, that is involved in neurodegeneration. Importantly, Cdk5/p35 (the parent complex of Cdk5/p25) is not regulated by p27 in neurons. Our results show that p27 binds to Cdk5 and Cdk2 with similar, slow kinetics. However, p27 fails to interact with p25 within the Cdk5/p25 complex, which we believe prevents formation of a kinetically trapped, inhibited p27/Cdk5/p25 complex in vivo. The helical topology of p25 is very similar to that of cyclin A. However, p25 lacks the MRAIL sequence in one helix that, in the cell cycle cyclins, mediates specific interactions with domain 1 of p21 and p27. Our results strongly suggest that p21 and p27, related Cdk inhibitors, select their cell cycle regulatory Cdk targets by binding specifically to the cyclin subunit of these Cdk/cyclin complexes as a first step in a sequential, folding-on-binding mechanism.  相似文献   

14.
The aqueous solution structure of the full-length recombinant ovine prion protein PrP(25-233), together with that of the N-terminal truncated version PrP(94-233), have been studied using vibrational Raman optical activity (ROA) and ultraviolet circular dichroism (UVCD). A sharp positive band at approximately 1315 cm(-1) characteristic of poly(L-proline) II (PPII) helix that is present in the ROA spectrum of the full-length protein is absent from that of the truncated protein, together with bands characteristic of beta-turns. Although it is not possible similarly to identify PPII helix in the full-length protein directly from its UVCD spectrum, subtraction of the UVCD spectrum of PrP(94-233) from that of PrP(25-233) yields a difference UVCD spectrum also characteristic of PPII structure and very similar to the UVCD spectrum of murine PrP(25-113). These results provide confirmation that a major conformational element in the N-terminal region is PPII helix, but in addition show that the PPII structure is interspersed with beta-turns and that little PPII structure is present in PrP(94-233). A principal component analysis of the ROA data indicates that the alpha-helix and beta-sheet content, located in the structured C-terminal domain, of the full-length and truncated proteins are similar. The flexibility imparted by the high PPII content of the N-terminal domain region may be an essential factor in the function and possibly also the misfunction of prion proteins.  相似文献   

15.
The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.  相似文献   

16.
Skp2 is well known as the F-box protein of the SCF(Skp2) x Roc1 complex targeting p27 for ubiquitylation. Skp2 also forms complexes with cyclin A, which is particularly abundant in cancer cells due to frequent Skp2 overexpression, but the mechanism and significance of this interaction remain unknown. Here, we report that Skp2-cyclin A interaction is mediated by novel interaction sequences on both Skp2 and cyclin A, distinguishing it from the well known RXL-hydrophobic patch interaction between cyclins and cyclin-binding proteins. Furthermore, a short peptide derived from the mapped cyclin A binding sequences of Skp2 can block Skp2-cyclin A interaction but not p27-cyclin A interaction, whereas a previously identified RXL peptide can block p27-cyclin A interaction but not Skp2-cyclin A interaction. Functionally, Skp2-cyclin A interaction is separable from Skp2 ability to mediate p27 ubiquitylation. Rather, Skp2-cyclin A interaction serves to directly protect cyclin A-Cdk2 from inhibition by p27 through competitive binding. Finally, we show that disruption of cyclin A binding with point mutations in the cyclin A binding domain of Skp2 compromises the ability of overexpressed Skp2 to counter cell cycle arrest by a p53/p21-mediated cell cycle checkpoint without affecting its ability to cause degradation of cellular p27 and p21. These findings reveal a new functional mechanism of Skp2 and a new regulatory mechanism of cyclin A.  相似文献   

17.
The cyclin-dependent kinase inhibitor (CKI) p27Kip1 plays a critical role in cell cycle regulation by binding and inhibiting (or activating) various cyclin-dependent kinase (Cdk)/cyclin complexes. Thermal denaturation monitored by circular dichroism (CD) and isothermal titration calorimetry (ITC) were used to determine the relative stabilities and affinities of p27-KID (p27 kinase inhibitory domain) complexes with activated Cdk2 (phosphorylated at Thr160; P-Cdk2) and non-activated forms of Cdk2 and/or cyclin A. Phosphorylation of residue Thr160 only slightly increases the thermal stability of Cdk2, and its binary complexes with cyclin A and p27-KID. The p27-KID/P-Cdk2/cyclin A or p27-KID/Cdk2/cyclin A ternary complexes exhibited significantly higher thermal stabilities compared to the binary complexes (P-Cdk2/cyclin A or Cdk2/cyclin A). Differences in T(m) values between the binary and ternary complexes with P-Cdk2 and Cdk2 were +25.9 and +20.4 degrees C, respectively. These results indicate that the ternary complex with phosphorylated Cdk2 is stabilized to a larger extent than the non-phosphorylated complex. The free energy of association (deltaG(A)) for formation of the two ternary complexes was more favorable than for the binary complexes, indicating that a significantly smaller population of free components existed when all three components were present. These data indicate that p27-KID, which is intrinsically disordered in solution, acts as a thermodynamic tether when bound within the ternary complexes. It is proposed that thermodynamic tethering may be a general phenomena associated with intrinsically unstructured proteins (IUPs) which often function by binding to multiple partners in multi-protein assemblies.  相似文献   

18.
There is considerable interest in the structure of the denatured state and in the role local interactions play in protein stability and protein folding. Studies of peptide fragments provide one method to assess local conformational preferences which may be present in the denatured state under native-like conditions. A set of peptides corresponding to the individual elements of secondary structure derived from the N-terminal domain of the ribosomal protein L9 have been synthesized. This small 56 residue protein adopts a mixed alpha-beta topology and has been shown to fold rapidly in an apparent two-state fashion. The conformational preferences of each peptide have been analyzed by proton nuclear magnetic resonance spectroscopy and circular dichroism spectroscopy. Peptides corresponding to each of the three beta-stands and to the first alpha-helix are unstructured as judged by CD and NMR. In contrast, a peptide corresponding to the C-terminal helix is remarkably structured. This 17 residue peptide is 53 % helical at pH 5.4, 4 degrees C. Two-dimensional NMR studies demonstrate that the helical structure is distributed approximately uniformly throughout the peptide, although there is some evidence for fraying at the C terminus. Detailed analysis of the NMR spectra indicate that the helix is stabilized, in part, by a native N-capping interaction involving Thr40. A mutant peptide which lacks Thr40 is only 32 % helical. pH and ionic strength-dependent studies suggested that charge charge interactions make only a modest net contribution to the stability of the peptide. The protein contains a trans proline peptide bond located at the first position of the C-terminal helix. NMR analysis of the helical peptide and of a smaller peptide containing the proline residue indicates that only a small amount of cis proline isomer (8 %) is likely to be populated in the unfolded state.  相似文献   

19.
L King  S S Lehrer 《Biochemistry》1989,28(8):3498-3502
Rabbit skeletal myosin rod, which is the coiled-coil alpha-helical portion of myosin, contains two tryptophan residues located in the light meromyosin (LMM) portion whose fluorescence contributes 27% to the fluorescence of the entire myosin molecule. The temperature dependence of several fluorescence parameters (quantum yield, spectral position, polarization) of the rod and its LMM portion was compared to the thermal unfolding of the helix measured with circular dichroism. Rod unfolds with three major helix unfolding transitions: at 43, 47, and 53 degrees C, with the 43 and 53 degrees C transitions mainly located in the LMM region and the 47 degrees C transition mainly located in the subfragment 2 region. The fluorescence study showed that the 43 degrees C transition does not involve the tryptophan-containing region and that the 47 degrees C transition produces an intermediate with different fluorescence properties from both the completely helical and fully unfolded states. That is, although the fluorescence of the 47 degrees C intermediate is markedly quenched, the tryptophyl residues do not become appreciably exposed to solvent until the 53 degrees C transition. It is suggested that although the intermediate that is formed in the 47 degrees C transition contains an extensive region which is devoid of alpha-helix, the unfolded region is not appreciably solvated or flexible. It appears to have the properties of a collapsed nonhelical state rather than a classical random coil.  相似文献   

20.
The energetics of alpha-helix formation are fairly well understood and the helix content of a given amino acid sequence can be calculated with reasonable accuracy from helix-coil transition theories that assign to the different residues specific effects on helix stability. In internal helical positions, alanine is regarded as the most stabilizing residue, whereas glycine, after proline, is the more destabilizing. The difference in stabilization afforded by alanine and glycine has been explained by invoking various physical reasons, including the hydrophobic effect and the entropy of folding. Herein, the contribution of these two effects and that of hydrophilic area burial is evaluated by analyzing Ala and Gly mutants implemented in three helices of apoflavodoxin. These data, combined with available data for similar mutations in other proteins (22 Ala/Gly mutations in alpha-helices have been considered), allow estimation of the difference in backbone entropy between alanine and glycine and evaluation of its contribution and that of apolar and polar area burial to the helical stabilization typically associated to Gly-->Ala substitutions. Alanine consistently stabilizes the helical conformation relative to glycine because it buries more apolar area upon folding and because its backbone entropy is lower. However, the relative contribution of polar area burial (which is shown to be destabilizing) and of backbone entropy critically depends on the approximation used to model the structure of the denatured state. In this respect, the excised-peptide model of the unfolded state, proposed by Creamer and coworkers (1995), predicts a major contribution of polar area burial, which is in good agreement with recent quantitations of the relative enthalpic contribution of Ala and Gly residues to alpha-helix formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号