首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Cytochrome P450 3A4 and 3A7 (CYP3A4 and CYP3A7, respectively) are predominant forms in the human adult and fetal liver, respectively. 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is known to be a potent inducer of CYP3A4 in human colon carcinoma Caco-2 via vitamin D receptor (VDR). However, whether CYP3A7 is inducible by 1,25(OH)(2)D(3) has not yet been elucidated. In the present study, we examined the effect of 1,25(OH)(2)D(3) on CYP3A7 gene expression in Caco-2 cells, which express CYP3A4 and CYP3A7 mRNAs. 1,25(OH)(2)D(3) hardly induced the expression of CYP3A7 mRNA in contrast to the marked induction of CYP3A4 mRNA. Reporter assay using 5'-franking region CYP3A4 and CYP3A7 genes also revealed that 1,25(OH)(2)D(3) activates CYP3A4 promoter, but not CYP3A7 promoter, which has two mutations in the proximal ER6 site compared with CYP3A4 promoter. In addition, we found that the binding of VDR to the proximal ER6 in CYP3A7 gene was markedly less than that to the proximal ER6 in CYP3A4 gene using gel shift assay. Taken together, the decrease of VDR binding to the proximal ER6 caused by the mutation results in the loss of CYP3A7 gene activation by 1,25(OH)(2)D(3).  相似文献   

2.
3.
The debrisoquine-4-hydroxylase polymorphism is a genetic variation in oxidative drug metabolism characterized by two phenotypes, the extensive metabolizer (EM) and poor metabolizer (PM). Of the Caucasian populations of Europe and North America, 5%-10% are of the PM phenotype and are unable to metabolize debrisoquine and numerous other drugs. The defect is caused by several mutant alleles of the CYP2D6 gene, two of which are detected in about 70% of PMs. We have constructed a genomic library from lymphocyte DNA of an EM positively identified by pedigree analysis to be homozygous for the normal CYP2D6 allele. The normal CYP2D6 gene was isolated; was completely sequenced, including 1,531 and 3,522 bp of 5' and 3' flanking DNA, respectively; and was found to contain nine exons within 4,378 bp. Two other genes, designated CYP2D7 and CYP2D8P, were also cloned and sequenced. CYP2D8P contains several gene-disrupting insertions, deletions, and termination codons within its exons, indicating that this is a pseudogene. CYP2D7, which is just downstream of CYP2D8P, is apparently normal, except for the presence, in the first exon, of an insertion that disrupts the reading frame. A hypothesis is presented that the presence of a pseudogene within the CYP2D subfamily transfers detrimental mutations via gene conversions into the CYP2D6 gene, thus accounting for the high frequency of mutations observed in the CYP2D6 gene in humans.  相似文献   

4.
5.
6.
We cloned three novel cytochrome P450 (CYP) 2D cDNAs in the Syrian hamster (Mesocricetus auratus). Each clone contained an open reading frame of 1500 nucleotides encoding a protein of 500 amino acids. The deduced amino acid sequences of these had high identities with those of the other CYP2D members, therefore, the clones were assigned as CYP2D20, CYP2D27, and CYP2D28. Northern blot analysis showed that the CYP2D27 mRNA was expressed in liver, but not in kidney, small intestine, and brain, while the CYP2D20 and CYP2D28 mRNAs were not detected in these tissues examined. The expression of CYP2D27 mRNA in liver did not show sex difference and was not induced by either 3-methylcholanthrene or phenobarbital treatment. We characterized the enzyme activities of recombinant CYP2D27 expressed in COS-7 cells. The CYP2D27 protein had the bufuralol 1'-hydroxylase and debrisoquine 4-hydroxylase activities that are specific to the CYP2D subfamily.  相似文献   

7.
1,25(OH)(2)D(3) and 25(OH)D(3) have been associated with type 1 diabetes. Diverse enzymes are involved in the synthesis of these metabolites: the 25-Vitamin-D-hydroxylase (CYP2R1), the 25-hydroxyvitamin-D(3)-1-alpha-hydroxylase (CYP27B1) and the 25(OH)D(3)-24-hydroxylase (CYP24) among others. Serum levels of 25(OH)D(3) and 1,25(OH)(2)D(3) were investigated in type 1 diabetes patients (n=173) and the mRNA expression of the CYP2R1, CYP27B1 and CYP24 genes in type 1 diabetes patients (n=33) and healthy controls (n=23). These parameters were correlated with the -1260 (C/A) polymorphism in the CYP27B1 gene. Lower expression of CYP27B1 mRNA in comparison with healthy controls (1.7165 versus 1.7815, P=0.0268) was found. Additionally, patients carrying the genotype CC possessed a reduced amount of CYP27B1 mRNA compared to healthy controls (1.6855 versus 1.8107, respectively, P=0.0220). The heterozygosity rate of the -1260 C/A polymorphism was more frequent in patients with normal levels of 1,25(OH)(2)D(3) (> or =19.9 pmol/ml) than in whose with a level of less than 19.9 pmol/ml (46.7% versus 22.2%, P=0.0134). No correlation with serum levels of 25(OH)D(3) was found. Thus, CYP27B1 gene could play a functional role in the pathogenesis of type 1 diabetes through modulation of its mRNA expression and influence serum levels of 1,25(OH)(2)D(3) via the -1260 C/A polymorphism.  相似文献   

8.
Recently, a new cytochrome P450 gene, CYP6D3, was identified from house fly. CYP6D3 was found upstream of a related gene (CYP6D1) on autosome 1. CYP6D3 cDNA sequences were obtained and compared from insecticide resistant (LPR) and susceptible (CS and Edinburgh) strains. Although each strain had a different CYP6D3 allele, the deduced amino acid sequences revealed no consistent differences between the susceptible and resistant strains. There was approximately 12-fold more CYP6D3 mRNA detected in adult LPR flies compared to CS, and the elevated level of expression in LPR was not due to gene amplification. Northern blots indicate expression of CYP6D3 mRNA is developmentally regulated with no expression in eggs, yet it is readily detectable in larvae as well as male and female adults. Phenobarbital is a well studied inducer of P450s in insects and it induced expression of CYP6D3 mRNA in both the CS (16-fold) and LPR (1.6 fold) strains. The CYP6D3 5' flanking regions were sequenced from the resistant and susceptible strains. Possible regulatory sequences within this region are discussed.  相似文献   

9.
A novel human cytochrome P450, CYP2W1, was cloned and expressed heterologously. No or very low CYP2W1 mRNA levels were detected in fetal and adult human tissues, expression was however seen in 54% of human tumor samples investigated (n=37), in particular colon and adrenal tumors. Western blotting also revealed high expression of CYP2W1 in some human colon tumors. In rat tissues, CYP2W1 mRNA was expressed preferentially in fetal but also in adult colon. The CYP2W1 gene was shown to encompass one functional CpG island in the exon 1-intron 1 region which was methylated in cell lines lacking CYP2W1 expression, but unmethylated in cells expressing CYP2W1. Re-expression of CYP2W1 was seen following demethylation by 5-Aza-2'-deoxycytidine. Transfection of HEK293 cells with CYP2W1 caused the formation of a properly folded enzyme, which was catalytically active with arachidonic acid as a substrate. It is concluded that CYP2W1 represents a tumor-specific P450 isoform with potential importance as a drug target in cancer therapy.  相似文献   

10.
11.
CYP2D6 is a member of cytochrome P450 enzymes that metabolise over 25% of commonly used drugs. Genetic polymorphisms can cause insufficient drug efficacy at usually administered doses or can be the cause of adverse drug reaction. CYP2D6 genotyping can be used to predict CYP2D6 phenotype and thereby explain some abnormalities in drug response and thus optimize pharmacotherapy. The aim of this study was to investigate the frequency of functionally important variant alleles of the CYP2D6 gene throughout the Czech population to predict the prevalence of ultra-rapid and poor metabolizer phenotypes. The DNA of 223 unrelated, healthy volunteers was analysed to detect the presence of CYP2D6*6, *5, *4, *3 and gene duplication. The variant allele frequencies in our population were 0.22%, 3.14%, 22.87%, 1.12% and 3.14% for CYP2D6*6, CYP2D6*5, CYP2D6*4, CYP2D6*3 and CYP2D6*MxN, respectively. Fifteen subjects carried two variant alleles leading to predicted poor type of metabolism, 84 subjects were heterozygous extensive metabolizers (het-EM). The full-text contains detailed comparison with European white populations. The distribution of variant alleles complies with the Hardy-Weinberg equilibrium. The frequencies of functional variant alleles of CYP2D6 in Czech population are in concordance with other Caucasian populations.  相似文献   

12.
13.
14.
Brassinosteroids (BRs) are plant hormones that are essential for a wide range of developmental processes in plants. Many of the genes responsible for the early reactions in the biosynthesis of BRs have recently been identified. However, several genes for enzymes that catalyze late steps in the biosynthesis pathways of BRs remain to be identified, and only a few genes responsible for the reactions that produce bioactive BRs have been identified. We found that the ROTUNDIFOLIA3 (ROT3) gene, encoding the enzyme CYP90C1, which was specifically involved in the regulation of leaf length in Arabidopsis thaliana, was required for the late steps in the BR biosynthesis pathway. ROT3 appears to be required for the conversion of typhasterol to castasterone, an activation step in the BR pathway. We also analyzed the gene most closely related to ROT3, CYP90D1, and found that double mutants for ROT3 and CYP90D1 had a severe dwarf phenotype, whereas cyp90d1 single knockout mutants did not. BR profiling in these mutants revealed that CYP90D1 was also involved in BR biosynthesis pathways. ROT3 and CYP90D1 were expressed differentially in leaves of A. thaliana, and the mutants for these two genes differed in their defects in elongation of hypocotyls under light conditions. The expression of CYP90D1 was strongly induced in leaf petioles in the dark. The results of the present study provide evidence that the two cytochrome P450s, CYP90C1 and CYP90D1, play distinct roles in organ-specific environmental regulation of the biosynthesis of BRs.  相似文献   

15.

Background and Aims

Hepatic stellate cells (HSC), which can participate in liver regeneration and fibrogenesis, have recently been identified as liver-resident mesenchymal stem cells. During their activation HSC adopt a myofibroblast-like phenotype accompanied by profound changes in the gene expression profile. DNA methylation changes at single genes have been reported during HSC activation and may participate in the regulation of this process, but comprehensive DNA methylation analyses are still missing. The aim of the present study was to elucidate the role of DNA methylation during in vitro activation of HSC.

Methods and Results

The analysis of DNA methylation changes by antibody-based assays revealed a strong decrease in the global DNA methylation level during culture-induced activation of HSC. To identify genes which may be regulated by DNA methylation, we performed a genome-wide Methyl-MiniSeq EpiQuest sequencing comparing quiescent and early culture-activated HSC. Approximately 400 differentially methylated regions with a methylation change of at least 20% were identified, showing either hypo- or hypermethylation during activation. Further analysis of selected genes for DNA methylation and expression were performed revealing a good correlation between DNA methylation changes and gene expression. Furthermore, global DNA demethylation during HSC activation was investigated by 5-bromo-2-deoxyuridine assay and L-mimosine treatment showing that demethylation was independent of DNA synthesis and thereby excluding a passive DNA demethylation mechanism.

Conclusions

In summary, in vitro activation of HSC initiated strong DNA methylation changes, which were associated with gene regulation. These results indicate that epigenetic mechanisms are important for the control of early HSC activation. Furthermore, the data show that global DNA demethylation during activation is based on an active DNA demethylation mechanism.  相似文献   

16.
17.
18.
19.
Studies were performed to further characterize the male-specific hepatic recombinant microsomal vitamin D 25-hydroxlase CYP2C11, expressed in baculovirus-infected insect cells, and determine whether it is also a vitamin D 24-hydroxylase. 25- and 24-hydroxylase activities were compared with those of 10 other recombinant hepatic microsomal cytochrome P-450 enzymes expressed in baculovirus-infected insect cells. Each of them 25-hydroxylated vitamin D2, vitamin D3, 1alpha-hydroxyvitamin D2 (1alphaOHD2), and 1alpha-hydroxyvitamin D3 (1alphaOHD3). CYP2C11 had the greatest activity with these substrates, except vitamin D3, which had the same activity as four of the other enzymes. The descending order of 25-hydroxylation by CYP2C11 was 1alphaOHD3 > 1alphaOHD2 > vitamin D2 > vitamin D3. Each of the recombinant cytochrome P-450 enzymes 24-hydroxylated 1alphaOHD2. CYP2C11 had the greatest activity. 24-Hydroxylation of 1alphaOHD3 was very low, and there was none with vitamin D3. Only CYP2C11 24-hydroxylated vitamin D2. Structures of vitamin D metabolites, including 24-hydroxyvitamin D2, 1,24(S)-dihydroxyvitamin D2, and 1,24-dihydroxyvitamin D3, were confirmed by HPLC and gas chromatography retention times and characteristic mass spectrometric fragmentation patterns. In male rats, hypophysectomy significantly reduced body weight, liver weight, hepatic CYP2C11 mRNA expression, and 24- and 25-hydroxylation of 1alphaOHD2. Expression of CYP2J3 and CYP2R1 mRNA did not change. In male rat hepatocytes, CYP2C11 mRNA expression and 24- and 25-hydroxylation were significantly reduced after culture for 24 h compared with uncultured cells. Expression of CYP2J3 and CYP2R1 either increased or did not change. It is concluded that CYP2C11 is a male-specific hepatic microsomal vitamin D 25-hydroxylase that hydroxylates vitamin D2, vitamin D3, 1alphaOHD2, and 1alphaOHD3. CYP2C11 is also a vitamin D 24-hydroxylase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号