首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 727 毫秒
1.
An antiserum raised against the synthetic tripeptide pyroglutamyl-histidyl-proline (free acid) was used to localize thyrotropin-releasing hormone (TRH) in the rat central nervous system (CNS) by immunocytochemistry. The distribution of TRH-immunoreactive structures was similar to that reported earlier; i.e., most of the TRH-containing perikarya were located in the parvicellular part of the hypothalamic paraventricular nucleus, the suprachiasmatic portion of the preoptic nucleus, the dorsomedial nucleus, the lateral basal hypothalamus, and the raphe nuclei. Several new locations for TRH-immunoreactive neurons were also observed, including the glomerular layer of the olfactory bulb, the anterior olfactory nuclei, the diagonal band of Broca, the septal nuclei, the sexually dimorphic nucleus of the preoptic area, the reticular thalamic nucleus, the lateral reticular nucleus of the medulla oblongata, and the central gray matter of the mesencephalon. Immunoreactive fibers were seen in the median eminence, the organum vasculosum of the lamina terminalis, the lateral septal nucleus, the medial habenula, the dorsal and ventral parabrachial nuclei, the nucleus of the solitary tract, around the motor nuclei of the cranial nerves, the dorsal vagal complex, and in the reticular formation of the brainstem. In the spinal cord, no immunoreactive perikarya were observed. Immunoreactive processes were present in the lateral funiculus of the white matter and in laminae V-X in the gray matter. Dense terminal-like structures were seen around spinal motor neurons. The distribution of TRH-immunoreactive structures in the CNS suggests that TRH functions both as a neuroendocrine regulator in the hypothalamus and as a neurotransmitter or neuromodulator throughout the CNS.  相似文献   

2.
The P2 contents of nervous tissues from the human, rabbit, guinea pig, and Lewis rat were measured by radioimmunoassay. The ventral spinal roots contained more P2 than any other tissue. Human dorsal roots and peripheral nerves contained 41-65% of the amount in human ventral roots. Human olfactory and optic nerves and brain contained 1.1-2.7%, spinal cord, 2.8%, cranial nerve VIII, 11%, and cerebral grey matter, 0%. The relative amounts in the rabbit nervous system were similar except that the spinal cord contained 20% of the amount in the ventral roots. Qualitative estimates in the guinea pig showed that the spinal roots and peripheral nerves contained more P2 than the spinal cord, and that none was present in the brain. In the Lewis rat, P2 could be detected in the spinal roots and peripheral nerves but not in the CNS. The distribution of P2 in the human nervous system parallels the incidence and severity of lesions in acute polyradiculoneuritis. It also explains the absence of any lesions in the CNS when experimental allergic neuritis is induced in the Lewis rat.  相似文献   

3.
The location of labeled neurons that are sources of ascending crossed and uncrossed supraspinal fiber systems was studied in the laminae of gray matter of the spinal cord in 18 cats by the retrograde axonal transport of horseradish peroxidase method. Neurons in the lateral zones of the dorsal horn were shown to make direct, and cells in neighboring regions indirect (through relay nuclei of the dorsal columns) connections with the contralateral thalamus. In the lower segments of the spinal cord sources of crossed spinoreticular and spinothalamic fiber systems are located in the medial regions of the ventral horn and lateral zones of the lateral basilar region. Some large neurons in the motor nuclei were shown to send their axons into the lateral reticular nucleus of the medulla. On the basis of the results a scheme of the laminar organization of sources of ascending fiber systems in the cat spinal cord is constructed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 451–459, September–October, 1979.  相似文献   

4.
1. To elucidate the neural mechanisms that mediate visual responses of optic tectum (OT) to medullary and spinal motor systems, we analyzed medullary reticular neurons in paralyzed Japanese toads (Bufo japonicus). We examined their responses to electrical stimulation of OT, and stained some neurons intracellularly. Responses to stimulation of the glossopharyngeal nerve (IX) were also analyzed. 2. Extracellular single unit recording revealed excitatory responses of medullary neurons to OT and IX stimulation. Among 92 units encountered, 79 responded to OT stimuli, 10 to IX stimuli, and 3 to both. Some units responded to successive stimuli of short intervals with relatively stable lags. 3. Intracellular recording and staining experiments revealed morphologies of reticular neurons that received excitatory inputs from OT. Thirteen units were identified after complete reconstruction of somata and dendrites. Neurons in the nucleus reticularis medius received excitatory inputs from bilateral OT. They had wide dendrites in ventral, ventrolateral and lateral funiculi, and single axons descending in the ipsilateral ventral funiculus as far caudally as the cervical spinal cord. Some collaterals of these axons projected directly to the hypoglossal and spinal motor nuclei. Some neurons in other medullary nuclei (nuc. reticularis superior, pretrigeminal nucleus, nuc. reticularis inferior, and nuc. tractus spinalis nervi trigemini) also responded to the OT stimulation. 4. Activities in bilateral OT converge onto medullary reticular neurons, which may directly control medullary and spinal motor systems.  相似文献   

5.
Location of aldehyde dehydrogenase (AldDG) and alcohol dehydrogenase (ADG) has been studied in 38 nuclei of the human brain. Neurons with a high AldDG activity predominate in the nucleus of the descending root of the trigeminal nerve, motor nuclei of the craniocerebral nerves (trigeminal, facial, abducent, blocking, sublingual, supraspinal), motor nuclei of the anterior horns of the spinal cord, lateral vestibular nucleus, posterior nucleus of the vagus nerve, pedunculopontine nucleus, superior salivary nucleus, and in the nucleus of Westphal-Edinger-Jacobovich. Neurons with a moderate AldDG activity predominate in the superior olivary complex, nucleus of the lateral loop, parabrachial (pigmented) mesencephalic nucleus and reticular lateral nucleus. A low enzymatic activity is specific for neurons of the pons proper, inferior vestibular nucleus, trapezoid body of the inferior olivary complex, dentate nucleus of the cerebellum, reticular nucleus of the tegmen of Bekhterev's pons and posterior nucleus of Gudden's suture. A high ADG activity is revealed in piriform neurons of the cerebellar cortex. Functional importance of ADG and AldDG activity in the brain is discussed.  相似文献   

6.
Previous comparative and developmental studies have suggested that the cholinergic inner ear efferent system derives from developmentally redirected facial branchial motor neurons that innervate the vertebrate ear hair cells instead of striated muscle fibers. Transplantation of Xenopus laevis ears into the path of spinal motor neuron axons could show whether spinal motor neurons could reroute to innervate the hair cells as efferent fibers. Such transplantations could also reveal whether ear development could occur in a novel location including afferent and efferent connections with the spinal cord. Ears from stage 24-26 embryos were transplanted from the head to the trunk and allowed to mature to stage 46. Of 109 transplanted ears, 73 developed with otoconia. The presence of hair cells was confirmed by specific markers and by general histology of the ear, including TEM. Injections of dyes ventral to the spinal cord revealed motor innervation of hair cells. This was confirmed by immunohistochemistry and by electron microscopy structural analysis, suggesting that some motor neurons rerouted to innervate the ear. Also, injection of dyes into the spinal cord labeled vestibular ganglion cells in transplanted ears indicating that these ganglion cells connected to the spinal cord. These nerves ran together with spinal nerves innervating the muscles, suggesting that fasciculation with existing fibers is necessary. Furthermore, ear removal had little effect on development of cranial and lateral line nerves. These results indicate that the ear can develop normally, in terms of histology, in a new location, complete with efferent and afferent innervations to and from the spinal cord.  相似文献   

7.
Cholinacetyltransferase (ChAT) activity has been studied in 56 nuclei of the cerebral trunk in human fetuses at the age of 6-8 lunar months. Cytoplasmic and synaptic ChAT activity has been revealed and three types of neurons for cholinergic synaptic transmission has been distinguished. There are only cholinergic-noncholinoceptive neurons in five macrocellular nuclei of the cranial nerves. In 25 nuclei (paravicellular, reticular, pigmented, sensitive nuclei of the cranial nerves, nuclei of the funiculi posterior and some other switching centres) there are only noncholinergic-cholinoceptive neural cells. In 16 nuclei there are three, and in 8 nuclei--two types of cells. Either noncholinergic-cholinoceptive or cholinergic-noncholinoceptive cells predominate; there is no predominance of cholinergic-cholinoceptive neurons in any of the nuclei. Mapping on the position of the cholinergic synaptic transmission neurons in the cerebral trunk is composed.  相似文献   

8.
By the method of retrograde axonal transport of horseradish peroxidase (HP) structure and localization of sympathetic neurons sending axons to the cranial cervical ganglion (CCG) have been revealed ipsilaterally in the ventral horns and in 4 nuclei of the spinal cord: nucl ILp, nucl. ILf. nucl. IC, nucl. ICpe. Orientation of the neurons, their number, structure of the nuclei formed by them, degree of the CCG efferentation by the preganglionic fibres, which run from various nuclei, are different. In nucl. ILf two types of neurons have been revealed-triangle and spindle-shaped, they always orienting by their long axis in mediolateral direction. The greatest amount of HP-positive neurons are found in nucl. ILp. They form a well distinquished compact nucleus in the lateral horns. HP-labelled neurons in nucl. ILp are found at the level of segments T1-T8 with their maximal amount at the level of segments T1-T3. HP-positive neurons are detected in nucl. ILf beginning from the segment C8 up to the middle of T4, in nucl. IC-from the segment C8 up to T6, in nucl. ICpe-from the segment C8 up to T5, in the ventral horns-from the segment T1 up to T5. In rostocaudal direction from the segment C8 up to T8 the number of HP-positive neurons is decreasing, but the part of nucl. ILp neurons in the CCG efferentation, comparing to the neurons in other sympathetic structures of the spinal cord, is increasing.  相似文献   

9.
Subsets of neurons ensheathed by perineuronal nets containing chondroitin unsulfate proteoglycan have been immunohistochemically mapped throughout the rat central nervous system from the olfactory bulb to the spinal cord. A variable proportion of neurons were outlined by immunoreactivity for the monoclonal antibody (Mab 1B5), but only after chondroitinase ABC digestion. In forebrain cortical structures the only immunoreactive nets were around interneurons; in contrast, throughout the brainstem and spinal cord a large proportion of projection neurons were surrounded by intense immunoreactivity. Immunoreactivity was ordinarily found in the neuropil between neurons surrounded by an immunopositive net. By contrast, within the pyriform cortex the neuropil of the plexiform layer was intensely immunoreactive even though no perineuronal net could be found. The presence of perineuronal nets could not be correlated with any single class of neurons; however a few functionally related groups (e.g., motor and motor-related structures: motor neurons both in the spinal cord and in the efferent somatic nuclei of the brainstem, deep cerebellar nuclei, vestibular nuclei; red nucleus, reticular formation; central auditory pathway: ventral cochlear nucleus, trapezoid body, superior olive, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body) were the main components of the neuronal subpopulation displaying chondroitin unsulfate proteoglycans in the surrounding extracellular matrix. The immunodecorated neurons found in the present study and those shown by different monoclonal antibodies or by lectin cytochemisty, revealed consistent overlapping of their distribution patterns.  相似文献   

10.
The nervous system of Phocanema decipiens was examined with both the formaldeyhyde-induced and the glyoxylic acid fluorescence histochemical techniques. Green catecholaminergic structures were observed in 4 cephalic papillary nerves, 2 fibres with varicosities in the nerve ring as well as the ventral nerve cord and a pair of lateral nerves.The papillary nerves, extending from the nerve ring to the lips region, have cell bodies which are located anterior or adjacent to the nerve ring. Cell bodies of the lateral nerves are found within the lateral cord tissue posterior to the nerve ring. Each of these neurons has 3 processes—one joins with the nerve ring, the other merges with the ventral nerve cord and the third ends abruptly within the lateral cord.  相似文献   

11.
Reflex discharges in intercostal nerves and activity of reticulospinal fibers of the ventral and lateral funiculi, evoked by stimulation of the reticular formation and of the splanchnic and intercostal nerves were investigated in cats anesthetized with chloralose (50 mg/kg). Brain-stem neuronal structures participating in the "relaying" of spino-bulbo-spinal activity were shown to lie both in the medial zones of the medullary and pontine reticular formation and in its more lateral regions; they include reticulospinal neurons and also neurons with no projection into the spinal cord. Structures whose stimulation led to prolonged (300–800 msec) inhibition of reflex spino-bulbo-spinal activity were widely represented in the brain stem, especially in the pons. Analogous inhibition of this activity was observed during conditioning stimulation of the nerves. Reticulospinal fibers of the ventral (conduction velocity 16–120 m/sec) and lateral (17–100 m/sec) funiculi were shown to be able to participate in the conduction of spino-bulbo-spinal activity to spinal neurons. In the first case fibers with conduction velocities of 40–120 m/sec were evidently most effective. Evidence was obtained that prolonged inhibition of this activity can take place at the supraspinal level.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Czechoslovakia. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 373–383, July–August, 1976.  相似文献   

12.
ABSTRACT The spinal cords of vertebrates are generally divided into the cord proper and the minute filum terminale. While the spinal cord extends the entire length of the vertebral canal in the adult tiger puffer, Takifugu rubripes, the cord proper is greatly reduced in length and almost all of the canal is occupied by the filum terminale, which is tape-like rather than thread-like. The dorsal and ventral roots of the spinal nerves extend, respectively, above and below the filum terminale; as a whole, these form a massive cauda equina. Supramedullary cells are found in the rostral half of the medulla oblongata caudal to the cerebellum. In 4-mm long tiger puffers, the spinal cord is cylindrical and supramedullary cells are found in the rostral half of the cord. In 7-mm puffers, the longitudinally arranged ventral roots appear ventrally in the middle portion of the spinal cord. In 15-mm puffers, the dorsal and ventral roots run longitudinally along the spinal cord and have noticeably increased in number. Supramedullary cells are located in the rostral 15% of the cord. In 21-mm puffers, the spinal cord in large part becomes dorsoventrally flattened. In 30-mm puffers, the spinal cord becomes much flatter, and supramedullary cells now are located mainly in the medulla oblongata. These observations indicate that formation of the shortened spinal cord proper is due to at least two developmental processes. First, the elongation of the spinal cord proper is remarkably less than that of the vertebral canal. Second, the bulk of the spinal cord proper is translocated to the cranial cavity, where it is transformed into part of the medulla oblongata.  相似文献   

13.
Using a histochemical technique, we examined distribution of the neurons containing a marker of nitric oxide synthase (NOS), NADPH-diaphorase (NADPH-d), on frontal slices of the medulla and upper cervical spinal segments of 4-day-old rats. It was demonstrated that NADPH-d-positive cells are present within the dorsal and ventral medullary respiratory groups. The highest density of the labeled middle-size multipolar neurons (27.9±2.6 cells per 0.1 mm2 of the slice) was observed in the rostral part of the ventral respiratory group, within the reticular lateral paragigantocellular nucleus. Similar NADPH-d-positive neurons were also observed in other reticular formation structures: rostroventrolateral reticular, gigantocellular, and ventral medullary nuclei, and in the ventral part of the paramedial nucleus. There were no labeled neurons in the lateral reticular nucleus. Single small and medium-size labeled neurons were found at all rostro-caudal levels of thenucl. ambiguous (nuclei retrofacialis, ambiguous, andretroam-biguous). Groups of NADPH-d-positive neurons were also revealed within the dorsal respiratory group, along the whole length of thenucl. tractus solitarii (mostly in its ventrolateral parts). Single labeled neurons were also observed in thenucl. n. hypoglossi, and their groups were observed in the dorsal motor part of thenucl. n. vagus. Involvement of the structures containing NADPH-d-positive neurons in the processes related to generation of the respiratory activity is discussed. Our neuroanatomical experiments prove that in early postnatal mammals NO is actively involved in generation and regulation of the medullary respiratory rhythm. Neirofiziologiya/Neurophysiology, Vol. 32, No. 2, pp. 128–136, March–April, 2000.  相似文献   

14.
The cells of spinoreticular and spinothalamic fibrous systems of the cat brain were studied by the method of axone transmission of horse-radish peroxidase (HP). A dense accumulation of HP-labeled neurons establishing direct relations with the reticular formation and thalamus was seen in the upper segments of the spinal cord. In the lower segments these zones were confined to the medial part of the ventral horn and the intermediate zone of the gray matter. The neurons established direct connections with contralateral nuclei of the reticular formation as well as with the thalamus ipsi- and contralateral nuclei. Possible pathways of transmitting somatic and pain sensitivity are discussed.  相似文献   

15.
Glycogen phosphorylase (GP) and cytochrome oxidase (CO) activities were mapped histochemically in the brain of the turtle Trachemys dorbigni. In the telencephalon, both activities occurred in the olfactory bulb, in all cortical areas, in the dorsal ventricular ridge, striatum, primordium hippocampi and olfactory tubercle. In the diencephalon, they were identified in some areas of the hypothalamus, and in rotundus and geniculate nuclei. Both reactions were detected in the oculomotor, trochlear, mesencephalic trigeminal nuclei, the nucleus of the posterior commissure, torus semicircularis, substantia nigra and ruber and isthmic nuclei of the mesencephalon. In all layers of the optic tectum GP activity was found, but CO only labelled the stratum griseum centrale. In the medulla oblonga both enzymes appear in the reticular, raphe and vestibular nuclei, locus coeruleus and nuclei of cranial nerves. In the cerebellum, the granular and molecular layers, and the deep cerebellar nuclei were positive for both enzymes. The Purkinje cells were only reactive for CO. In the spinal cord, motor and commissural neurones exhibited a positive reaction for the two enzymes. However, CO also occurred in the marginal nucleus and in the lateral funiculus. These results may be useful as a basis for subsequent studies on turtle brain metabolism.  相似文献   

16.
Retrograde cobalt labeling was performed by incubating the rootlets of cranial nerves IX, X and XI, or the central stumps of the same nerves, in a cobaltic lysine complex solution, and the distribution of efferent neurons sending their axons into these nerves was investigated in serial sections of the medulla and the cervical spinal cord in young rats. The following neuron groups were identified. The inferior salivatory nucleus lies in the dorsal part of the tegmentum at the rostral part of facial nucleus. It consists of a group of medium-sized and a group of small neurons. Their axons make a hair-pin loop at the midline and join the glossopharyngeal nerve. The dorsal motor nucleus of the vagus situates in the dorsomedial part of the tegmentum. Its rostral tip coincides with the first appearance of sensory fibres of the glossopharyngeal nerve, the caudal end extends into the pyramidal decussation. The constituting cells have globular or fusiform perikarya and they are the smallest known efferent neurons. The ambiguous nucleus is in the ventrolateral part of the tegmentum. The rostral tip lies dorsal to the facial nucleus, and the caudal tip extends to the level of the pyramidal decussation. The rostral one third of the ambiguous nucleus is composed of tightly-packed medium sized neurons, while larger neurons are arranged more diffusely in the caudal two thirds. The long dendrites are predominantly oriented in the dorsoventral direction. The dorsally-oriented axons take a ventral bend anywhere between the ambiguous nucleus and dorsal motor nucleus of the vagus. The motoneurons of the accessorius nerve are arranged in a medial, a lateral and a weak ventral cell column. The medial column begins at the caudal aspect of the pyramidal decussation and terminates in C2 spinal cord segment. The lateral and ventral columns begin in C2 segment and extend into C6 segment. The neurons have large polygonal perikarya and characteristic cross-shaped dendritic arborizations. The axons follow a dorsally-arched pathway between the ventral and dorsal horns. The accessorius motoneurons have no positional relation to any of the vagal efferent neurons. It is concluded that the topography and neuronal morphology of accessorius motoneurons do not warrant the designation of a bulbar accessorius nucleus and a bulbar accessorius nerve.  相似文献   

17.
The prominent accessory lobes of Lachi in birds are considered to be marginal nuclei; similar nuclei have been implicated in mechanoreceptive functions in snakes and lampreys. Reptile studies emphasized the involvement of the denticulate ligament with this mechanoreceptive function. This investigation examines the fine structure of the accessory lobes of Lachi in pigeons and their interaction with ligaments for features which might support such a mechanoreceptive function. In the lumbosacral area of the spinal cord, the lateral longitudinal ligaments and the ventral longitudinal ligament are hypertrophied. The ventral transverse ligaments are present only within the lumbosacral segments of the spinal cord and they interconnect with the lateral and ventral longitudinal ligaments. The lateral longitudinal ligament makes intimate contact with the spinal cord, and many glial processes from the spinal cord mingle with and are firmly attached to collagenous fibers of the ligament. The lobes lie dorsal to the lateral longitudinal ligament in the exact area where it interconnects with the transverse ligament. The lobe's multipolar neurons have a number of synaptic contacts but no unusual specializations were noted. Most of each lobe is composed of interdigitating saccular structures filled to varying degrees with flocculent material. The sacs are extensions of the cytoplasm of neuroglial cells, which also give rise to membranes surrounding neuronal processes and the sacs themselves. A possible functional relationship of the lobes and the ligaments of the lumbosacral spinal segments within the vertebral column is described.  相似文献   

18.
Two-dimensional electrophoresis has allowed a higher-resolution comparison of rapid transport in ventral horn motoneurons and bidirectionally in dorsal root sensory neurons. Dorsal root ganglia 8 and 9, or hemisected spinal cords, from frog were selectively exposed in vitro to 35S-methionine. Transported, labelled proteins that accumulated in 3 mm segments proximal to ligatures on dorsal roots and spinal nerves or sciatic nerves were subjected to two-dimensional gel electrophoresis. Comparisons were made of fluorographic patterns from dried gels. Sixty-five species of proteins were found to be rapidly transported in both bifurcations of dorsal root sensory neurons. No abundant species of protein was rapidly transported in dorsal roots that was not also found in spinal nerves. A comparison of proteins rapidly transported in the sciatic nerve from ventral horn motoneurons with those from dorsal root sensory neurons yielded 50 common species of polypeptides. At most four minor species were possibly transported only in ventral horn motoneurons. An overall comparison indicates that at least 45 species of proteins, including all of the more abundantly transported ones, were consistently common to both dorsal root bifuractions and to ventral horn motoneurons. This appears to be the case despite the very different functions carried out by motoneurons and sensory neurons.  相似文献   

19.
Secreted protein, acidic and rich in cysteine-like 1 (SPARCL1) is a member of the osteonectin family of proteins. In this study, immunohistochemistry for SPARCL1 was performed to obtain its distribution in the human brainstem, cervical spinal cord, and sensory ganglion. SPARCL1-immunoreactivity was detected in neuronal cell bodies including perikarya and proximal dendrites, and the neuropil. The motor nuclei of the IIIrd, Vth, VIth, VIIth, IXth, Xth, XIth, and XIIth cranial nerves and spinal nerves contained many SPARCL1-immunoreactive (-IR) neurons with medium-sized to large cell bodies. Small and medium-sized SPARCL1-IR neurons were distributed in sensory nuclei of the Vth, VIIth, VIIIth, IXth, and Xth cranial nerves. In the medulla oblongata, the dorsal column nuclei also had small to medium-sized SPARCL1-IR neurons. In addition, SPARCL1-IR neurons were detected in the nucleus of the trapezoid body and pontine nucleus within the pons and the arcuate nucleus in the medulla oblongata. In the cervical spinal cord, the ventral horn contained some SPARCL1-IR neurons with large cell bodies. These findings suggest that SPARCL1-containing neurons function to relay and regulate motor and sensory signals in the human brainstem. In the dorsal root (DRG) and trigeminal ganglia (TG), primary sensory neurons contained SPARCL1-immunoreactivity. The proportion of SPARCL1-IR neurons in the TG (mean?±?SD, 39.9?±?2.4%) was higher than in the DRG (30.6?±?2.1%). SPARCL1-IR neurons were mostly medium-sized to large (mean?±?SD, 1494.5?±?708.3?μm2; range, 320.4–4353.4?μm2) in the DRG, whereas such neurons were of various cell body sizes in the TG (mean?±?SD, 1291.2?±?532.8?μm2; range, 209.3–4326.4?μm2). There appears to be a SPARCL1-containing sensory pathway in the ganglion and brainstem of the spinal and trigeminal nervous systems.  相似文献   

20.
Physiological evidence has indicated that central respiratory chemosensitivity may be ascribed to neurons located at the ventral medullary surface (VMS); however, in recent years, multiple sites have been proposed. Because c-Fos immunoreactivity is presumed to identify primary cells as well as second- and third-order cells that are activated by a particular stimulus, we hypothesized that activation of VMS cells using a known adequate respiratory stimulus, H(+), would induce production of c-Fos in cells that participate in the central pH-sensitive respiratory chemoreflex loop. In this study, stimulation of rostral and caudal VMS respiratory chemosensitive sites in chloralose-urethane-anesthetized rats with acidic (pH 7.2) mock cerebrospinal fluid induced c-Fos protein immunoreactivity in widespread brain sites, such as VMS, ventral pontine surface, retrotrapezoid, medial and lateral parabrachial, lateral reticular nuclei, cranial nerves VII and X nuclei, A(1) and C(1) areas, area postrema, locus coeruleus, and paragigantocellular nuclei. At the hypothalamus, the c-Fos reaction product was seen in the dorsomedial, lateral hypothalamic, supraoptic, and periventricular nuclei. These results suggest that 1) multiple c-Fos-positive brain stem and hypothalamic structures may represent part of a neuronal network responsive to cerebrospinal fluid pH changes at the VMS, and 2) VMS pH-sensitive neurons project to widespread regions in the brain stem and hypothalamus that include respiratory and cardiovascular control sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号