首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One hour of ischemia significantly increased protein S100B release from rat brain slices without altering lactate dehydrogenase leakage. Reoxygenation of the ischemic slices, however, increased the levels of these biochemical markers in the medium. Although removal of extracellular Ca+2 ions from the medium did not alter the basal lactate dehydrogenase leakage from cortical slices, an excessive increase in basal protein S100B release was seen under this condition. Ischemia and/or reoxygenation induced enhancements in these markers were attenuated by removal of Ca+2 ions from the medium. Ischemia significantly increased glutamate release, but neither ischemia nor reoxygenation induced rises in protein S100B and lactate dehydrogenase levels were altered by glutamate receptor antagonists. Rising the glutamate levels in the medium by each ouabain or exogenous glutamate, moreover, failed in exerting an ischemia like effect on protein S100B and LDH outputs. In contrast, exogenous glutamate added into the medium protected the slices against reoxygenation induced increments in protein S100B and lactate dehydrogenase levels.

These results indicate that protein S100B has a greater sensitivity against ischemia than lactate dehydrogenase in in vitro brain slice preparations. Since neither exogenous glutamate nor enhancements of the extracellular glutamate levels by ouabain had an ischemia like effect, and since glutamate receptor antagonists were also unsuccessful, it seems unlikely that ischemia-induced increase in glutamate release is directly involved in protein S100B release or lactate dehydrogenase leakage determined in the present study.  相似文献   


2.
Human lactate dehydrogenase A plays a key role in the glycolytic process, the inhibition of the enzyme is therefore considered of interest in developing anticancer therapeutics. However, due to the highly polar nature of hLDHA binding pocket, it is very challenge to discover potent cellular active hLDHA inhibitor. Combined a cell-based phenotypic screening assay with a primary enzymatic assay, we discovered three cellular active hLDHA inhibitors, namely 38, 63, and 374, which reduced MG-63 cell proliferation with IC50 values of 6.47, 2.93, and 6.10 µM, respectively, and inhibited hLDHA with EC50 values of 3.03, 0.63, and 3.26 µM, respectively.  相似文献   

3.
The electrophoretic variant of human LDH, Calcutta-1, occurs at phenotypic frequencies of 0–4% throughout India. The variant was examined by various electrophoretic techniques and by heat stability studies. The LD1 (B4) isoenzyme was purified from normal and variant bloods by affinity chromatography and ion-exchange chromatography. A minimum of five Calcutta-1 LD1 bands was demonstrated by isoelectric focusing. Electrophoresis of variant LD1 in high-molar urea-acrylamide denaturing gels resulted in two Calcutta-1 B subunit bands, while normal gels yielded only a single band. Homozygote Calcutta-1 LDH from red cells demonstrated a decreased heat stability, while heterozygote variant LDH showed a normal heat stability. This effect was confirmed when purified LD1's were compared. Evidence is presented suggesting a B-subunit variant showing thermolability in the homozygous form.The author was supported by an Australian National University Scholarship.  相似文献   

4.
Capillary electrophoresis (CE) was employed to analyze lactate dehydrogenase (LDH) in human erythrocytes using an amperometric detector with a carbon fiber micro-disk bundle electrode. LDH activity was measured by determining the amount of NADH generated by LDH through a enzyme-catalyzed reaction between NAD(+) and lithium lactate. The factors influencing the enzyme-catalyzed reaction, separation and detection were examined and optimized. The following conditions were suitable for the determination of LDH: running buffer, 5.0 x 10(-2)mol/l Tris-HCl (pH 7.5); separation voltage, 20.0 kV; detection potential, 1.00 V (versus saturated calomel electrode (SCE)). The conditions of enzyme-catalyzed reaction were: reaction buffer, 5.0 x 10(-2)mol/l Tris-HCl (pH 9.3); substrates, 5.0 x 10(-2)mol/l lithium lactate and 5.0 x 10(-3)mol/l NAD(+); reaction time, 10 min. The concentration limit of detection (LOD) of the method was 0.017 U/ml at a signal-to-noise (S/N) ratio of 3, which corresponded to 1.10 x 10(-10)mol/l, and the mass LOD was 2 x 10(-20)mol. The linear dynamic range was 0.039-4.65 U/ml for the injection voltage of 5.0 kV and injection time of 10s. The relative standard deviation (R.S.D.) was 0.85% for the migration time and 1.8% for the electrophoretic peak area. The method was applied to determine LDH in human erythrocytes. The recovery of the method was between 98 and 101%.  相似文献   

5.
We developed a sensitive enzyme immunoassay system specific for human lactate dehydrogenase (LDH)- B4 with antiacetylated LDH-B4 Fab-horse-radish peroxidase conjugate. The enzyme immunoassay system was not interfered with by up to 0.3 mg/tube of hemoglobin. Thus, we measured LDH-B4 concentrations in the hemolysate of seven heterozygous individuals deficient in LDH-B subunit activity and eight normal individuals. We could not find a significant difference between the LDH-B4 concentrations in heterozygous and those in normal individuals. These results demonstrate that heterozygous individuals deficient in LDH-B subunit activity produce enzymatically inactive B subunits.This work was supported in part by grants in aid for Scientific Research from the Ministry of Education, Japan (59570998), and from the Clinical Pathology Research Foundation of Japan.  相似文献   

6.
This work demonstrates that our previously developed technique for single-erythrocyte analysis by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) can be applied to study individual lymphocytes, with some modification in the cell lysing procedure. A tesla coil was shown to be capable of lysing the lymphocyte cells inside the capillary. The electromagnetic field induced by the tesla coil was believed to be responsible for breaking the cell membrane. The lactate dehydrogenase (LDH) isoenzyme activities and the relative ratios between different LDH isoenzymes were measured for normal lymphocytes as well as B-type and T-type acute lymphoblastic leukemia cells. Both the LDH activity and the isoenzyme ratios show large variations among individual cells. The former is expected due to variations in cell size. The latter implies that single-cell measurements are less useful than the average values over a cell population as markers for leukemia.  相似文献   

7.
The effects of o-phthalaldehyde (OPTA) on lactate dehydrogenase (LDH) have been studied by following changes in enzymatic activity, aggregation state and conformation. Treatment with OPTA resulted in pseudo first-order inactivation of LDH over a wide concentration range of the inhibitor, and the second-order rate constant was estimated to be 1.52 M−1 s−1. The loss of enzyme activity was concomitant with the increases in absorbance at 337 nm and fluorescence intensity at 405 nm. Complete loss of enzyme activity was accompanied by the formation of approximately 4 mol isoindole derivatives per mole LDH subunit. Cross-linking experiments verified enzyme dissociation during OPTA modification, which could be attributed to the modification of both thiol groups and lysine residues. Circular dichroism (CD) spectra showed that the secondary structure of the OPTA-modified enzyme decreased correspondingly. Comparison of the inactivation with the conformational changes of the enzyme suggests that the active site of the enzyme exhibits greater conformational flexibility than the enzyme molecule as a whole. It is concluded that OPTA modification has multiple effects on LDH, including its inactivation, dissociation and partial unfolding.  相似文献   

8.
Specific radioimmunoassays for lactate dehydrogenase A and B subunits have been employed to quantify cellular contents of these proteins more precisely than hitherto possible and to monitor changes during postnatal development. Liver, skeletal muscle, heart muscle and kidney cortex all demonstrated alterations in cellular levels of lactate dehydrogenase subunits over the first 56 days of life, the particular pattern being specific to each tissue. Studies on the turnover of lactate dehydrogenase in vivo and in vitro indicated that the developmental changes in total lactate dehydrogenase content in liver and kidney were regulated at some point(s) during both the biosynthesis and the degradation of the proteins.  相似文献   

9.
Clostridium acetobutylicum strain P262 utilized lactate at a rapid rate [600 nmol min–1 (mg protein)–1], but lactate could not serve as the sole energy source. When acetate was provided as a co-substrate, the growth rate was 0.05 h–1. Butyrate, carbon dioxide and hydrogen were the end products of lactate and acetate utilization, and the stoichiometry was 1 lactate + 0.4 acetate → 0.7 butyrate + 0.6 H2 + 1 CO2. Lactate-grown cells had twofold lower hydrogenase than glucose-grown cells, and the lactate-grown cells used acetate as an alternative electron acceptor. The cells had a poor affinity for lactate (Ks = 1.1 mM), and there was no evidence for active transport. Lactate utilization was catabolyzed by an inducible NAD-independent lactate dehydrogenase (iLDH) that had a pH optimum of 7.5. The iLDH was fivefold more active with d-lactate than l-lactate, and the K m for d-lactate was 3.2 mM. Lactate-grown cells had little butyraldehyde dehydrogenase activity, and this defect did not allow the conversion of lactate to butanol. Received: 17 October 1994 / Accepted: 30 January 1995  相似文献   

10.
Cryptosporidium is a highly prevalent protozoan parasite that is the second leading cause of childhood morbidity and mortality due to diarrhoea in developing countries, and causes a serious diarrheal syndrome in calves, lambs and goat kids worldwide. Development of fully effective drugs against Cryptosporidium has mainly been hindered by the lack of genetic tools for functional characterization and validation of potential molecular drug targets in the parasite. Herein, we report the development of a morpholino-based in vivo approach for Cryptosporidium parvum gene knockdown to facilitate determination of the physiological roles of the parasite’s genes in a murine model. We show that, when administered intraperitoneally at non-toxic doses, morpholinos targeting C. parvum lactate dehydrogenase (CpLDH) and sporozoite 60K protein (Cp15/60) were able to specifically and sustainably down-regulate the expression of CpLDH and Cp15/60 proteins, respectively, in C. parvum-infected interferon-γ knockout mice. Over a period of 6?days of daily administration of target morpholinos, CpLDH and Cp15/60 proteins were down-regulated by 20- to 50-fold, and 10- to 20-fold, respectively. Knockdown of CpLDH resulted in approximately 80% reduction in oocyst load in the feces of mice, and approximately 70% decrease in infectivity of the sporozoites excysted from the shed oocysts. Cp15/60 knockdown did not affect oocyst shedding nor infectivity but, nevertheless, provided a proof-of-principle for the resilience of the morpholino-mediated C. parvum gene knockdown system in vivo. Together, our findings provide a genetic tool for deciphering the physiological roles of C. parvum genes in vivo, and validate CpLDH as an essential gene for the growth and viability of C. parvum in vivo.  相似文献   

11.
Cardiac hypertrophy is a myocardial enlargement due to overload pressure, and the primary cause of heart failure. We investigated the function of miR-375-3p in cardiac hypertrophy and its regulating mechanisms. miR-375-3p was upregulated in hearts of the transverse aortic constriction rat model and angiotensin II (Ang II)-induced primary cardiomyocyte hypertrophy model; the opposite was observed for lactate dehydrogenase B (LDHB) protein expression. miR-375-3p knockdown reduced the surface area of primary cardiomyocytes increased by Ang II treatment and decreased the B-natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) messenger RNA (mRNA) and protein levels. miR-375-3p was also observed to directly target LDHB. LDHB knockdown increased the surface area of Ang II-treated primary cardiomyocytes and increased the BNP and β-MHC mRNA and protein levels. LDHB knockdown attenuated the effects of miR-375-3p on the surface area of primary cardiomyocytes and BNP and β-MHC levels. Therefore, miR-375-3p inhibitor suppresses Ang II-induced cardiomyocyte hypertrophy by promoting LDHB expression.  相似文献   

12.
Lactate dehydrogenase (LDH) from the pig heart interacts with liposomes made of acidic phospholipids most effectively at low pH, close to the isoelectric point of the protein (pH = 5.5). This binding is not observed at neutral pH or high ionic strength. LDH-liposome complex formation requires an absence of nicotinamide adenine dinucleotides and adenine nucleotides in the interaction environment. Their presence limits the interaction of LDH with liposomes in a concentration-dependent manner. This phenomenon is not observed for pig skeletal muscle LDH. The heart LDH-liposome complexes formed in the absence of nicotinamide adenine dinucleotides and adenine nucleotides are stable after the addition of these substances even in millimolar concentrations. The LDH substrates and studied nucleotides that inhibit the interaction of pig heart LDH with acidic liposomes can be ordered according to their effectiveness as follows: NADH > NAD > ATP = ADP > AMP > pyruvate. The phosphorylated form of NAD (NADP), nonadenine nucleotides (GTP, CTP, UTP) and lactate are ineffective. Chemically cross-linked pig heart LDH, with a tetrameric structure stable at low pH, behaves analogously to the unmodified enzyme, which excludes the participation of the interfacing parts of subunits in the interaction with acidic phospholipids. The presented results indicate that in lowered pH conditions, the NADH-cofactor binding site of pig heart LDH is strongly involved in the interaction of the enzyme with acidic phospholipids. The contribution of the ATP/ADP binding site to this process can also be considered. In the case of pig skeletal muscle LDH, neither the cofactor binding site nor the subunit interfacing areas seem to be involved in the interaction.  相似文献   

13.
14.
Previously, using γ-irradiation treatment, we isolated a mutant strain of Klebsiella pneumoniae (named GEM167) that showed high-level ethanol production from glycerol. In the present study, in an effort to enhance ethanol production, we used a deletion of the lactate dehydrogenase gene to engineer a mutant strain incapable of lactate synthesis. In the ΔldhA mutant of GEM167, the production of ethanol was significantly increased from 21.5 g/l to 28.9 g/l and from 0.93 g/(l h) to 1.2 g/(l h). Introduction of the Zymomonas mobilis pdc and adhII genes encoding pyruvate decarboxylase and aldehyde dehydrogenase, respectively, further improved the ethanol production level from glycerol to 31.0 g/l; this is the highest level reported to date.  相似文献   

15.
目的目的通过新疆伊犁黑蜂蜂胶乙醇提取物(Ethanol Extract of Propolis,EEP)对不同状态下变形链球菌乳酸脱氢酶活性及其相关基因表达影响的作用,研究伊犁黑蜂蜂胶抑制变形链球菌产酸的原因并探讨其可能的防龋机制。方法 (1)分别培养浮游状态与生物膜状态下生长的变形链球菌,根据实验分组用含梯度浓度EEP的BHI培养基、50 mg/L氟化钠的BHI培养基作用18 h,通过还原性辅酶I氧化法测定乳酸脱氢酶活性。(2)分别培养浮游状态与生物膜状态下生长变形链球菌,根据实验分组用含梯度浓度EEP的BHI培养基、含50 mg/L氟化钠的BHI培养基作用18 h,反转录-实时荧光定量PCR(RTq PCR)法测定各组乳酸脱氢酶编码基因ldh表达情况。结果 (1)在浮游状态与生物膜状态下,EEP组和Na F组乳酸脱氢酶活性均有降低,差异具有统计学意义(P0.05)。(2)浮游状态时,实验组组和阳性对照组ldh表达明显受到抑制(P0.05);生物膜状态下,实验组在1 MBEC、1/2 MBEC、1/4 MBEC浓度时ldh表达受到抑制(P0.05),Na F组ldh表达差异没有统计学意义(P0.05)。结论伊犁黑蜂蜂胶能够抑制浮游状态与生物膜状态下变形链球菌乳酸脱氢酶活性及其编码基因ldh表达,来抑制细菌产酸,伊犁黑蜂蜂胶可能是通过此途径抑制变形链球菌产酸,从而达到防龋的效果。  相似文献   

16.
Chloroplast glyceraldehyde-3-phosphate dehydrogenase (phosphorylating, E.C. 1.2.1.13) (GAPDH) of higher plants exists as an A2B2 heterotetramer that catalyses the reductive step of the Calvin cycle. In dark chloroplasts the enzyme exhibits a molecular mass of 600 kDa, whereas in illuminated chloroplasts the molecular mass is altered in favor of the more active 150 kDa form. We have expressed in Escherichia coli proteins corresponding to the mature A and B subunits of spinach chloroplast GAPDH (GapA and GapB, respectively) in addition to a derivative of the B subunit lacking the GapB-specific C-terminal extension (CTE). One mg of each of the three proteins so expressed was purified to electrophoretic homogeneity with conventional methods. Spinach GapA purified from E. coli is shown to be a highly active homotetramer (50–70 U/mg) which does not associate under aggregating conditions in vitro to high-molecular-mass (HMM) forms of ca. 600 kDa. Since B4 forms of the enzyme have not been described from any source, we were surprised to find that spinach GapB purified from E. coli was active (15–35 U/mg). Spinach GapB lacking the CTE purified from E. coli is more highly active (130 U/mg) than GapB with the CTE. Under aggregating conditions, GapB lacking the CTE is a tetramer that does not associate to HMM forms whereas GapB with the CTE occurs exclusively as an aggregated HMM form. The data indicate that intertetramer association of chloroplast GAPDH in vitro occurs through GapB-mediated protein-protein interaction.Abbreviations GAPDH glyceraldehyde-3-phosphate dehydrogenase - CTE carboxy-terminal extension - HMM high molecular mass - ATP adenosine triphosphate - 3PGA 3-phosphoglycerate - 1,3bisPGA 1,3-bisphosphoglycerate - HMM high-molecular mass  相似文献   

17.
Summary Whereas in rat liver mitochondria the hyperthyroid state causes an increase both in fatty acid unsaturation and in the Ea of D-3-hydroxybutyrate dehydrogenase and a decrease in phase transition temperature, in hyperthyroid rat heart mitochondria these changes are negligible. D-3-hydroxybutyrate dehydrogenase in both the liver and the heart mitochondria of hyperthyroid rats is reduced by about 35% [l2] but this reduction is not due to changes in membrane fluidity in either tissue. Hypothyroidism, on the other hand, affects BDH activity in neither heart nor liver.Abbreviations BDH D-3-hydroxybutyrate dehydrogenase - PTU 6n-propyl-2-thiouracil - T3,3,3 5-L-triiodothyronine - Tm temperature phase transition - Ea apparent activation energy  相似文献   

18.
In previous studies, we showed that cofactor manipulations can potentially be used as a tool in metabolic engineering. In this study, sugars similar to glucose, that can feed into glycolysis and pyruvate production, but with different oxidation states, were used as substrates. This provided a simple way of testing the effect of manipulating the NADH/NAD+ ratio or the availability of NADH on the metabolic patterns of Escherichia coli under anaerobic conditions and on the production of 1,2-propanediol (1,2-PD), which requires NADH for its synthesis. Production of 1,2-PD was achieved by overexpressing the two enzymes methylglyoxal synthase from Clostridium acetobutylicum and glycerol dehydrogenase from E. coli. In addition, the effect of eliminating a pathway competing for NADH by using a ldh strain (without lactate dehydrogenase activity) on the production of 1,2-PD was investigated. The oxidation state of the carbon source significantly affected the yield of metabolites, such as ethanol, acetate and lactate. However, feeding a more reduced carbon source did not increase the yield of 1,2-PD. The production of 1,2-PD with glucose as the carbon source was improved by the incorporation of a ldh mutation. The results of these experiments indicate that our current 1,2-PD production system is not limited by NADH, but rather by the pathways following the formation of methylglyoxal. Electronic Publication  相似文献   

19.
A soluble NAD-dependent alcohol dehydrogenase (ADH) activity was detected in mycelium and yeast cells of wild-type Mucor rouxii. In the mycelium of cells grown in the absence of oxygen, the enzyme activity was high, whereas in yeast cells, ADH activity was high regardless of the presence or absence of oxygen. The enzyme from aerobically or anaerobically grown mycelium or yeast cells exhibited a similar optimum pH for the oxidation of ethanol to acetaldehyde (∼pH 8.5) and for the reduction of acetaldehyde to ethanol (∼pH 7.5). Zymogram analysis conducted with cell-free extracts of the wild-type and an alcohol-dehydrogenase-deficient mutant strain indicated the existence of a single ADH enzyme that was independent of the developmental stage of dimorphism, the growth atmosphere, or the carbon source in the growth medium. Purified ADH from aerobically grown mycelium was found to be a tetramer consisting of subunits of 43 kDa. The enzyme oxidized primary and secondary alcohols, although much higher activity was displayed with primary alcohols. K m values obtained for acetaldehyde, ethanol, NADH2, and NAD+ indicated that physiologically the enzyme works mainly in the reduction of acetaldehyde to ethanol. Received: 11 March 1999 / Accepted: 14 July 1999  相似文献   

20.
The NAD+‐dependent lactate dehydrogenase from Bacillus subtilis (BsLDH) catalyzes the enantioselective reduction of pyruvate to lactate. BsLDH is highly specific to NAD+ and exhibits only a low activity with NADP+ as cofactor. Based on the high activity and good stability of LDHs, these enzymes have been frequently used for the regeneration of NAD+. While an application in the regeneration of NADP+ is not sufficient due to the cofactor preference of the BsLDH. In addition, NADP+‐dependent LDHs have not yet been found in nature. Therefore, a structure‐based approach was performed to predict amino acids involved in the cofactor specificity. Methods of site‐saturation mutagenesis were applied to vary these amino acids, with the aim to alter the cofactor specificity of the BsLDH. Five constructed libraries were screened for improved NADP+ acceptance. The mutant V39R was identified to have increased activity with NADP+ relative to the wild type. V39R was purified and biochemically characterized. V39R showed excellent kinetic properties with NADP(H) and NAD(H), for instance the maximal specific activity with NADPH was enhanced 100‐fold to 90.8 U/mg. Furthermore, a 249‐fold increased catalytic efficiency was observed. Surprisingly, the activity with NADH was also significantly improved. Overall, we were able to successfully apply V39R in the regeneration of NADP+ in an enzyme‐coupled approach combined with the NADP+‐dependent alcohol dehydrogenase from Lactobacillus kefir. We demonstrate for the first time an application of an LDH in the regeneration of NADP+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号