首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mutagenicity of fumes from the heating of freshly cut spruce and birch chips was measured with Salmonella typhimurium strains TA98, TA100 and TA102. The bacteria were exposed directly and indirectly to the fumes. Wood chips were also extracted with solvents. No mutagenicity was found in wood extracts or the fume samples measured indirectly. The results from the direct exposure experiments indicate, however, that drying spruce and birch at 170 degrees C emits mutagenic compounds, which are short-lived and/or volatile. One of the mutagenic compounds of the fumes is probably 3-carene. These results are consistent with previous epidemiological findings, which suggest that these fumes are carcinogenic.  相似文献   

2.
The mutagenicity of products formed by ozonation of naphthoresorcinol in aqueous solution was assayed with Salmonella typhimurium strains TA97, TA98, TA100, TA102 and TA104 in the presence and absence of S9 mix from phenobarbital- and 5,6-benzoflavone-induced rat liver. Ozonated naphthoresorcinol was mutagenic in TA97, TA98, TA100 and TA104 without S9 mix. By the addition of S9 mix, the mutagenic activity of ozonated naphthoresorcinol was markedly suppressed in TA98 and TA100, but became positive in TA102. High-performance liquid chromatography (HPLC) after derivatization to 2,4-dinitrophenylhydrazones demonstrated the formation of glyoxal as an ozonation product of naphthoresorcinol. Ion chromatographic technique also demonstrated the formation of o-phthalic acid, muconic acid, maleic acid, mesoxalic acid, glyoxylic acid and oxalic acid as ozonation products. The mutagenicity assays of these identified products with five Salmonella showed that glyoxal and glyoxylic acid were directly mutagenic; the former in TA100, TA102 and TA104, the latter in TA97, TA100 and TA104. In the presence of S9 mix, glyoxylic acid gave a positive response of mutagenicity for TA102. The experimental evidence supported that glyoxal and glyoxylic acid may contribute to the mutagenicity of ozonated naphthoresorcinol.  相似文献   

3.
《Mutation Research Letters》1993,301(4):213-222
Alkylhydrazines are important carcinogens. However, they show generally only weak mutagenicity and the activities reported from different laboratories are contradictory. We have developed a sensitive method to detect the mutagenicity of alkylhydrazines. The method is based on a modified preculturing procedures in the Ames test, the emphasis in the modification being a change in the growth period of tester strains. The optimal growth periods were found to be 11 h in Salmonella typhimurium TA100 and 5 h in Salmonella typhimurium TA102. We tested the mutagenic activity of 12 alkylhydrazines; 1,2-dimetehylhydrazine, 1,2-diethylhydrazine, 1,2-dipropylhydrazine. 1,2-dibutylhydrazine, 1,1-dimethylhydrazine, 1,1-diethylhydrazine, 1,1-dipropylhydrazine, 1,1-dibutylhydrazine, methylhydrazine, ethylhydrazine, propylhydrazine, and butylhdyrazine. All 12 alkylhydrazines were clearly mutagenic in Salmonella typhimurium TA102, and 10 hydrazines were mutagenic in Salmonella typhimurium TA100, both in the absence of S9 mix. The mutagenicity was inhibited by the addition of S9 mix or bovine serum albumin. This suggests deactivation of the mutagens by proteins.  相似文献   

4.
The secondary nitroalkanes 2-nitropropane, 2-nitrobutane, 3-nitropentane and nitrocyclopentane, as well as their anionic forms (nitronates); the primary nitroalkanes 1-nitropropane, 1-nitrobutane, and 1-nitropentane and their respective nitronates; the nitrocarbinols 2-nitro-1-propanol, 2-nitro-1-butanol, 3-nitro-2-butanol, and 3-nitro-2-pentanol and their respective nitronates; 2-methyl-2-nitropropane, and 2-nitroso-2-nitropropane were tested in the Ames Salmonella assay using strains TA98, TA100 and TA102. Nitronates of the secondary nitroalkanes 2-nitropropane, 2-nitrobutane, 3-nitropentane, and nitrocyclopentane were significantly mutagenic in Salmonella strains TA100 and TA102 at 10-80 mumoles/plate, but the parent compounds were mutagenic at only a single dose level or were not mutagenic at all in the same dose range. The primary nitroalkanes and the nitrocarbinols were not mutagenic, or only marginally so, at the concentrations tested. The nitronates of the primary nitroalkanes and the nitrocarbinols reprotonated too rapidly under the conditions of the assay for adequate evaluation of mutagenicity. 2-Methyl-2-nitropropane was not mutagenic in strains TA100 and TA102; 2-nitroso-2-nitropropane was also not mutagenic in strains TA100 and TA102, but induced an equivocal mutagenic response in TA98. The positive Salmonella mutation data for the nitronates of the secondary nitroalkanes studied correlate very well with the very slow rate of reprotonation of secondary nitroalkane nitronates at pH 7.7 (Conaway et al. (1991) Cancer Res., 51, 3143), and provide further evidence that nitronates of secondary nitroalkanes, rather than the neutral parent forms with which they may be in equilibrium, are the more proximate mutagenic species.  相似文献   

5.
The mutagenic activity of N,N-dimethyl-, N,N-diethyl-, N,N-dibutyl-, N,N-diisobutyl-, N,N-di(p-tolyl)-, N-ethyl-N-phenyl-, N,N-dibenzyl-, N,N-diphenyl- and N,N-diisopropylhydrazine was examined in the Salmonella/mammalian microsome assay using the strains TA1535, TA1537, TA97, TA98, TA100, TA102 and TA1530. All nine hydrazines were mutagenic in at least one tester strain, although of borderline significance for some of the compounds. The mutagenic potencies of the hydrazines varied 2-3 orders of magnitude, from very weak to moderate mutagenic activity. In general, the addition of S9 resulted in a lowering of the mutagenic activity and a lowering of the toxic properties of the hydrazines. The test results were relatively difficult to evaluate due to toxic effects of many of the test compounds on the test bacteria which may have resulted in an underestimation of the mutagenic potencies of some of the compounds. The pattern of mutagenic activity of the hydrazines in the different tester strains indicates that more than one mechanism of action may be involved in the mutagenicity.  相似文献   

6.
The genotoxic potential of bidi tobacco was evaluated by mutagenicity testing of aqueous, aqueous: ethanolic, ethanolic and chloroform extracts of processed tobacco used in the manufacture of 'bidis', indigenous forms of cigarettes smoked in India. The Salmonella/mammalian microsome test (Ames assay) was used to detect mutagenicity in tester strains TA98, TA100 and TA102. The extracts were tested in the absence and presence of metabolic activation using liver S9 from rat and hamster, and following in vitro nitrosation with sodium nitrite at acidic pH. All the extracts were non-mutagenic in the absence of nitrosation. The nitrosated aqueous extract was mutagenic in strains TA98 and TA100. While weak mutagenicity was elicited by the nitrosated aqueous: ethanolic extract in TA100, the nitrosated ethanolic extract induced a 3-fold increase in the number of revertants in the same strain. Moreover both these extracts elicited a strong mutagenic response in TA102, while the chloroform extract was non-mutagenic even after nitrite treatment. The present study indicates that workers employed in the bidi industry are exposed to potentially mutagenic and genotoxic chemicals in the course of their occupation.  相似文献   

7.
On exposure to visible light, riboflavin and lumiflavin produced reactive oxygen species such as singlet oxygen and superoxide radicals. The reaction was found to be time- and concentration-dependent. Both riboflavin and lumiflavin, upon illumination, showed mutagenic response in the umu test as well as in the Ames/Salmonella assay with Salmonella typhimurium TA102. The mutagenic response was partially abolished by superoxide dismutase while sodium azide did not have any effect. No mutagenicity was observed if the compounds were not illuminated. The results suggested the involvement of superoxide radicals in light-induced mutagenicity of riboflavin as well as lumiflavin.  相似文献   

8.
Previously, Alternaria extract and metabolite mutagenicities+/-nitrosylation were characterized using Ames Salmonella strains TA98 and TA100, which are both reverted at GC sites. To examine other targets for mutation, the metabolites Altertoxin I (ATX I), Altenuene (ALT), Alternariol (AOH), Alternariol monomethyl ether (AME), Tentoxin (TENT), Tenuazonic acid (TA) and Radicinin (RAD) were reexamined+/-nitrosylation, using Ames Salmonella strain TA97, sensitive to frameshift mutations at a run of C's, as well as strains TA102 and TA104, reverted by base pair mutations at AT sites and more sensitive to oxidative damage. ATX I was also assessed for mammalian mutagenicity at the Hprt gene locus in Chinese hamster V79 lung fibroblasts and rat hepatoma H4IIE cells. When tested from 1 to 100 microg/plate without nitrosylation, ATX I was mutagenic in TA102+/-rat liver S9 for activation and weakly mutagenic in TA104+/-S9, demonstrating direct-acting AT base pair mutagenicity. AOH was also directly mutagenic at AT sites in TA102+/-S9 while AME was weakly mutagenic in TA102+/-S9 and TA104+S9. Nitrosylation of ATX I enhanced mutagenicity at AT sites in TA104+/-S9 but produced little change in TA102+/-S9 compared to native ATX I. However, nitrosylated ATX I generated a potent direct-acting frameshift mutagen at C sites in TA97+/-S9. While ATX I was not mutagenic in either V79 cells or H4IIE cells, 5 and 10 microg/ml nitrosylated ATX I produced a doubling of 6-thioguanine resistant V79 colonies and 0.5 and 1 microg/ml were mutagenic to H4IIE cells, becoming toxic at higher concentrations. These results suggest ATX I, AME and AOH induce mutations at AT sites, possibly through oxidative damage, with nitrosylation enhancing ATX I frameshift mutagenicity at runs of C's. Nitrosylated ATX I was also directly mutagenic in mammalian test systems.  相似文献   

9.
The Ames assays strains TA98 and TA100 have been useful in characterizing complex mixtures from organic solvent extracts of particles from diesel-powered vehicles, ambient air, and other sources. In this paper we report preliminary experiments using TA102, a bacterial strain that detects compounds that can oxidize DNA, to characterize the mutagenicity of an ambient air sample collected in Ann Arbor, MI. Four sets of ambient air filters were collected in duplicate over a period of several days. The mutagenicities of methylene chloride extracts of these filters were compared using strains TA98, TA100 and TA102. The concentration-mutagenicity data for TA98 and TA100 were linear over the concentration range 0-200 micrograms extract/plate. The mutagenicity of the extracts using TA102 was much lower than the other two strains and was non-linear over the concentration range tested. These results suggest that it would be difficult to use TA102 to identify the oxidative mutagens present in an ambient air particulate extract.  相似文献   

10.
In this study the role of antioxidant enzymes on the antimutagenic actions of riboflavin and reduced glutathione against mutagenic potentials of 4-nitroquinoline 1-oxide and mitomycin C have been investigated. For this purpose the activities of catalase and superoxide dismutase enzymes have been determined in Salmonella typhimurium TA102 and TA100 strains preincubated with different combinations of 4-nitroquinoline 1-oxide, mitomycin C, riboflavin and reduced glutathione for thirty minutes. Also in part of the same samples, the mutagenicity has been determined for each combination of chemicals by using Salmonella preincubation test. The correlation between the levels of antioxidant enzymes and mutagenicity and antimutagenicity has been investigated.While riboflavin displayed a weakly antimutagenic effect on 4-nitroquinoline 1-oxide mutagenicity in TA102 and TA100 (0.25, 0.35 inhibition respectively), it did not have any effect on the strong mutagenicity of mitomycin C in both strains. Reduced glutathione, a well known antioxidant, had no antimutagenic effect against the mutagenicity of both compounds in TA102 and TA100 strains. The antioxidant enzymes, catalase and superoxide dismutase, seemed to have no direct effect on the antimutagenic action of riboflavin and mutagenic action of 4-nitroquinoline 1-oxide and mitomycin C because no change in the activities of catalase and superoxide dismutase was detected in relation to antimutagenicity of riboflavin and mutagenicity of 4-nitroquinoline 1-oxide and mitomycin C in both strains. It should be noted that many antimutagens have more than one mechanism of action and their effect depends on the mutagens being tested.  相似文献   

11.
Tertiary-Butyl alcohol (TBA), tertiary-butyl acetate (TBAc) and methyl tertiary-butyl ether (MTBE) are chemicals to which the general public may be exposed either directly or as a result of their metabolism. There is little evidence that they are genotoxic; however, an earlier publication reported that significant results were obtained in Salmonella typhimurium TA102 mutagenicity tests with both TBA and MTBE. We now present results of testing these chemicals and TBAc against S. typhimurium strains in two laboratories. The emphasis was placed on testing with S. typhimurium TA102 and the use of both dimethyl sulphoxide and water as vehicles. Dose levels up to 5000 microg/plate were used and incubations were conducted in both the presence and absence of liver S9 prepared from male rats treated with either Arochlor 1254 or phenobarbital-beta-naphthoflavone. The experiments were replicated, but in none of them was a significant mutagenic response observed, thus the current evidence indicates the TBA, TBAc and MTBE are not mutagenic in bacteria.  相似文献   

12.
Recently, mutagenic activity on several strains of Salmonella typhimurium has been found in many heat-processed foodstuffs. The previously reported direct-acting mutagenic activity of coffee in Salmonella typhimurium TA100 (Ames assay) was confirmed in our study. In addition to TA100, a mutagenic effect of coffee was also found by using the newly developed strain TA102. The mutagenic activity was abolished by the addition of rat-liver homogenate. 10% S9 mix completely eliminated the mutagenic activity of 30 mg of coffee per plate. The addition of reduced glutathione to active S9 further decreased the mutagenic activity and also reduced the mutagenicity together with inactivated S9. The compound or compounds responsible for this inactivation are heat-labile and seem to be located in the cytosol fraction of the S9. Part of the mutagenicity of coffee was also lost spontaneously upon incubation at temperatures between 0 degrees and 50 degrees C. The loss of activity was dependent on temperature, being more pronounced at 50 degrees C compared to 0 degrees C (at 50 degrees C approximately 50% of the mutagenic activity was lost after 6 h). As anaerobic conditions prevented this loss of mutagenicity almost totally, oxidative processes are probably responsible for the inactivation. The stability of the mutagen was not influenced by incubation at low pH values (pH 1-3), with or without the addition of pepsinogen. The mutagenic properties of methylglyoxal, which to some extent could be responsible for the mutagenic activity of coffee, were compared with those of coffee. Methylglyoxal was strongly mutagenic towards Salmonella typhimurium TA100 and TA102. Its mutagenic activity was partially inactivated by the addition of 10% S9. Glyoxalase I and II together with reduced glutathione abolished the mutagenic activity of methylglyoxal but reduced the mutagenicity of coffee by only 80%. Since these enzymes occur in mammalian cells, the mutagenic compound(s) of coffee could also be degraded in vivo. This conclusion is supported by the fact that a long-term carcinogenicity study with rats was negative. These results clearly demonstrate that the effects observed in vitro do not necessarily also occur in vivo, but that in vitro experiments may contribute to the understanding of fundamental mechanisms of chemical carcinogenesis.  相似文献   

13.
The mutagenic effects of bithionol sulfoxide and its two major metabolites, bithionol and bithionol sulfone, on 4 Salmonella typhimurium strains (TA97, TA98, TA100 and TA102) were investigated. Bithionol sulfoxide was found to be mutagenic to TA98 and TA100. However, mutagenicity was abolished in the presence of rat-liver S9 fractions.  相似文献   

14.
The mutagenic and genotoxic effects of two methylxanthines, theophylline (TH) and theobromine (TB), were assessed in the Ames mutagenicity assay (in strains TA97a, TA100, TA102 and TA104) and in vivo sister chromatid exchanges (SCEs) in bone marrow cells of mice. These are the two most commonly used nervous system stimulators throughout the world. TH is used in the long-term treatment of asthma. Bacterial mutagenicity assay showed very weak mutagenic effects of both drugs in Salmonella strains TA102 and TA104 only in certain concentrations when S9 was added to it. No mutagenic effects were observed in any other strains used in this assay either with or without metabolic activation. But results of in vivo SCE assay indicate that these two drugs can induce significant SCE in bone marrow cells of mice.  相似文献   

15.
The drug antipyrine and its 4-substituted analogs, 4-aminoantipyrine, 4-dimethylaminoantipyrine (aminopyrine) and 4-nitrosoantipyrine were tested for mutagenicity against the screening array of Salmonella typhimurium tester strains TA100, TA98, TA97, TA102 and TA104. Antipyrine and aminopyrine were nonmutagenic to all 5 tester strains even in the presence of S9. 4-Aminoantipyrine was directly mutagenic to TA97 only and the presence of S9 slightly increased its activity. 4-Nitrosoantipyrine was directly mutagenic to all tester strains used and S9 decreased its activity except with strain TA102. The possible long-term hazards of C-nitroso compounds derived from drugs and dietary constituents are discussed in view of their pluripotent direct genotoxicity.  相似文献   

16.
All positional isomers of mononitro- and monoaminobiphenyls and those of dinitro-, diamino- and aminonitrobiphenyls, which have one substituent on each benzene ring, were assayed for mutagenicity in Salmonella typhimurium by the Ames method. The results suggest that the structural requirements favoring mutagenic activity are the presence of substituents at the 4-position and their absence at the 2'-position. The introduction of an amino group to the 3'- or 4'-position of 4-nitrobiphenyl or a nitro group to 3'- or 4'-position of 4-aminobiphenyl enhanced the mutagenicity. Among the mutagenic compounds, 4-nitro analogues were mutagenic in strains TA98 and TA100 in the absence of a microsomal metabolic activation system. Strain TA98NR was not reverted by the direct-acting mutagens, whereas strain TA98/1,8-DNP6 was as revertible as strain TA98; these results suggest that the direct-acting mutagenicity involves the reduction of the nitro group by bacterial nitroreductase but does not involve specific esterification enzymes.  相似文献   

17.
B Lang  M M Iba 《Mutation research》1987,191(3-4):139-143
The direct and H2O2-dependent mutagenicity of 3,3'-dichlorobenzidine (DCB) were compared in Salmonella tester strains TA98, TA98/1,8-DNP6, TA100 and TA102 using the Ames test. DCB exhibited both direct and H2O2-dependent mutagenicity to both tester strains TA98 and TA98/1,8-DNP6. This H2O2-dependent mutagenicity of DCB was prevented by horseradish peroxidase. DCB, in contrast to its effects in tester strains TA98, was not mutagenic to TA100 and TA102 either directly or in the presence of H2O2. These results suggest that mechanisms, perhaps enzymes endogenous to tester strains TA98, may play a role in the activation of DCB.  相似文献   

18.
Benzoyl chloride and 53 commercially available aromatic heterocyclic and aliphatic nitro compounds were tested for mutagenicity in Salmonella typhimurium TA98 and TA100. 34 of 53 nitro compounds (64%) were mutagenic, 4 in TA100 only, 15 in TA98 only, and 15 in both strains. 13 of the heterocyclic derivatives of pyridine, indole, indazole, quinoline, and benzimidazole were mutagenic. 21 of 34 mutagenic nitro compounds were bactericidal. Nitromethane was the only aliphatic tested and was not mutagenic. Benzoyl chloride, a human carcinogen, was mutagenic for TA98.  相似文献   

19.
The "Bacterial Reverse Mutation Assay" is generally accepted to analyse the genotoxic capacity of single compounds or complex mixtures such as cigarette-smoke condensates. With an adapted and modified Ames assay, the mutagenicity of native cigarette mainstream whole smoke (WS) and its gas/vapour phase (GVP) was studied. The bacteria were directly exposed to the smoke in a CULTEX1 system closely connected to a smoking robot (VC10). A variety of standard tester strains (TA98, TA100, TA1535, TA1537, TA1538, TA102, WP2uvrApKM101) and descendants of TA98 (YG1021, YG1024, YG1041) and TA100 (YG1026, YG1029 and YG1042) were exposed to whole and filtered smoke of the research cigarette K2R4F to find the most sensitive strains for analysing the mutagenic activity of these test atmospheres. Mutagenicity of WS was detected by TA98, TA100 and their YG descendant strains as well as by WP2uvrApKM101 in the presence of S9 mix. The GVP induced a mutagenic signal in TA100, YG1029 and YG1042 and WP2uvrApKM101 only in the absence of S9 mix. To detect mutagenicity in WS the presence of the plasmid pKM101 is required and a frame-shift mutation is more effective than a missense mutation. To detect mutagenicity in GVP, the presence of the plasmid pKM101 and a missense mutation are required. The differentiating capacity of this modified Ames assay was demonstrated by exposing strain TA98 to WS and TA100 to the GVP of cigarettes with different tar content. The mutagenic activity of WS and the GVP increased with rising tar content of the cigarettes with two exceptions in WS. Thus, the concept of tar content alone is misleading and does not reflect the mutagenic activity of a cigarette.  相似文献   

20.
The environmental pollutant 3-nitrofluoranthene is metabolized in vitro and in vivo to several products including the phenolic metabolites 3-nitrofluoranthen-6-ol (3NF-6-ol), 3-nitrofluoranthen-8-ol (3NF-8-ol), and 3-nitrofluoranthen-9-ol (3NF-9-ol). Similarly, 1-nitropyrene is metabolized to the phenolic metabolites 1-nitropyren-3-ol (1NP-3-ol), 1-nitropyren-6-ol (1NP-6-ol), and 1-nitropyren-8-ol (1NP-8-ol). The mutagenicity of these compounds was investigated using strains of Salmonella typhimurium deficient in either certain nitroreductase or the aryl hydroxylamine O-esterificase. In TA98, 3-nitrofluoranthene and 3NF-8-ol were equally mutagenic at approximately 103 revertants/nmole while 3NF-6-ol and 3NF-9-ol were 10-fold less mutagenic. 1-Nitropyrene and 1NP-3-ol likewise were equally mutagenic at approximately 700 revertants/nmole and 1NP-6-ol and 1NP-8-ol were 100-fold less mutagenic. The mutagenicity of 1-nitropyrene was dependent on the ‘classical nitroreductase’ which is absent in TA98NR, and that of 3-nitrofluoranthene, 3NF-8-ol, and 1NP-3-ol was less dependent on this nitroreductase. Using TA98/1,8DNP6, it was determined that the mutagenicity of 3-nitrofluoranthene, 3NF-8-ol, and 1NP-3-ol but not 1-nitropyrene was dependent on the presence of the O-esterificase. 3-Nitrofluoranthene and 3NF-8-ol were mutagenic in TA100, while 3NF-6-ol and 3NF-9-ol were considerably less mutagenic. 3-Nitrofluoranthene was not mutagenic in TA100NR nor in TA100-Tn5-1,8-DNP1012. None of the phenolic metabolites of 3-nitrofluoranthene were mutagenic in TA100-Tn5-1,8DNP1012 indicating a strong dependence for mutagenicity of the O-esterificase of the 1,8-dinitropyrene nitroreductase which is absent in this strain. These results are discussed in view of possible mechanisms for the differences in the mutagenicity of the phenolic metabolites of these two nitrated arenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号