首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular recording of white adipocytes was performed in an in vitro preparation. Resting potential, input resistance and membrane time constant averaged: -34 +/- 9 mV, 295 +/- 161 M omega, and 58 +/- 19 ms respectively (mean +/- SD, n = 32). Intracellular injection of positive and negative square current pulses elicited membrane voltage responses, characterized by a rectification of the voltage change evoked by positive pulses, and a slow return to baseline at the offset of hyperpolarizing pulses. The amplitude and duration of the slow return to resting potential was dependent on membrane potential, pulse duration, and extracellular K+ concentration. This response was depressed when external Ca2+ was replaced by Co2+, and by external application of 4-aminopyridine. These results indicate that white adipocytes can generate membrane voltage responses which may mostly be a consequence of the activity of ionic channels. The properties of the slow return to baseline suggest that it may be due to a transient K+ current.  相似文献   

2.
Our previous studies have suggested that dopamine and noradrenaline may be coreleased from noradrenergic nerve terminals in the cerebral cortex. To further clarify this issue, the effect of electrical stimulation of the locus coeruleus on extracellular noradrenaline, dopamine and DOPAC in the medial prefrontal cortex, parietal cortex and caudate nucleus was analysed by microdialysis in freely moving rats. Stimulation of the locus coeruleus for 20 min with evenly spaced pulses at 1 Hz failed to modify cortical catecholamines and DOPAC levels. Stimulation with bursts of pulses at 12 and 24 Hz increased, in a frequency-related manner, not only noradrenaline but also dopamine and DOPAC in the two cortices. In both cortices noradrenaline returned to baseline within 20 min of stimulation, irrespective of the stimulation frequency, whereas dopamine returned to normal within 20 and 60 min in the medial prefrontal cortex and within 60 and 80 min in the parietal cortex after 12 and 24 Hz stimulation, respectively. DOPAC remained elevated throughout the experimental period. Phasic stimulation of the locus coeruleus at 12 Hz increased noradrenaline in the caudate nucleus as in the cerebral cortices but was totally ineffective on dopamine and DOPAC. Tetrodotoxin perfusion into the medial prefrontal cortex dramatically reduced noradrenaline and dopamine levels and suppressed the effect of electrical stimulation. These results indicate that electrical stimulation-induced increase of dopamine is a nerve impulse exocytotic process and suggest that cortical dopamine and noradrenaline may be coreleased from noradrenergic terminals.  相似文献   

3.
Noradrenaline (norepinephrine) was shown to be a potent inhibitor of glucose-induced insulin release from rat pancreatic islets, with half-maximal inhibition of the secretory response to 20 mM-glucose occurring at approx. 0.3 microM, and complete suppression of the response occurring at 4 microM-noradrenaline. Inhibition of insulin secretion by noradrenaline was antagonized by the alpha 2-adrenergic antagonist yohimbine (half maximally effective dose approximately 1 microM), but was largely unaffected by the alpha 1-adrenergic antagonist prazosin at concentrations up to 50 microM, suggesting that the response was mediated by alpha 2-adrenergic receptors. Noradrenaline significantly reduced the extent of 45Ca2+ accumulation in glucose-stimulated islets, although as much as 5 microM-noradrenaline was required for 50% inhibition of this response. The ability of noradrenaline to inhibit islet-cell 45Ca2+ uptake was totally abolished in media containing 1 mM-dibutyryl cyclic AMP, suggesting that the response may have been secondary to lowering of islet cyclic AMP. Under these conditions, however, noradrenaline was still able to inhibit insulin secretion maximally. The data suggest that the site(s) at which noradrenaline acts to mediate inhibition of insulin secretion in rat islets lies distal to both islet-cell cyclic AMP accumulation and Ca2+ uptake.  相似文献   

4.
In general, intracellular K+ appears to be compartmentalized. This phenomenon does not seem to characterize cytoplasm per se, but probably reflects the processes of sequestration and ion exclusion characterizing certain as yet unidentified organelles. The cell nucleus does not appear to participate significantly in these processes. Measurement of intracellular potassium activity (alpha K)c in small epithelial cells is complicated by significant technical problems. Recent experimental maneuvers designed to circumvent these problems have led to substantially higher estimates of (alpha K)c under baseline conditions. The time courses of short circuit current (SCC) and (alpha K)c in toad urinary bladder have been correlated under two experimental conditions. After removing external K+ or after adding ouabain, both parameters are depressed. However, the time courses of SCC and (alpha K)c are very different following return to baseline conditions. The data suggest: 1) that the processes of cell K+ accumulation and transepithelial Na+ transport are not linked with a fixed stoichiometry, and 2) if a reduction in cytosolic K+ activity does inhibit transepithelial Na+ transport, its role is indirect.  相似文献   

5.
In the squid giant axon, Sjodin and Mullins (1958), using 1 msec duration pulses, found a decrease of threshold with increasing temperature, while Guttman (1962), using 100 msec pulses, found an increase. Both results are qualitatively predicted by the Hodgkin-Huxley model. The threshold vs. temperature curve varies so much with the assumptions made regarding the temperature-dependence of the membrane ionic conductances that quantitative comparison between theory and experiment is not yet possible. For very short pulses, increasing temperature has two effects. (1) At lower temperatures the decrease of relaxation time of Na activation (m) relative to the electrical (RC) relaxation time favors excitation and decreases threshold. (2) For higher temperatures, effect (1) saturates, but the decreasing relaxation times of Na inactivation (h) and K activation (n) factor accommodation and increased threshold. The result is a U-shaped threshold temperature curve. R. Guttman has obtained such U-shaped curves for 50 µsec pulses. Assuming higher ionic conductances decreases the electrical relaxation time and shifts the curve to the right along the temperature axis. Making the conductances increase with temperature flattens the curve. Using very long pulses favors effect (2) over (1) and makes threshold increase monotonically with temperature.  相似文献   

6.
Voltage-dependent conductances in Limulus ventral photoreceptors   总被引:7,自引:7,他引:0       下载免费PDF全文
The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons.  相似文献   

7.
8.
Na and Ca channels in a transformed line of anterior pituitary cells   总被引:20,自引:14,他引:6       下载免费PDF全文
The ionic conductances of GH3 cells, a transformed line from rat anterior pituitary, have been studied using the whole-cell variant of the patch-clamp technique (Hamill et al., 1981). Pipettes of very low resistance were used, which improved time resolution and made it possible to control the ion content of the cell interior, which equilibrated very rapidly with the pipette contents. Time resolution was further improved by using series resistance compensation and "ballistic charging" of the cell capacitance. We have identified and partially characterized at least three conductances, one carrying only outward current, and the other two normally inward. The outward current is absent when the pipette is filled with Cs+ instead of K+, and has the characteristics of a voltage-dependent potassium conductance. One of the two inward conductances (studied with Cs+ inside) has fast activation, inactivation and deactivation kinetics, is blocked by tetrodotoxin (TTX), and has a reversal potential at the sodium equilibrium potential. The other inward current activates more slowly and deactivates with a quick phase and a very slow phase after a short pulse. Either Ca++ or Ba++ serves as current carrier. During a prolonged pulse, current inactivates fairly completely if there is at least 5 mM Ca++ outside, and the amplitude of the current tails following the pulse diminishes with the time course of inactivation. When Ba++ entirely replaces Ca++ in the external medium, there is no inactivation, but deactivation kinetics of Ca channels vary as pulse duration increases: the slow phase disappears, the fast phase grows in amplitude. Inactivation (Ca++ outside) is unaltered by 50 mM EGTA in the pipette: inactivation cannot be the result of internal accumulation of Ca++.  相似文献   

9.
Electrophysiological properties of macrophages   总被引:2,自引:0,他引:2  
Electrophysiological studies indicate that the macrophage can display at least two different K conductances, a Ca-mediated K conductance and an inward rectifying K conductance, as well as an electrogenic Na+-K+ pump. Spontaneous hyperpolarizations associated with a Ca-mediated K permeability have been noted in all types of macrophages studied. Similar membrane hyperpolarizations can be elicited by a variety of stimuli that presumably increase intracellular calcium. These include mechanical and electrical stimulation as well as exposure to endotoxin-activated serum, chemotactic peptides, and the Ca ionophore A23187. Recent patch clamp studies on macrophages demonstrated channel activity that probably corresponds to currents through the inward rectifying K conductance previously described with current clamp techniques. With the advent of the patch clamp, this and other conductances can be effectively examined by using both whole-cell voltage clamp and patch recordings in a variety of different macrophages, including small freshly isolated cells.  相似文献   

10.
The electrical activity of pancreatic beta-cells, which has been closely correlated both with intracellular Ca2+ concentration and insulin release, is characterized by a biphasic response to glucose and bursts of spiking action potentials. Recent voltage clamp and single channel patch clamp experiments have identified several transmembrane ionic channels that may play key roles in the electrophysiological behavior of beta-cells. There is a hypothesis that Ca2+-activated K+ channels are responsible for both the resting potential during low glucose concentration and the silent phase during bursting. The discovery of the ATP-inactivated K+ channel raises the possibility that the current for this latter K+ channel may dominate the resting potential, while the Ca2+-activated K+ current dominates the silent phase potential between bursts. The recent discovery that Ca2+-activated K+ channels are pH sensitive raises an interesting possibility for the biphasic electrical response. In this paper, numerical methods are presented for evaluating these hypotheses against experimental evidence.  相似文献   

11.
The acetylcholine reversal potential (Er) of cultured rat myotubes is -3mV. When activated, the receptor is permeable to K+ and Na+, but not to Cl- ions. Measurement of Er in Tris+-substituted, Na-free medium also indicated a permeability to Tris+ ions. Unlike adult frog muscle the magnitude of Er was insensitive to change in external Ca++ (up to 30 mM) or to changes in external pH (between 6.4 and 8.9). The equivalent circuit equation describing the electrical circuit composed of two parallel ionic batteries (EK and ENa) and their respective conductances (gK and gNa), which has been generally useful in describing the Er of adult rat and frog muscle, could also be applied to rat myotubes when Er was measured over a wide range of external Na+ concentrations. The equivalent circuit equation could not be applied to myotubes bathed in media of different external K+ concentrations. In this case, the Er was more closely described by the Goldman constant field equation. Under certain circumstances, it is known that the receptor in adult rat and frog muscle can be induced to reversibly shift from behavior described by the equivalent circuit equation to that described by the Goldman equation. Attempts to similarly manipulate the responses of cultured rat myotubes were unsussessful. These trials included a reduction in temperature (15 degress C), partial alpha-bungarotoxin blodkade, and activation of responses with the cholinergic agonist, decamethonium.  相似文献   

12.
Using the patch-voltage-clamp method action of tetraethylammonium on the fast (30 pS) and slow K+ channels was investigated. The slow K+ channels were presented by two types: with whole (30 pS) and decreased (20 pS) conductance. In all cases tetraethylammonium decreased the current magnitude and modified the channel kinetic parameters. Apparent blocking constants determined from the current decreasing are as 8-50 and 4-12 mM for the slow K+ channels with whole and decreased conductance, respectively, and 0.05-0.08 mM--for the fast K+ channel. The potential dependency of the blocking constants correlates with that of the channel conductance. Probability of the channel open state for the slow K+ channels decreases, and that for the fast K+ channel increases under application of tetraethylammonium. It is concluded that there are two sites of tetraethylammonium binding: the first site is into the channel pore, and the second one--into the regulatory centre responsible for the channel kinetic behaviour. Blocking of general conductance of the slow channels is accompanied by proportional decrease of the channel substate conductances without change of their number and cooperatively. Block of the fast K+ channel occurs without change of the channel elementary conductance but with decrease of the number of the channel substates and reversible violation of the channel transition cooperativity. The data are discussed from the point of the hypothesis on the channel clustery organization.  相似文献   

13.
The electrical properties of Aplysia brasiliana myogenic heart were evaluated. Two distinct types of action potentials (APs) were recorded from intact hearts, an AP with a slow rising phase followed by a slow repolarizing phase and an AP with a 'fast' depolarizing phase followed by a plateau. Although these two APs differ in their rates of depolarization (2.2 x 0.3 V/s), both APs were abolished by the addition of Co2+, Mn2+ and nifedipine or by omitting Ca2+ from the external solution. These data suggest that a Ca2+ inward current is responsible for the generation of both types of APs. Two outward currents activated at -40 mV membrane potential were prominent in isolated cardiac myocytes: a fast activating, fast inactivating outward current similar to the A-type K+ current and a slow activating outward current with kinetics similar to the delayed rectifier K+ current were recorded under voltage clamp conditions. Based on the effects of 4-AP and TEA on the electrical properties of ventricular myocytes, we suggest that the fast kinetic outward current substantially attenuates the peak values of the APs and that the slow activating outward current is involved on membrane repolarization.  相似文献   

14.
1. Exposure of slices of cerebral cortex from guinea pigs to electrical pulses for 10s or to noradrenaline, 5-hydroxytryptamine or histamine increases the rate of phosphorylation of unidentified proteins in the tissue; the increases in protein phosphorylation due to electrical pulses and noradrenaline were non-additive, whereas the increases due to pulses and 5-hydroxytryptamine or histamine were additive. 2. The stimulating effects of electrical pulses and noradrenaline on protein phosphorylation were antagonized by the beta-adrenergic blocking agents L-propranolol, dichloroisoprenaline, practolol and ICI 66082, but not by the alpha-adrenergic blocking agents, phentolamine and phenoxybenzamine. 3. The increase in protein phosphorylation associated with electrical pulses was antagonized by 10 mum-trifluoperazine and 0.5 mum-prostaglandin E1. 4. It is postulated that under the experimental conditions used the action of electrical pulses on protein phosphorylation is mediated by noradrenaline acting through a beta-adrenergic receptor mechanism probably involving adenylate cyclase.  相似文献   

15.
Pancreatic islets of Langerhans display complex intracellular calcium changes in response to glucose that include fast (seconds), slow ( approximately 5 min), and mixed fast/slow oscillations; the slow and mixed oscillations are likely responsible for the pulses of plasma insulin observed in vivo. To better understand the mechanisms underlying these diverse patterns, we systematically analyzed the effects of glucose on period, amplitude, and plateau fraction (the fraction of time spent in the active phase) of the various regimes of calcium oscillations. We found that in both fast and slow islets, increasing glucose had limited effects on amplitude and period, but increased plateau fraction. In some islets, however, glucose caused a major shift in the amplitude and period of oscillations, which we attribute to a conversion between ionic and glycolytic modes (i.e., regime change). Raising glucose increased the plateau fraction equally in fast, slow, and regime-changing islets. A mathematical model of the pancreatic islet consisting of an ionic subsystem interacting with a slower metabolic oscillatory subsystem can account for these complex islet calcium oscillations by modifying the relative contributions of oscillatory metabolism and oscillatory ionic mechanisms to electrical activity, with coupling occurring via K(ATP) channels.  相似文献   

16.
Taste sensory responses from the chorda tympani nerve of the rat were recorded with the lingual receptive field under current or voltage clamp. Consistent with previous results (Ye, Q., G. L. Heck, and J. A. DeSimone. 1993. Journal of Neurophysiology. 70:167-178), responses to NaCl were highly sensitive to lingual voltage clamp condition. This can be attributed to changes in the electrochemical driving force for Na+ ions through apical membrane transducer channels in taste cells. In contrast, responses to KCl over the concentration range 50-500 mM were insensitive to the voltage clamp condition of the receptive field. These results indicate the absence of K+ conductances comparable to those for Na+ in the apical membranes of taste cells. This was supported by the strong anion dependence of K salt responses. At zero current clamp, the potassium gluconate (KGlu) threshold was > 250 mM, and onset kinetics were slow (12 s to reach half-maximal response). Faster onset kinetics and larger responses to KGlu occurred at negative voltage clamp (-50 mV). This indicates that when K+ ion is transported as a current, and thereby uncoupled from gluconate mobility, its rate of delivery to the K+ taste transducer increases. Analysis of conductances shows that the paracellular pathway in the lingual epithelium is 28 times more permeable to KCl than to KGlu. Responses to KGlu under negative voltage clamp were not affected by agents that are K+ channel blockers in other systems. The results indicate that K salt taste transduction is under paracellular diffusion control, which limits chemoreception efficiency. We conclude that rat K salt taste occurs by means of a subtight junctional transducer for K+ ions with access limited by anion mobility. The data suggest that this transducer is not cation selective which also accounts for the voltage and amiloride insensitive part of the response to NaCl.  相似文献   

17.
The effect of calcium on the contractile responses induced by high K+ solutions and noradrenaline has been investigated Ca2+-free-solutions and two selective antagonists of calcium channels (verapamil and sodium nitroprusside) have been used. Both types of responses were inhibited by Ca2+-free-solutions. Contractions induced by high K+ solutions were inhibited by verapamil, but not by sodium nitroprusside. However, the responses to noradrenaline were specifically inhibited by sodium nitroprusside. These results suggest that in rumen circular smooth muscle of the sheep there are two types of calcium channels, a voltage-dependent Ca2+ channel and receptor-linked Ca2+ channel.  相似文献   

18.
L Kiss  S J Korn 《Biophysical journal》1998,74(4):1840-1849
With prolonged or repetitive activation, voltage-gated K+ channels undergo a slow (C-type) inactivation mechanism, which decreases current flow through the channel. Previous observations suggest that C-type inactivation results from a localized constriction in the outer mouth of the channel pore and that the rate of inactivation is controlled by the-rate at which K+ leaves an unidentified binding site in the pore. We have functionally identified two K+ binding sites in the conduction pathway of a chimeric K+ channel that conducts Na+ in the absence of K+. One site has a high affinity for K+ and contributes to the selectivity filter mechanism for K+ over Na+. Another site, external to the high-affinity site, has a lower affinity for K+ and is not involved in channel selectivity. Binding of K+ to the high-affinity binding site slowed inactivation. Binding of cations to the external low-affinity site did not slow inactivation directly but could slow it indirectly, apparently by trapping K+ at the high-affinity site. These data support a model whereby C-type inactivation involves a constriction at the selectivity filter, and the constriction cannot proceed when the selectivity filter is occupied by K+.  相似文献   

19.
Electrical pacemaker mechanisms of pancreatic islet cells   总被引:1,自引:0,他引:1  
Glucose, the major physiological stimulus for insulin secretion, induces a periodic bursting pattern of Ca2+ action potentials that are thought to mediate the uptake of Ca2+ into the intracellular pool of free Ca2+, which controls the rate of insulin release. Evidence is reviewed that shows that the voltage-dependent Ca2+ spikes are driven by a slow, voltage-dependent plateau depolarization that may also be caused by Ca2+ influx. Current evidence suggests that this plateau conductance is periodically terminated in turn by a pacemaker current through membrane K+ channels that are activated by intracellular free Ca2+. The control of electrical activity by different modulators of insulin release may involve interactions with this system at several points, including changes of the sensitivity of K+ channels to intracellular Ca2+ and to changes of intracellular Ca2+ buffering capacity.  相似文献   

20.
In a giant neuron of Aplysia californica, permeabilities and conductances obtained by measuring net fluxes of Na+, K+ and Cl- with ion-specific microelectrodes were compared with those obtained by measuring transmembrane current and potential changes when the three ions were varied in the external solution. Net fluxes were measured with ion-specific microelectrodes, after blocking metabolic processes, thus allowing movement of ions down their electrochemical gradients. Permeabilities and conductances obtained from the "chemical" measurements (i.e., ion-specific electrodes) were generally comparable to the values obtained from "electrical" measurements. Where discrepancies occurred, they could be explained by showing that some of the assumptions necessary to use the "electrical" method were not quantitatively true in this system. The absolute magnitudes of the permeabilities are significantly less than those found in many axonal preparations. There is also a relatively high PNa/PK ratio. The selectivity of the membrane against ions such as Tris+ and MeSO3 is not good, Tris+ being nearly as permeable as Na+ and MeSO3 about one-half as permeable as Cl-. These properties may be characteristic of somal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号