首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Abo  E Ohtsubo 《Journal of bacteriology》1995,177(15):4350-4355
We have previously identified three sites, named sbi, ihfA, and sbyA, specifically recognized or bound by the TraI, IHF, and TraY proteins, respectively; these sites are involved in nicking at the origin of transfer, oriT, of plasmid R100. In the region next to these sites, there exists the sbm region, which consists of four sites, sbmA, sbmB, sbmC, and sbmD; this region is specifically bound by the TraM protein, which is required for DNA transfer. Between sbmB and sbmC in this region, there exists another IHF-binding site, ihfB. The region containing all of these sites is located in the proximity of the tra region and is referred to as the oriT region. To determine whether these sites are important for DNA transfer in vivo, we constructed plasmids with various mutations in the oriT region and tested their mobilization in the presence of R100-1, a transfer-proficient mutant of R100. Plasmids with either deletions in the sbi-ihfA-sbyA region or substitution mutations introduced into each specific site in this region were mobilized at a greatly reduced frequency, showing that all of these sites are essential for DNA transfer. By binding to ihfA, IHF, which is known to bend DNA, may be involved in the formation of a complex (which may be called oriT-some) consisting of TraI, IHF, and TraY that efficiently introduces a nick at oriT. Plasmids with either deletions in the sbm-ihfB region or substitution mutations introduced into each specific site in this region were mobilized at a reduced frequency, showing that this region is also important for DNA transfer. By binding to ihfB, IHF may also be involved in the formation of another complex (which may be called the TraM-IHF complex) consisting of TraM and IHF that ensures DNA transfer with a high level of efficiency. Several-base-pair insertions into the positions between sbyA and sbmA affected the frequency of transfer in a manner dependent upon the number of base pairs, indicating that the phasing between sbyA and sbmA is important. This in turn suggests that both oriT-some and the TraM-IHF complex should be in an appropriate position spatially to facilitate DNA transfer.  相似文献   

2.
Conjugative DNA transfer is a highly conserved process for the direct transfer of DNA from a donor to a recipient. The conjugative initiator proteins are key players in the DNA processing reactions that initiate DNA transfer - they introduce a site- and strand-specific break in the DNA backbone via a transesterification that leaves the initiator protein covalently bound on the 5'-end of the cleaved DNA strand. The action of the initiator protein at the origin of transfer (oriT) is governed by auxiliary proteins that alter the architecture of the DNA molecule, allowing binding of the initiator protein. In the F plasmid system, two auxiliary proteins have roles in establishing the relaxosome: the host-encoded IHF and the plasmid-encoded TraY. Together, these proteins direct the loading of TraI which contains the catalytic centre for the transesterification. The F-oriT sequence includes a binding site for another plasmid-encoded protein, TraM, which is required for DNA transfer. Here the impact of TraM protein on the formation and activity of the F plasmid relaxosome has been examined. Purified TraM stimulates the formation of relaxed DNA in a reaction that requires the minimal components of the relaxosome, TraI, TraY and IHF. Unlike TraY and IHF, TraM is not essential for the formation of the relaxosome in vitro and TraM cannot substitute for either TraY or IHF in this process. The TraM binding site sbmC, along with both IHF binding sites, is essential for stimulation of the relaxase reaction. In addition, stimulation of transesterification appears to require the C-terminal domain of TraI suggesting that TraM and TraI may interact through this domain on TraI. Taken together, these results provide additional evidence of a role for TraM as a component of the relaxosome, suggest a previously unknown interaction between TraI and TraM, and allow us to propose a molecular role for the C-terminal domain of TraI.  相似文献   

3.
Cleavage at the F plasmid nic site within the origin of transfer (oriT) requires the F-encoded proteins TraY and TraI and the host-encoded protein integration host factor in vitro. We confirm that F TraY, but not F TraM, is required for cleavage at nic in vivo. Chimeric plasmids were constructed which contained either the entire F or R100-1 oriT regions or various combinations of nic, TraY, and TraM binding sites, in addition to the traM gene. The efficiency of cleavage at nic and the frequency of mobilization were assayed in the presence of F or R100-1 plasmids. The ability of these chimeric plasmids to complement an F traM mutant or affect F transfer via negative dominance was also measured using transfer efficiency assays. In cases where cleavage at nic was detected, R100-1 TraI was not sensitive to the two-base difference in sequence immediately downstream of nic, while F TraI was specific for the F sequence. Plasmid transfer was detected only when TraM was able to bind to its cognate sites within oriT. High-affinity binding of TraY in cis to oriT allowed detection of cleavage at nic but was not required for efficient mobilization. Taken together, our results suggest that stable relaxosomes, consisting of TraI, -M, and -Y bound to oriT are preferentially targeted to the transfer apparatus (transferosome).  相似文献   

4.
The effect of TraY protein on TraI-catalyzed strand scission at the R1 transfer origin (oriT) in vivo was investigated. As expected, the cleavage reaction was not detected in Escherichia coli cells expressing tral and the integration host factor (IHF) in the absence of other transfer proteins. The TraM dependence of strand scission was found to be inversely correlated with the presence of TraY. Thus, the TraY and TraM proteins could each enhance cleaving activity at oriT in the absence of the other. In contrast, no detectable intracellular cleaving activity was exhibited by TraI in an IHF mutant strain despite the additional presence of both TraM and TraY. An essential role for IHF in this reaction in vivo is, therefore, implied. Mobilization experiments employing recombinant R1 oriT constructions and a heterologous conjugative helper plasmid were used to investigate the independent contributions of TraY and TraM to the R1 relaxosome during bacterial conjugation. In accordance with earlier observations, traY was dispensable for mobilization in the presence of traM, but mobilization did not occur in the absence of both traM and traY. Interestingly, although the cleavage assays demonstrate that TraM and TraY independently promote strand scission in vivo, TraM remained essential for mobilization of the R1 origin even in the presence of TraY. These findings suggest that, whereas TraY and TraM function may overlap to a certain extent in the R1 relaxosome, TraM additionally performs a second function that is essential for successful conjugative transmission of plasmid DNA.  相似文献   

5.
Mutational and physical analysis of F plasmid traY protein binding to oriT   总被引:4,自引:2,他引:2  
F plasmid traY protein binding to wild-type or deleted regions containing the TraY-binding site, sbyA, was studied in vitro. The principal DNA-protein complex was formed with DNA segments including the sbyA site defined by footprinting and (with lesser affinity) with truncated segments that retained the leftward two-thirds of sbyA. This located the major sequence determinants for TraY binding between bp 204 and 227 on the oriT map. For all sequences tested, bound TraY induced bending of approximateiy 50 to 55°, and centred between bp 214 and 221. Thermodynamic and mobility analyses indicated that two TraY protomers bind to sbyA. At higher TraY concentrations, additional TraY bound to the left of the sbyA in a region previously shown to bind IHF (site IHF A). TraY binding to this additional site (sbyC) was inhibited by IHF. Sequence similarities shared by sbyA, sbyB, and SbyC may include the critical base pairs for TraY binding.  相似文献   

6.
We developed an in vitro system to reproduce a site- and strand-specific nicking at the oriT region of plasmid R100. The nicking reaction was dependent on the purified TraY protein and on the lysate, which was prepared from cells overproducing the TraI protein. This supports the idea that the protein products of two genes, traY and traI, constitute an endonuclease that introduces a specific nick in vivo in the oriT region of the conjugative plasmids related to R100. The products were the "complex" DNA molecules with a protein covalently linked with the 5'-end of the nick. The nick was introduced in the strand, which is supposed to be transferred to recipient cells during conjugation, and was located at the site 59 base pairs upstream of the TraY protein binding site, sbyA.  相似文献   

7.
TraI protein of plasmid R1 possesses two activities, a DNA transesterase and a highly processive 5'-3' DNA helicase, which are essential for bacterial conjugation. Regulation of the functional domains of the enzyme is poorly understood. TraI cleaves supercoiled oriT DNA with site and strand specificity in vitro but fails to initiate unwinding from this site (nic). The helicase requires an extended region of adjacent single-stranded DNA to enter the duplex, yet interaction of purified TraI with oriT DNA alone or as an integral part of the IncF relaxosome does not melt sufficient duplex to load the helicase. This study aims to gain insights into the controlled initiation of both TraI-catalyzed activities. Linear double-stranded DNA substrates with a central region of sequence heterogeneity were used to trap defined lengths of R1 oriT sequence in unwound conformation. Concomitant reconstitution of TraI DNA transesterase and helicase activities was observed. Efficient helicase activity was measured on substrates containing 60 bases of open duplex but not on substrates containing < or =30 bases in open conformation. The additional presence of auxiliary DNA-binding proteins TraY and Escherichia coli integration host factor did not stimulate TraI activities on these substrates. This model system offers a novel approach to investigate factors controlling helicase loading and the directionality of DNA unwinding from nic.  相似文献   

8.
Stern JC  Schildbach JF 《Biochemistry》2001,40(38):11586-11595
The TraI protein has two essential roles in transfer of conjugative plasmid F Factor. As part of a complex of DNA-binding proteins, TraI introduces a site- and strand-specific nick at the plasmid origin of transfer (oriT), cutting the DNA strand that is transferred to the recipient cell. TraI also acts as a helicase, presumably unwinding the plasmid strands prior to transfer. As an essential feature of its nicking activity, TraI is capable of binding and cleaving single-stranded DNA oligonucleotides containing an oriT sequence. The specificity of TraI DNA recognition was examined by measuring the binding of oriT oligonucleotide variants to TraI36, a 36-kD amino-terminal domain of TraI that retains the sequence-specific nucleolytic activity. TraI36 recognition is highly sequence-specific for an 11-base region of oriT, with single base changes reducing affinity by as much as 8000-fold. The binding data correlate with plasmid mobilization efficiencies: plasmids containing sequences bound with lower affinities by TraI36 are transferred between cells at reduced frequencies. In addition to the requirement for high affinity binding to oriT, efficient in vitro nicking and in vivo plasmid mobilization requires a pyrimidine immediately 5' of the nick site. The high sequence specificity of TraI single-stranded DNA recognition suggests that despite its recognition of single-stranded DNA, TraI is capable of playing a major regulatory role in initiation and/or termination of plasmid transfer.  相似文献   

9.
The traY gene product of plasmid R100 was purified as a hybrid protein, TraY-collagen-beta-galactosidase. The hybrid protein as well as the TraY' protein, which was obtained by collagenolysis of the hybrid protein, specifically binds to an AT-rich 36-base pair sequence (here called sbyA) within the region including the origin of transfer, oriT. The oriT region consists of highly conserved and nonconserved regions among R100-related plasmids, and sbyA was located within the nonconserved region immediately adjacent to the conserved region. This supports the idea that the TraY protein has a role as a component of endonuclease in recognizing its own oriT sequence. Unexpectedly, however, the hybrid protein and the TraY' protein were also found to bind to two different AT-rich sequences (each 24 base pairs in length) in the promoter region preceding the traY gene (here called sbyB and sbyC). This suggests that the TraY protein may have another role in regulating the expression of its own gene. The "TAA(A/T)T" sequence motif observed in these binding sites might constitute a core sequence recognized by the TraY protein. Mg2+ is not required for the specific binding of the TraY protein.  相似文献   

10.
Site-specific and strand-specific nicking at the origin of transfer (oriT) of the F sex factor is the initial step in conjugal DNA metabolism. Then, DNA helicase I, the product of the traI gene, processively unwinds the plasmid from the nick site to generate the single strand of DNA that is transferred to the recipient. The nick at oriT is produced by the combined action of two Tra proteins, TraY and TraZ. The traZ gene was never precisely mapped, as no available point mutation uniquely affected TraZ-dependent oriT nicking. With several new mutations, we have demonstrated that TraZ activity is dependent upon traI DNA sequences. The simplest interpretation of this finding is that the F TraI protein is bifunctional, with DNA unwinding and site-specific DNA nicking activities.  相似文献   

11.
Transfer of conjugative plasmids requires relaxases, proteins that cleave one plasmid strand sequence specifically. The F plasmid relaxase TraI (1,756 amino acids) is also a highly processive DNA helicase. The TraI relaxase activity is located within the N-terminal ∼300 amino acids, while helicase motifs are located in the region comprising positions 990 to 1450. For efficient F transfer, the two activities must be physically linked. The two TraI activities are likely used in different stages of transfer; how the protein regulates the transition between activities is unknown. We examined TraI helicase single-stranded DNA (ssDNA) recognition to complement previous explorations of relaxase ssDNA binding. Here, we show that TraI helicase-associated ssDNA binding is independent of and located N-terminal to all helicase motifs. The helicase-associated site binds ssDNA oligonucleotides with nM-range equilibrium dissociation constants and some sequence specificity. Significantly, we observe an apparent strong negative cooperativity in ssDNA binding between relaxase and helicase-associated sites. We examined three TraI variants having 31-amino-acid insertions in or near the helicase-associated ssDNA binding site. B. A. Traxler and colleagues (J. Bacteriol. 188:6346-6353) showed that under certain conditions, these variants are released from a form of negative regulation, allowing them to facilitate transfer more efficiently than wild-type TraI. We find that these variants display both moderately reduced affinity for ssDNA by their helicase-associated binding sites and a significant reduction in the apparent negative cooperativity of binding, relative to wild-type TraI. These results suggest that the apparent negative cooperativity of binding to the two ssDNA binding sites of TraI serves a major regulatory function in F transfer.Transfer of conjugative plasmids between bacteria contributes to genome diversification and acquisition of new traits. Conjugative plasmids encode most proteins required for transfer of one plasmid strand from the donor to the recipient cell (reviewed in references 11, 24, and 43). In preparation for transfer, a complex of proteins assembles at the plasmid origin of transfer (oriT). Within this complex, called the relaxosome, a plasmid-encoded relaxase or nickase binds and cleaves one plasmid strand at a specific oriT site (nic). As part of the cleavage reaction, the relaxase forms a covalent linkage between an active-site tyrosyl hydroxyl oxygen and a single-stranded DNA (ssDNA) phosphate, yielding a 3′ ssDNA hydroxyl (19, 30). Upon initiation of transfer, the plasmid strands are separated, and the cut strand is transported into the recipient. The relaxase is likely transferred into the recipient (12, 31) while still physically attached to plasmid DNA. The transferred relaxase may then join the ends of the ssDNA plasmid copy in the final step of plasmid transfer. Complementary strand synthesis in the donor and the recipient generates a double-stranded plasmid that is competent for further transfer. Successful conjugation requires effective temporal regulation, yet the mechanisms governing this regulation are poorly understood.The F plasmid oriT is ∼500 bp long and includes multiple binding sites for integration host factor (IHF), TraY, and TraM and a single site for TraI, the F relaxase (11). IHF, TraY, and TraM, participants in the relaxosome, bind double-stranded DNA to facilitate the action of TraI, perhaps by creating or stabilizing the ssDNA conformation around nic required for TraI recognition. The F TraI minimal high-affinity binding site includes ∼15 nucleotides around nic (39), and throughout the text, we refer to oligonucleotides that contain the TraI wild-type (wt) or variant binding site as oriT oligonucleotides. F TraI is 192 kDa (42), and in addition to its relaxase activity, TraI has a 5′-to-3′ helicase activity (4). These activities must be physically joined to allow efficient plasmid transfer (29), yet how the two activities are coordinated is a mystery. The relaxase region of F TraI has been defined as the N-terminal ∼300 amino acids (aa) (6, 40). Conserved helicase motifs, including those associated with an ATPase, lie between amino acids 990 and 1450. The C-terminal region (positions 1450 to 1756) plays an important role in bacterial conjugation, possibly involving protein-protein interactions with TraM (32) and/or inner membrane protein TraD (28).The 70-kDa central region of TraI that lies between the relaxase and helicase domains has been implicated in two functions. Haft and colleagues described TraI variants with 31-amino-acid insertions in this TraI region that facilitated plasmid transfer with greater efficiency than that afforded by the wild-type protein when these proteins are expressed at high levels (16). On the basis of this observation, the authors proposed that the region participated in a negative regulation of transfer. Matson and Ragonese demonstrated that this central region is required for TraI helicase function, likely due to participation in ssDNA recognition essential for the helicase activity (28). We wondered whether the proposed regulatory and ssDNA binding roles of the central region are linked and whether this region might help modulate TraI helicase and relaxase activities. Our objectives in this study were to confirm the role of the central region in ssDNA recognition, to assess the affinity and specificity of the ssDNA recognition by the central region, and to determine whether the relaxase and central domain ssDNA binding sites demonstrate cooperativity in binding. Our work yielded two significant and surprising results. First, the binding site within the TraI central region binds ssDNA with high affinity and significant sequence specificity, both unusual characteristics for a helicase. Second, the central region and relaxase ssDNA binding sites show an apparent strong negative cooperativity of binding, possibly explaining the role of the central region as a negative regulator and providing clues about how the timing of conjugative transfer might be regulated.  相似文献   

12.
Relaxosomes are specific nucleoprotein structures involved in DNA-processing reactions during bacterial conjugation. In this work, we present evidence indicating that plasmid R388 relaxosomes are composed of origin of transfer (oriT) DNA plus three proteins TrwC relaxase, TrwA nic-cleavage accessory protein and integration host factor (IHF), which acts as a regulatory protein. Protein IHF bound to two sites (ihfA and ihfB) in R388 oriT, as shown by gel retardation and DNase I footprinting analysis. IHF binding in vitro was found to inhibit nic-cleavage, but not TrwC binding to supercoiled DNA. However, no differences in the frequency of R388 conjugation were found between IHF- and IHF+ donor strains. In contrast, examination of plasmid DNA obtained from IHF- strains revealed that R388 was obtained mostly in relaxed form from these strains, whereas it was mostly supercoiled in IHF+ strains. Thus, IHF could have an inhibitory role in the nic-cleavage reaction in vivo. It can be speculated that triggering of conjugative DNA processing during R388 conjugation can be mediated by IHF release from oriT.  相似文献   

13.
F factor TraY, a ribbon-helix-helix DNA-binding protein, performs two roles in bacterial conjugation. TraY binds the F origin of transfer (oriT) to promote nicking of plasmid DNA prior to conjugative transfer. TraY also binds the P(Y) promoter to up-regulate tra gene expression. The two plasmid regions bound by TraY share limited sequence identity, yet TraY binds them with similar affinities. TraY recognition of the two sites was first probed using in vitro footprinting methods. Hydroxyl radical footprinting at both oriT and P(Y) sites indicated that bound TraY protected the DNA backbone bordering three adjacent DNA subsites. Analytical ultracentrifugation results for TraY:oligonucleotide complexes were consistent with two of these subsites being bound cooperatively, and the third being occupied at higher TraY concentrations. Methylation protection and interference footprinting identified several guanine bases contacted by or proximal to bound TraY, most located within these subsites. TraY affinity for variant oriT sequences with base substitutions at or near these guanine bases suggested that two of the three subsites correspond to high-affinity, cooperatively bound imperfect inverted GA(G/T)A repeats. Altering the spacing or orientation of these sites reduced binding. TraY mutant R73A failed to protect two symmetry-related oriT guanine bases in these repeats from methylation, identifying possible direct TraY-DNA contacts. The third subsite appears to be oriented as an imperfect direct repeat with its adjacent subsite, although base substitutions at this subsite did not reduce binding. Although unusual for ribbon-helix-helix proteins, this binding site arrangement occurs at both F TraY sites, consistent with it being functionally relevant.  相似文献   

14.
MobA protein, encoded by the broad host-range plasmid R1162, is required for conjugal mobilization of this plasmid. The protein is an essential part of the relaxosome, and is also necessary for the termination of strand transfer. In vitro, MobA is a nuclease specific for one of the two DNA strands of the origin of transfer (oriT). The protein can cleave this strand at the same site that is nicked in the relaxosome, and can also ligate the DNA. We show here that purified MobA protein forms a complex that is specific for this single oriT strand. The complex is unusually stable, with a half-life of approximately 95 min, is not disrupted by hybridization with the complementary strand, and reforms rapidly after boiling. Both the inverted repeat within oriT, and the eight bases between this repeat and the site cleaved by MobA, are required for binding by the protein. Mutations reducing base complementarity between the arms of the inverted repeat also decrease binding. This effect is partially suppressed by second-site mutations restoring complementarity. These results parallel the effects of these mutations on termination. Footprinting experiments with P1 nuclease indicate that the DNA between the inverted repeat and the nick site is protected by MobA, but that pairing between the arms of the repeat, which occurs in the absence of protein, is partially disrupted. Our results suggest that termination of strand transfer during conjugation involves tight binding of the MobA protein to the inverted repeat and adjacent oriT DNA. This complex positions the protein for ligation of the ends of the transferred strand, to reform a circular plasmid molecule.  相似文献   

15.
Mobilization of the staphylococcal plasmid pC221 requires at least one plasmid-encoded protein, MobA, in order to form a relaxosome. pC221 and closely related plasmids also possess an overlapping reading frame encoding a protein of 15 kDa, termed MobC. By completing the nucleotide sequence of plasmid pC223, we have found a further example of this small protein, and gene knockouts have shown that MobC is essential for relaxosome formation and plasmid mobilization in both pC221 and pC223. Primer extension analysis has been used to identify the nic site in both of these plasmids, located upstream of the mobC gene in the sense strand. Although the sequence surrounding the nic site is highly conserved between pC221 and pC223, exchange of the oriT sequence between plasmids significantly reduces the extent of relaxation complex formation, suggesting that the Mob proteins are selective for their cognate plasmids in vivo.  相似文献   

16.
The broad-host-range, multicopy plasmid R1162 is efficiently mobilized during conjugation by the self-transmissible plasmid R751. The relaxosome, a complex of plasmid DNA and R1162-encoded proteins, forms at the origin of transfer ( oriT ) and is required for mobilization. Transfer is initiated by strand- and site-specific nicking of the DNA within this structure. We show by probing with potassium permanganate that oriT DNA is locally melted within the relaxosome, in the region from the inverted repeat to the site that is nicked. Mutations in this region of oriT , and in genes encoding the protein components of the relaxosome, affect both nicking and melting of the DNA. The nicking protein in the relaxosome is MobA, which also ligates the transferred linear, single strand at the termination of a round of transfer. We propose that there is an underlying similarity in the substrates for these two MobA-dependent, DNA-processing reactions. We also show that MobA has an additional role in transfer, beyond the nicking and resealing of oriT DNA.  相似文献   

17.
Early in F plasmid conjugative transfer, the F relaxase, TraI, cleaves one plasmid strand at a site within the origin of transfer called nic. The reaction covalently links TraI Tyr16 to the 5'-ssDNA phosphate. Ultimately, TraI reverses the cleavage reaction to circularize the plasmid strand. The joining reaction requires a ssDNA 3'-hydroxyl; a second cleavage reaction at nic, regenerated by extension from the plasmid cleavage site, may generate this hydroxyl. Here we confirm that TraI is transported to the recipient during transfer. We track the secondary cleavage reaction and provide evidence it occurs in the donor and F ssDNA is transferred to the recipient with a free 3'-hydroxyl. Phe substitutions for four Tyr within the TraI active site implicate only Tyr16 in the two cleavage reactions required for transfer. Therefore, two TraI molecules are required for F plasmid transfer. Analysis of TraI translocation on various linear and circular ssDNA substrates supports the assertion that TraI slowly dissociates from the 3'-end of cleaved F plasmid, likely a characteristic essential for plasmid re-circularization.  相似文献   

18.
19.
Bacterial conjugation, transfer of a single conjugative plasmid strand between bacteria, diversifies prokaryotic genomes and disseminates antibiotic resistance genes. As a prerequisite for transfer, plasmid-encoded relaxases bind to and cleave the transferred plasmid strand with sequence specificity. The crystal structure of the F TraI relaxase domain with bound single-stranded DNA suggests binding specificity is partly determined by an intrastrand three-way base-pairing interaction. We showed previously that single substitutions for the three interacting bases could significantly reduce binding. Here we examine the effect of single and double base substitutions at these positions on plasmid mobilization. Many substitutions reduce transfer, although the detrimental effects of some substitutions can be partially overcome by substitutions at a second site. We measured the affinity of the F TraI relaxase domain for several DNA sequence variants. While reduced transfer generally correlates with reduced binding affinity, some oriT variants transfer with an efficiency different than expected from their binding affinities, indicating ssDNA binding and cleavage do not correlate absolutely. Oligonucleotide cleavage assay results suggest the essential function of the three-base interaction may be to position the scissile phosphate for cleavage, rather than to directly contribute to binding affinity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号