首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis.  相似文献   

2.
DNA barcoding methods use a single locus (usually the mitochondrial COI gene) to assign unidentified specimens to known species in a library based on a genetic distance threshold that distinguishes between‐species divergence from within‐species diversity. Recently developed species delimitation methods based on the multispecies coalescent (MSC) model offer an alternative approach to individual assignment using either single‐locus or multiloci sequence data. Here, we use simulations to demonstrate three features of an MSC method implemented in the program bpp . First, we show that with one locus, MSC can accurately assign individuals to species without the need for arbitrarily determined distance thresholds (as required for barcoding methods). We provide an example in which no single threshold or barcoding gap exists that can be used to assign all specimens without incurring high error rates. Second, we show that bpp can identify cryptic species that may be misidentified as a single species within the library, potentially improving the accuracy of barcoding libraries. Third, we show that taxon rarity does not present any particular problems for species assignments using bpp and that accurate assignments can be achieved even when only one or a few loci are available. Thus, concerns that have been raised that MSC methods may have problems analysing rare taxa (singletons) are unfounded. Currently, barcoding methods enjoy a huge computational advantage over MSC methods and may be the only approach feasible for massively large data sets, but MSC methods may offer a more stringent test for species that are tentatively assigned by barcoding.  相似文献   

3.
This review discusses DNA-based methods used for identification of yeasts. Nuclear DNA reassociation was the first quantitative molecular method employed for recognition of yeast species and has provided a baseline for interpretation of other molecular comparisons. Among these, gene sequencing is the most definitive method, with ribosomal RNA gene sequences providing the preponderance of available data. Multigene analyses that include the sequences of protein encoding genes are being increasingly developed to provide a more definitive resolution of species. A number of rapid identification methods, such as denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), and flow cytometry, which are based on species-specific gene sequences, are available for use in diagnostic laboratories.  相似文献   

4.
Phylogeographic analyses are a key interface between ecological and evolutionary ways of knowing because such analyses integrate the cumulative effects of demographic (ecological) processes over geological (evolutionary) time scales. Newly developed coalescent methods allow evolutionary ecologists to overcome some limitations associated with inferring population history from classic methods such as Wright’s F ST. Here we briefly contrast classic and coalescent methods for looking backward in time through a population genetic lens, focusing on the key advantages of the isolation-with-migration (IM) class of coalescent methods for distinguishing ancient connectedness from actual recurrent contemporary gene flow as causes of genetic similarity or differentiation among populations. Making this critical distinction can lead to the discovery of otherwise obscured histories underlying conventional patterns of spatial variation. We illustrate the importance of these insights using analyses of Pacific fishes, snails, and sea stars in which population sizes and divergence times are more important than rates of contemporary gene flow as determinants of population genetic differentiation. We then extend the IM method to genetic data from two model metapopulation species (California abalone, Australian damselfish). The analyses show the potential use of non-equilibrium IM methods for differentiating among metapopulation models that make different predictions about population parameters and have different implications for the design of marine protected areas and other conservation goals. At face value, the results largely rule out classic metapopulation dynamics (dominated by extinction and colonization rather than connectivity via ongoing recurrent gene flow) but, at the same time, do not strongly support a modern marine metapopulation dynamic (ecologically significant connectivity between demes). However, the results also highlight the need for much more data (i.e., loci) sampled on different spatial scales in order to determine whether metapopulation dynamics might exist on smaller scales than are typically sampled by most phylogeographers and landscape geneticists.  相似文献   

5.
Methods that allow the detection and verification of genetic relationships among organisms studied in the field have long been sought by workers in evolutionary biology. Since its inception just four years ago, DNA fingerprinting has already begun to fulfil its promise as a widely applicable solution to this problem. Here, recent progress with fingerprinting is discussed in the context of some other DNA techniques. In particular, the use of molecular methods is revolutionizing the study of mating systems.  相似文献   

6.
Analysis of complete mitochondrial genome sequences is becoming increasingly common in genetic studies. The availability of full genome datasets enables an analysis of the information content distributed throughout the mitochondrial genome in order to optimize the research design of future evolutionary studies. The goal of our study was to identify informative regions of the human mitochondrial genome using two criteria: (1) accurate reconstruction of a phylogeny and (2) consistent estimates of time to most recent common ancestor (TMRCA). We created two series of datasets by deleting individual genes of varied length and by deleting 10 equal-size fragments throughout the coding region. Phylogenies were statistically compared to the full-coding-region tree, while coalescent methods were used to estimate the TMRCA and associated credible intervals. Individual fragments important for maintaining a phylogeny similar to the full-coding-region tree encompassed bp 577-2122 and 11,399-16,023, including all or part of 12S rRNA, 16S rRNA, ND4, ND5, ND6, and cytb. The control region only tree was the most poorly resolved with the majority of the tree manifest as an unresolved polytomy. Coalescent estimates of TMRCA were less sensitive to removal of any particular fragment(s) than reconstruction of a consistent phylogeny. Overall, we discovered that half the genome, i.e., bp 3669-11,398, could be removed with no significant change in the phylogeny (p(AU)=0.077) while still maintaining overlap of TMRCA 95% credible intervals. Thus, sequencing a contiguous fragment from bp 11,399 through the control region to bp 3668 would create a dataset that optimizes the information necessary for phylogenetic and coalescent analyses and also takes advantage of the wealth of data already available on the control region.  相似文献   

7.
Angelica acutiloba, a medicinal plant used as a natural medicine Touki, was clonally propagated through axillary buds in vitro. No substantial differences were found in the random amplified polymorphic DNA (RAPD) pattern between the original A. acutiloba and the plant propagated in vitro, suggesting no changes in the DNA sequences and structure during in vitro propagation. The genetic similarities of several Angelica plants were investigated by restriction fragment length polymorphism (RFLP) and RAPD analyses. The RFLP and RAPD patterns of A. sinensis Diels were substantially different from those of A. acutiloba. Using ten different restriction enzymes, no RFLP was observed in the varieties of A. acutiloba. By RAPD analysis, A. acutiloba varieties can be classified into two major subgroups, i.e., A. acutiloba Kitagawa and A. acutiloba Kitagawa var. sugiyamae Hikino. The varieties of A. acutiloba Kitagawa in Japan and Angelica spp. in northeast China exhibited a very close genetic relationship. Received: 13 March 1998 / Revision received: 28 July 1998 / Accepted: 21 August 1998  相似文献   

8.
The inclusion of next‐generation sequencing technologies in population genetic and phylogenetic studies has elevated the need to balance time and cost of DNA extraction without compromising DNA quality. We tested eight extraction methods – ranging from low‐ to high‐throughput techniques – and eight phyla: Annelida, Arthropoda, Cnidaria, Chordata, Echinodermata, Mollusca, Ochrophyta and Porifera. We assessed DNA yield, purity, efficacy and cost of each method. Extraction efficacy was quantified using the proportion of successful polymerase chain reaction (PCR) amplification of two molecular markers for metazoans (mitochondrial COI and nuclear histone 3) and one for Ochrophyta (mitochondrial nad6) at four time points – 0.5, 1, 2 and 3 years following extraction. DNA yield and purity were quantified using NanoDrop absorbance ratios. Cost was estimated in terms of time and material expense. Results show differences in DNA yield, purity and PCR success between extraction methods and that performance also varied by taxon. The traditional time‐intensive, low‐throughput CTAB phenol–chloroform extraction performed well across taxa, but other methods also performed well and provide the opportunity to reduce time spent at the bench and increase throughput.  相似文献   

9.
We have established unique restriction fragment length polymorphism (RFLP) patterns characteristic of homozygous typing cells (HTCs) for HLA-DR-1 through HLA-DR-8 haplotypes. These RFLP patterns were found to segregate in family members and correlate 100% with HLA-DR antibody phenotyping. The RFLP patterns were used to type chronic myelocytic leukemic cells which have a Philadelphia translocation from 23 randomly selected Caucasoid patients. The results show an alternative method for the determination of the HLA-DR types without using live cells and to study disease association with the HLA-DR region.  相似文献   

10.
11.
Mycoplasma gallisepticum (MG) conjunctivitis emerged in 1994 as a disease of free-ranging house finches (Carpodacus mexicanus) in North America and has also been isolated from other songbirds with conjunctivitis. Random amplification of polymorphic DNA (RAPD) of house finch and other songbird isolates has suggested that a single 'strain' initiated this outbreak. To explore the possibility of genomic variability among house finch isolates of MG and to evaluate the utility of a second technique for MG genotyping, we selected samples from our archive of reference strains and wild songbird isolates to analyze using both RAPD and amplified-fragment length polymorphism (AFLP); this is a newer technique that has been successfully used to explore the genomic variability of several Mycoplasma species. Both RAPD and AFLP results confirmed previous observations that during the initial stages of the MG epidemic in songbirds, isolates from different geographic locations and songbird species had genotypes that appeared to be highly similar, further supporting a single point source of origin. One 2001 isolate from New York was clearly different from the other songbird samples and clustered together with the vaccine and reference strains, indicating that substantial molecular evolution or a separate introduction has occurred.  相似文献   

12.
Experiments were performed to determine the influence of three DNA extraction methods (i.e. lysozyme, sonication and CTAB methods) from kefir on the microbial diversity analysis by PCR-single strand conformation polymorphism (PCR-SSCP). The results showed that the band of DNA extracted using CTAB was clearer than that using other methods. In addition, the yield and purity of DNA extracted using CTAB were the highest and reached, respectively, 915 μg/ml and 1.694.The results from the experiments indicated that the CTAB-based DNA extraction method was the most efficient method for DNA extraction from kefir. The heterogeneity of PCR products, amplified from community DNA with universal primers spanning the V3 region of 16S rRNA genes, was analysed by using SSCP. The results showed that the SSCP profile based on the sonication method gave the highest microbial diversity of kefir. One conclusion from these results was that the DNA extraction method was an important factor affecting the SSCP-based microbial diversity analysis of kefir.  相似文献   

13.
Polymerase chain reaction restriction fragment length polymorphism (PCR‐RFLP) analysis of the plastid ribulose‐1,5‐bisphosphate carboxylase (RuBisCo) spacer region was developed for a more reliable and rapid species identification of cultivated Porphyra in combination with PCR‐RFLP analysis of the nuclear internal transcribed spacer (ITS) region. From the PCR‐RFLP analyses of the plastid and nuclear DNA, we examined seven strains of conchocelis that were used for cultivation as Porphyra tenera Kjellman but without strict species identification. The PCR‐RFLP analyses suggested that two strains, C‐32 and 90‐02, were cultivated P. tenera and that the other five strains, C‐24, C‐28, C‐29, C‐30 and M‐1, were Porphyra yezoensis f. narawaensis Miura. To identify species more accurately and to reveal additional genetic variation, the two strains C‐32 and 90‐02 were further studied by sequencing their RuBisCo spacer and ITS‐1 regions. Although RuBisCo spacer sequences of the two strains were identical to each other, each of their ITS‐1 sequences showed a single substitution. The sequence data again confirmed that the two strains (C‐32 and 90‐02) were cultivated P. tenera, and suggested that the two strains showed some genetic variation. We concluded that PCR‐RFLP analysis of the plastid and nuclear DNA is a powerful tool for reliable and rapid species identification of many strains of cultivated Porphyra in Japan and for the collection of genetically variable breeding material of Porphyra.  相似文献   

14.
The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give birth to multiple offspring whose survival depends on both the parental genotype and the brood size. This extends the dual process construction for a multi-type Moran model with genic selection described in Etheridge and Griffiths (2009). We show that in the limit of infinite population size the non-neutral Moran models converge to a Markov jump process which we call the Λ-Fleming-Viot process with viability selection and we derive a coalescent dual for this process directly from the generator and as a limit from the Moran models. The dual is a branching-coalescing process similar to the Ancestral Selection Graph which follows the typed ancestry of genes backwards in time with real and virtual lineages. As an application, the transition functions of the non-neutral Moran and Λ-coalescent models are expressed as mixtures of the transition functions of the dual process.  相似文献   

15.
There has been considerable recent interest in understanding the way in which recombination rates vary over small physical distances, and the extent of recombination hotspots, in various genomes. Here we adapt, apply, and assess the power of recently developed coalescent-based approaches to estimating recombination rates from sequence polymorphism data. We apply full-likelihood estimation to study rate variation in and around a well-characterized recombination hotspot in humans, in the beta-globin gene cluster, and show that it provides similar estimates, consistent with those from sperm studies, from two populations deliberately chosen to have different demographic and selectional histories. We also demonstrate how approximate-likelihood methods can be used to detect local recombination hotspots from genomic-scale SNP data. In a simulation study based on 80 100-kb regions, these methods detect 43 out of 60 hotspots (ranging from 1 to 2 kb in size), with only two false positives out of 2000 subregions that were tested for the presence of a hotspot. Our study suggests that new computational tools for sophisticated analysis of population diversity data are valuable for hotspot detection and fine-scale mapping of local recombination rates.  相似文献   

16.
A glycoprotein (Cpgp40/15)-encoding gene of Cryptosporidium parvum was analyzed to reveal intraspecies polymorphism within C. parvum isolates. Forty-one isolates were collected from different geographical origins (Japan, Italy, and Nepal) and hosts (humans, calves, and a goat). These isolates were characterized by means of DNA sequencing, PCR-restriction fragment length polymorphism (PCR-RFLP), and RFLP-single-strand conformational polymorphism (RFLP-SSCP) analyses of the gene for Cpgp40/15. The sequence analysis indicated that there was DNA polymorphism between genotype I and II, as well as within genotype I, isolates. The DNA and amino acid sequence identities between genotypes I and II differed, depending on the isolates, ranging from 73.3 to 82.9% and 62.4 to 80.1%, respectively. Those among genotype I isolates differed, depending on the isolates, ranging from 69.0 to 85.4% and 54.8 to 79.2%, respectively. Because of the high resolution generated by PCR-RFLP and RFLP-SSCP, the isolates of genotype I could be subtyped as genotypes Ia1, Ia2, Ib, and Ie. The isolates of genotype II could be subtyped as genotypes IIa, IIb, and IIc. The isolates from calves, a goat, and one Japanese human were identified as genotype II. Within genotype II, the isolates from Japan were identified as genotype IIa, those from calves in Italy were identified as genotype IIb, and the goat isolate was identified as genotype IIc. All of the genotype I isolates were from humans. The Japanese isolate (code no. HJ3) and all of the Nepalese isolates were identified as genotypes Ia1 and Ia2, respectively. The Italian isolates were identified as genotype Ib, and the Japanese isolate (code no. HJ2) was identified as genotype Ie. Thus, the PCR-RFLP-SSCP analysis of this glycoprotein Cpgp40/15 gene generated a high resolution that has not been achieved by previous methods of genotypic differentiation of C. parvum.  相似文献   

17.
Establishing the phylogenetic and demographic history of rare plants improves our understanding of mechanisms that have led to their origin and can lead to valuable insights that inform conservation decisions. The Atlantic coastal plain of eastern North America harbours many rare and endemic species, yet their evolution is poorly understood. We investigate the rare Sandhills lily (Lilium pyrophilum), which is endemic to seepage slopes in a restricted area of the Atlantic coastal plain of eastern North America. Using phylogenetic evidence from chloroplast, nuclear internal transcribed spacer and two low-copy nuclear genes, we establish a close relationship between L. pyrophilum and the widespread Turk's cap lily, L. superbum. Isolation-with-migration and coalescent simulation analyses suggest that (i) the divergence between these two species falls in the late Pleistocene or Holocene and almost certainly post-dates the establishment of the edaphic conditions to which L. pyrophilum is presently restricted, (ii) vicariance is responsible for the present range disjunction between the two species, and that subsequent gene flow has been asymmetrical and (iii) L. pyrophilum harbours substantial genetic diversity in spite of its present rarity. This system provides an example of the role of edaphic specialization and climate change in promoting diversification in the Atlantic coastal plain.  相似文献   

18.
Some results of Kingman, Griffiths, and Ewens are unified in a probability distribution for the genealogical structure of a random sample of genes. The sample is partitioned into equivalence classes of two types, “old” and “new.” Old classes of genes are each descended from founder genes in a reference ancestral population without mutation, while new classes descend from more-recent mutant founders. From the probability distribution of the partition, some old and some new results are derived concerning allele frequencies in samples.  相似文献   

19.
20.
Island models and the coalescent process   总被引:2,自引:1,他引:1  
Using a coalescent approach, we derive several classical results and extend them to more general models. We find that the classic result for constant population size and constant migration rates holds in models with varying population size and varying migration rates with the obvious substitution of effective population size and mean migration fraction. In addition, the relationship of a 'local' F ST to local gene flow is derived. This result may be useful for analysing gene flow in a regional subset of a large global population, using only data from the regional subset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号