首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron microscopic and crystallographic data have shown that the gene 4 primase/helicase encoded by bacteriophage T7 can form both hexamers and heptamers. After cross-linking with glutaraldehyde to stabilize the oligomeric protein, hexamers and heptamers can be distinguished either by negative stain electron microscopy or electrophoretic analysis using polyacrylamide gels. We find that hexamers predominate in the presence of either dTTP or beta,gamma-methylene dTTP whereas the ratio between hexamers and heptamers is nearly the converse in the presence of dTDP. When formed, heptamers are unable to efficiently bind either single-stranded DNA or double-stranded DNA. We postulate that a switch between heptamer to hexamer may provide a ring-opening mechanism for the single-stranded DNA binding pathway. Accordingly, we observe that in the presence of both nucleoside di- and triphosphates the gene 4 protein exists as a hexamer when bound to single-stranded DNA and as a mixture of heptamer and hexamer when not bound to single-stranded DNA. Furthermore, altering regions of the gene 4 protein postulated to be conformational switches for dTTP-dependent helicase activity leads to modulation of the heptamer to hexamer ratio.  相似文献   

2.
The 63 kDa gene 4 protein of bacteriophage T7 provides both helicase and primase activities. The C-terminal helicase domain of the gene 4 protein is responsible for DNA-dependent NTP hydrolysis and for hexamer formation, whereas the N-terminal primase domain contains the zinc motif that is, in part, responsible for template-directed oligoribonucleotide synthesis. In the presence of beta, gamma-methylene dTTP, the protein forms a hexamer that surrounds and binds tightly to single-stranded DNA and consequently is unable to translocate to primase recognition sites, 5'-GTC-3', or to dissociate from the molecule to which it is bound. Nonetheless, in the presence of beta,gamma-methylene dTTP, it catalyzes the synthesis of pppAC dimers at primase sites on M13 DNA. When bound to single-stranded DNA in the presence of beta,gamma-methylene dTTP, the primase can function at recognition sites on the same molecule to which it is bound provided that a sufficient distance exists between the recognition site and the site to which it is bound. Furthermore, the primase bound to one DNA strand can function at a primase site located on a second DNA strand. The results indicate that the primase domain resides on the outside of the hexameric ring, a location that enables it to access sites distal to its site of binding.  相似文献   

3.
DNA polymerase and gene 4 protein of bacteriophage T7 catalyze DNA synthesis on duplex DNA templates. Synthesis is initiated at nicks in the DNA template, and this leading strand synthesis results in displacement of one of the parental strands. In the presence of ribonucleoside 5'-triphosphates the gene 4 protein catalyzes the synthesis of oligoribonucleotide primers on the displaced single strand, and their extension by T7 dna polymerase accounts for lagging strand synthesis. Since all the oligoribonucleotide primers bear adenosine 5'-triphosphate residues at their 5' termini, [gamma 32P]ATP is incorporated specifically into the product molecule, thus providing a rapid and sensitive assay for the synthesis of the RNA primers. Both primer synthesis and DNA synthesis are stimulated 3- to 5-fold by the presence of either Escherichia coli or T7 helix-destabilizing protein (DNA binding protein). ATP and CTP together fully satisfy the requirement for rNTPs and provide maximum synthesis of primers and DNA. Provided that T7 DNA polymerase is present, RNA-primed DNA synthesis occurs on either duplex or single-stranded DNA templates and to equal extents on either strand of T7 DNA. No primer-directed DNA synthesis occurs on poly(dT) or poly(dG) templates, indicating that synthesis of primers is template-directed.  相似文献   

4.
Semi-conservative DNA synthesis reactions catalyzed by the bacteriophage T4 DNA polymerase holoenzyme are initiated by a strand displacement mechanism requiring gp32, the T4 single-stranded DNA (ssDNA)-binding protein, to sequester the displaced strand. After initiation, DNA helicase acquisition by the nascent replication fork leads to a dramatic increase in the rate and processivity of leading strand DNA synthesis. In vitro studies have established that either of two T4-encoded DNA helicases, gp41 or dda, is capable of stimulating strand displacement synthesis. The acquisition of either helicase by the nascent replication fork is modulated by other protein components of the fork including gp32 and, in the case of the gp41 helicase, its mediator/loading protein gp59. Here, we examine the relationships between gp32 and the gp41/gp59 and dda helicase systems, respectively, during T4 replication using altered forms of gp32 defective in either protein-protein or protein-ssDNA interactions. We show that optimal stimulation of DNA synthesis by gp41/gp59 helicase requires gp32-gp59 interactions and is strongly dependent on the stability of ssDNA binding by gp32. Fluorescence assays demonstrate that gp59 binds stoichiometrically to forked DNA molecules; however, gp59-forked DNA complexes are destabilized via protein-protein interactions with the C-terminal "A-domain" fragment of gp32. These and previously published results suggest a model in which a mobile gp59-gp32 cluster bound to lagging strand ssDNA is the target for gp41 helicase assembly. In contrast, stimulation of DNA synthesis by dda helicase requires direct gp32-dda protein-protein interactions and is relatively unaffected by mutations in gp32 that destabilize its ssDNA binding activity. The latter data support a model in which protein-protein interactions with gp32 maintain dda in a proper active state for translocation at the replication fork. The relationship between dda and gp32 proteins in T4 replication appears similar to the relationship observed between the UL9 helicase and ICP8 ssDNA-binding protein in herpesvirus replication.  相似文献   

5.
Our studies on the T4 replisome build on the seminal work from the Alberts laboratory. They discovered essentially all the proteins that constitute the T4 replisome, isolated them, and measured their enzymatic activities. Ultimately, in brilliant experiments they reconstituted in vitro a functioning replisome and in the absence of structural information created a mosaic as to how such a machine might be assembled. Their consideration of the problem of continuous leading strand synthesis opposing discontinuous lagging strand synthesis led to their imaginative proposal of the trombone model, an illustration that graces all textbooks of biochemistry. Our subsequent work deepens their findings through experiments that focus on defining the kinetics, structural elements, and protein-protein contacts essential for replisome assembly and function. In this highlight we address when Okazaki primer synthesis is initiated and how the primer is captured by a recycling lagging strand polymerase--problems that the Alberts laboratory likewise found mysterious and significant for all replisomes.  相似文献   

6.
Gene 4 protein (gp4) of bacteriophage T7 provides two essential functions at the T7 replication fork, primase and helicase activities. Previous studies have shown that the single-stranded DNA-binding protein of T7, encoded by gene 2.5, interacts with gp4 and modulates its multiple functions. To further characterize the interactions between gp4 and gene 2.5 protein (gp2.5), we have examined the effect of wild-type and altered gene 2.5 proteins as well as Escherichia coli single-stranded DNA-binding (SSB) protein on the ability of gp4 to synthesize primers, hydrolyze dTTP, and unwind duplex DNA. Wild-type gp2.5 and E. coli SSB protein stimulate primer synthesis and DNA-unwinding activities of gp4 at low concentrations but do not significantly affect single-stranded DNA-dependent hydrolysis of dTTP. Neither protein inhibits the binding of gp4 to single-stranded DNA. The variant gene 2.5 proteins, gp2.5-F232L and gp2.5-Delta26C, inhibit primase, dTTPase, and helicase activities proportional to their increased affinities for DNA. Interestingly, wild-type gp2.5 stimulates the unwinding activity of gp4 except at very high concentrations, whereas E. coli SSB protein is highly inhibitory at relative low concentrations.  相似文献   

7.
The gene 4 protein of bacteriophage T7 provides both helicase and primase activities. The C-terminal helicase domain is responsible for DNA-dependent dTTP hydrolysis, translocation, and DNA unwinding whereas the N-terminal primase domain is responsible for template-directed oligoribonucleotide synthesis. A 26 amino acid linker region (residues 246-271) connects the two domains and is essential for the formation of functional hexamers. In order to further dissect the role of the linker region, three residues (Ala257, Pro259, and Asp263) that was disordered in the crystal structure of the hexameric helicase fragment were substituted with all amino acids, and the altered proteins were analyzed for their ability to support growth of T7 phage lacking gene 4. The in vivo screening revealed Ala257 and Asp263 to be essential whereas Pro259 could be replaced with any amino acid without loss of function. Selected gene 4 proteins with substitution for Ala257 or Asp263 were purified and examined for their ability to unwind DNA, hydrolyze dTTP, translocate on ssDNA, and oligomerize. In the presence of Mg2+, all of the altered proteins oligomerize. However, in the absence of divalent ion, alterations at position 257 increase the extent of oligomerization whereas those at position 263 reduce oligomer formation. Although dTTP hydrolysis activity is reduced only 2-3-fold, none of the altered gene 4 proteins can translocate effectively on single-strand DNA, and they cannot mediate the unwinding of duplex DNA. Primer synthesis catalyzed by the altered proteins is relatively normal on a short DNA template but it is severely impaired on longer templates where translocation is required. The results suggest that the linker region not only connects the two domains of the gene 4 protein and participates in oligomerization, but also contributes to helicase activity by mediating conformations within the functional hexamer.  相似文献   

8.
Leading and lagging strand DNA synthesis at the replication fork of bacteriophage T7 DNA requires the helicase and primase activities of the gene 4 protein. Gene 4 protein consists of two colinear polypeptides of 56- and 63-kDa molecular mass. We have demonstrated previously that the 56-kDa protein possesses helicase but lacks primase activity (Bernstein, J. A., and Richardson, C. C. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 396-400). The 63-kDa gene 4 protein has now been purified from extracts of T7-infected cells. The preparation contains 5-10% contaminating 56-kDa protein, as shown by Western analysis using polyclonal antibodies to the purified 56-kDa protein. The 63-kDa protein catalyzes DNA-dependent dTTP hydrolysis and has helicase activity; both specific activities are similar to those determined for the 56-kDa protein. The 63-kDa protein efficiently synthesizes sequence-specific di-, tri-, and tetraribonucleotides and stimulates the elongation of tetraribonucleotides by T7 DNA polymerase. Although the 56-kDa protein alone lacks primase activity, it enhances the primase activity of the 63-kDa protein 4-fold. This stimulation can be accounted for by a similar increase in the amount of primers synthesized by the 63-kDa protein in the presence of the 56-kDa protein.  相似文献   

9.
N G Nossal 《FASEB journal》1992,6(3):871-878
The DNA replication system of bacteriophage T4 serves as a relatively simple model for the types of reactions and protein-protein interactions needed to carry out and coordinate the synthesis of the leading and lagging strands of a DNA replication fork. At least 10 phage-encoded proteins are required for this synthesis: T4 DNA polymerase, the genes 44/62 and 45 polymerase accessory proteins, gene 32 single-stranded DNA binding protein, the genes 61, 41, and 59 primase-helicase, RNase H, and DNA ligase. Assembly of the polymerase and the accessory proteins on the primed template is a stepwise process that requires ATP hydrolysis and is strongly stimulated by 32 protein. The 41 protein helicase is essential to unwind the duplex ahead of polymerase on the leading strand, and to interact with the 61 protein to synthesize the RNA primers that initiate each discontinuous fragment on the lagging strand. An interaction between the 44/62 and 45 polymerase accessory proteins and the primase-helicase is required for primer synthesis on 32 protein-covered DNA. Thus it is possible that the signal for the initiation of a new fragment by the primase-helicase is the release of the polymerase accessory proteins from the completed adjacent fragment.  相似文献   

10.
This paper describes the construction of a DNA molecule containing a topologically stable structure that simulates a replication fork. This preformed DNA molecule is a circular duplex of 7.2 X 10(3) base pairs (M13mp6 DNA) from which arises, at a unique BamHI recognition site, a noncomplementary 5'-phosphoryl-terminated single strand of 237 nucleotides (SV40 DNA). This structure has two experimental attributes. 1) Templates for both leading and lagging strand synthesis exist as stable structures prior to any DNA synthesis. 2) DNA synthesis creates a cleavage site for the restriction endonuclease BamHI. Form I of T7 DNA polymerase, alone, catalyzes limited DNA synthesis at the preformed replication fork whereas Form II, alone, polymerizes less than 5 nucleotides. However, when T7 gene 4 protein is present, Form II of T7 DNA polymerase catalyzes rapid and extensive synthesis via a rolling circle mode. Kinetic analysis of this synthesis reveals that the fork moves at a rate of 300 bases/s at 30 degrees C. We conclude that the T7 gene 4 protein requires a single-stranded DNA binding site from which point it translocates to the replication fork where it functions as a helicase. The phage T4 DNA polymerase catalyzes DNA synthesis at this preformed replication fork in the presence of gene 4 protein, but the amount of DNA synthesized is less that 3% of the amount synthesized by the combination of Form II of T7 DNA polymerase and gene 4 protein. We conclude that T7 DNA polymerase and T7 gene 4 protein interact specifically during DNA synthesis at a replication fork.  相似文献   

11.
Bacteriophage T7 DNA primase (gene-4 protein, 66,000 daltons) enables T7 DNA polymerase to initiate the synthesis of DNA chains on single-stranded templates. An initial step in the process of chain initiation is the formation of an oligoribonucleotide primer by T7 primase. The enzyme, in the presence of natural SS DNA, Mg++ (or Mn++), ATP and CTP (or a mixture of all 4 rNTPs), catalyzes the synthesis of di-, tri-, and tetraribonucleotides all starting at the 5' terminus with pppA. In a subsequent step requiring both T7 DNA polymerase and primase, the short oligoribonucleotides (predominantly pppA-C-C-AOH) are extended by covalent addition of deoxyribonucleotides. With the aid of primase, T7 DNA polymerase can also utilize efficiently a variety of synthetic tri-, tetra-, or pentanucleotides as chain initiators. T7 primase apparently plays an active role in primer extension by stabilizing the short primer segments in a duplex state on the template DNA.  相似文献   

12.
T7 gene 4, which is required for DNA replication, specifies two proteins whose coding sequences overlap in the same reading frame: the 4A protein, a 566-amino acid primase/helicase, and the 4B protein, a 503-amino acid helicase whose initiation codon is the 64th codon of the 4A protein. To study better the individual functions of these two overlapping proteins, we made clones that express both 4A and 4B proteins, only 4B protein, or only what we refer to as the 4A' protein, in which methionine 64 is replaced by leucine, thereby eliminating the 4B initiation codon. These clones provide considerably more gene 4 protein for biochemical analysis than do infected cells. They can also be used to isolate and propagate T7 gene 4 deletion mutants, and we have made T7 mutants which lack all gene 4 coding sequences, or which express 4A' protein but no 4B protein, or 4B protein but no 4A protein. Analysis of these phage mutants shows that 4A' protein without any 4B protein can support essentially normal replication and growth, whereas 4B protein without any 4A protein supports little replication or growth. Apparently, the primase activity of the 4A protein is essential for replication, but the 4B protein is dispensable, presumably because the 4A protein also supplies helicase activity. The mutation at amino acid 64 of 4A' appears to have little effect on 4A function. The rate of replication during normal T7 infection appears to be limited by the amount of gene 4 protein, but too high a level of either 4A or 4B protein is inhibitory to growth.  相似文献   

13.
Limited proteolysis of bacteriophage T7 primase/helicase with endoproteinase Glu-C produces several proteolytic fragments. One of these fragments, which is derived from the C-terminal region of the protein, was prepared and shown to retain helicase activity. This result supports a model in which the gene 4 proteins consist of functionally separable domains. Crystals of this C-terminal fragment of the protein have been obtained that are suitable for X-ray diffraction studies.  相似文献   

14.
The gene 4 protein of bacteriophage T7, a functional hexamer, comprises DNA helicase and primase activities. Both activities depend on the unidirectional movement of the protein along single-stranded DNA in a reaction coupled to the hydrolysis of dTTP. We have characterized dTTPase activity and hexamer formation for the full-length gene 4 protein (gp4) as well as for three carboxyl-terminal fragments starting at residues 219 (gp4-C219), 241 (gp4-C241), and 272 (gp4-C272). The region between residues 242 and 271, residing between the primase and helicase domains, is critical for oligomerization of the gene 4 protein. A functional TPase active site is dependent on oligomerization. During native gel electrophoresis, gp4, gp4-C219, and gp4-C241 migrate as oligomers, whereas gp4-C272 is monomeric. The steady-state k(cat) for dTTPase activity of gp4-C272 increases sharply with protein concentration, indicating that it forms oligomers only at high concentrations. gp4-C219 and gp4-C241 both form a stable complex with gp4, whereas gp4-C272 interacts only weakly with gp4. Measurements of surface plasmon resonance indicate that a monomer of T7 DNA polymerase binds to a dimer of gp4, gp4-C219, or gp4-C241 but to a monomer of gp4-C272. Like the homologous RecA and F(1)-ATPase proteins, the oligomerization domain of the gene 4 protein is adjacent to the amino terminus of the NTP-binding domain.  相似文献   

15.
Given the polarity of DNA duplex, replication by the leading strand polymerase is continuous whereas that by the lagging strand polymerase is discontinuous proceeding through Okazaki fragments. Yet the respective polymerases act processively, implying that the recycling of the lagging strand polymerase is a controlled process. We demonstrate that the rate of the lagging strand polymerase relative to that of fork movement affects Okazaki fragment size and generates ssDNA gaps. We show by using a substrate with limited priming sites that Okazaki fragments can be shifted to shorter lengths by varying the rate of the primase. We find that clamp and clamp loader levels affect both primer utilization and Okazaki fragment size, possibly implicating clamp loading onto the RNA primer in the mechanism of lagging strand polymerase recycling. We formulate a signaling model capable of rationalizing the distribution of Okazaki fragments under various conditions for this and possibly other replisomes.  相似文献   

16.
The gene 45 protein from bacteriophage T4 has been purified and is crystallized. This protein is part of the T4 DNA replication complex. The crystallized protein is active in complementation assays. X-ray diffraction analysis is in progress; data are measured for the native and several heavy atom derivatives. The crystals diffract to about 3.5-A resolution.  相似文献   

17.
Escherichia coli PriA is a primosome assembly protein with 3' to 5' helicase activity whose apparent function is to promote resumption of DNA synthesis following replication-fork arrest. Here, we describe how initiation of helicase activity on DNA forks is influenced by both fork structure and by single-strand DNA-binding protein. PriA could recognize and unwind forked substrates where one or both arms were primarily duplex, and PriA required a small (two bases or larger) single-stranded gap at the fork in order to initiate unwinding. The helicase was most active on substrates with a duplex lagging-strand arm and a single-stranded leading-strand arm. On this substrate, PriA was capable of translocating on either the leading or lagging strands to unwind the duplex ahead of the fork or the lagging-strand duplex, respectively. Fork-specific binding apparently orients the helicase domain to unwind the lagging-strand duplex. Binding of single-strand-binding protein to forked templates could inhibit unwinding of the duplex ahead of the fork but not unwinding of the lagging-strand duplex or translocation on the lagging-strand template. While single-strand-binding protein could inhibit binding of PriA to the minimal, unforked DNA substrates, it could not inhibit PriA binding to forked substrates. In the cell, single-strand-binding protein and fork structure may direct PriA helicase to translocate along the lagging-strand template of forked structures such that the primosome is specifically assembled on that DNA strand.  相似文献   

18.
There are two modes of DNA synthesis at a replication fork. The leading strand is synthesized in a continuous fashion in lengths that in Escherichia coli can be in excess of 2 megabases. On the other hand, the lagging strand is synthesized in relatively short stretches of 2 kilobases. Nevertheless, identical assemblies of the DNA polymerase III core tethered to the beta sliding clamp account for both modes of DNA synthesis. Yet the same lagging strand polymerase accounts for the synthesis of all Okazaki fragments at a replication fork, cycling repeatedly every 1 or 2 s from the 3'-end of the just-completed fragment to the 3'-end of the new primer. Several models have been invoked to account for the rapid cycling of a polymerase complex that can remain bound to the template for upward of 40 min. By using isolated replication protein-DNA template complexes, we have tested these models and show here that cycling of the lagging strand polymerase can be triggered by either the action of primase binding to the replisome and synthesizing a primer or by collision of the lagging strand polymerase with the 5'-end of the previous Okazaki fragment.  相似文献   

19.
The gene product 61 primase protein from bacteriophage T4 was expressed as an intein fusion and purified to homogeneity. The primase binds one zinc ion, which is coordinated by four cysteine residues to form a zinc ribbon motif. Factors that influence the rate of priming were investigated, and a physiologically relevant priming rate of approximately 1 primer per second per primosome was achieved. Primase binding to the single-stranded binding protein (1 primase:4 gp32 monomers; K(d) approximately 860 nM) and to the helicase protein in the presence of DNA and ATP-gamma-S (1 primase:1 helicase monomer; K(d) approximately 100 nM) was investigated by isothermal titration calorimetry (ITC). Because the helicase is hexameric, the inferred stoichiometry of primase binding as part of the primosome is helicase hexamer:primase in a ratio of 1:6, suggesting that the active primase, like the helicase, might have a ring-like structure. The primase is a monomer in solution but binds to single-stranded DNA (ssDNA) primarily as a trimer (K(d) approximately 50-100 nM) as demonstrated by ITC and chemical cross-linking. Magnesium is required for primase-ssDNA binding. The minimum length of ssDNA required for stable binding is 22-24 bases, although cross-linking reveals transient interactions on oligonucleotides as short as 8 bases. The association is endothermic at physiologically relevant temperatures, which suggests an overall gain in entropy upon binding. Some possible sources of this gain in entropy are discussed.  相似文献   

20.
The primase fragment of bacteriophage T7 gene 4 protein catalyzes the synthesis of oligoribonucleotides in the presence of ATP, CTP, Mg(2+) (or Mn(2+)), and DNA containing a primase recognition site. During chain initiation, ATP binds with a K(m) of 0.32 mM, and CTP binds with a K(m) of 0.85 mM. Synthesis of the dinucleotides proceeds at a rate of 3.8/s. The dinucleotide either dissociates or is extended to a tetranucleotide. The primase preferentially inserts ribonucleotides forming Watson-Crick base pairs with the DNA template >200-fold more rapidly than other ribo- or deoxynucleotides. 3'-dCTP binds the primase with a similar affinity as CTP and is incorporated as a chain terminator at a rate (1)/(100) that of CTP. ATP analogues alpha,beta-methylene ATP, beta,gamma-methylene ATP, and beta,gamma-imido ATP are incorporated by the primase fragment at the 5'-ends of the oligoribonucleotides but not at the 3'-ends. A model is presented in which the primase fragment utilizes two nucleotide-binding sites, one for the initiating ATP and one for the nucleoside triphosphate which elongates the primer on the 3'-end. The initiation site binds ATP or oligoribonucleotides, whereas the elongation site binds ATP or CTP as directed by the template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号