首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The question of whether cytochrome c could be functionally sorted to the mitochondrial intermembrane space along a "conservative sorting" pathway was investigated using a fusion protein termed pLc1-c. pLc1-c contains 3-fold targeting information, namely, the complete bipartite presequence of the cytochrome c1 precursor joined to the amino terminus of apocytochrome c. pLc1-c could be selectively imported into the intermembrane space either directly across the outer membrane along a cytochrome c import route or along a cytochrome c1 route via the matrix. Thus, apocytochrome c could be sorted along a conservative sorting pathway; however, following reexport from the matrix, apo-Lc1-c could not be converted to its holo counterpart. Despite the apparent similarity of structure and functional location of the heme lyases and similarity of the heme binding regions in their respective apoproteins, cytochrome c heme lyase and cytochrome c1 heme lyase apparently have different and nonoverlapping substrate specificities.  相似文献   

2.
We reported earlier that the yeast cytochrome c1 presequence (length: 61 amino acids) directs attached proteins to the mitochondrial intermembrane space and that it appears to contain two functional domains: a 'matrix-targeting' domain, and a 'sorting' domain. We have now used gene manipulation together with two different in vivo import assays to map these two domains within the cytochrome c1 presequence. The 'matrix-targeting' domain is contained within the N-terminal 16 residues (or less); by itself, it directs attached proteins to the matrix. The 'sorting' domain extends into the C-terminal 13 residues of the presequence; while it does not mediate intracellular protein transport by itself, it acts together with the preceding 'matrix-targeting' sequence in sorting attached proteins into the intermembrane space. On replacing the authentic 'matrix-targeting' sequence with artificial sequences of different lengths we found that sorting of proteins between the outer membrane and the intermembrane space is not exclusively determined by the length of the N-terminal 'matrix-targeting' sequence.  相似文献   

3.
4.
The presequence of yeast cytochrome c1 (an inner membrane protein protruding into the intermembrane space) contains a matrix-targeting domain and an intramitochondrial sorting domain. This presequence transports attached subunit IV of cytochrome c oxidase into the intermembrane space (van Loon et al. (1987) EMBO J., 6, 2433-2439). In order to determine how this fusion protein reaches the intermembrane space, we studied the kinetics of its import into isolated mitochondria or mitoplasts and its accumulation in the various submitochondrial compartments. The imported, uncleaved fusion precursor and a cleavage intermediate were bound to the inner membrane and were always exposed to the intermembrane space; they were never found at the matrix side of the inner membrane. In contrast, analogous import experiments with the authentic subunit IV precursor, or the precursor of the iron-sulphur protein of the cytochrome bc1 complex also an inner membrane protein exposed to the intermembrane space), readily showed that these precursors were initially transported across both mitochondrial membranes. We conclude that the intramitochondrial sorting domain within the cytochrome c1 presequence prevents transport of attached proteins across the inner, but not the outer membrane: it is a stop-transfer sequence for the inner membrane. Since the presequence of the iron-sulphur protein lacks such 'stop-transfer' domain, it acts by a different mechanism.  相似文献   

5.
E Schwarz  T Seytter  B Guiard    W Neupert 《The EMBO journal》1993,12(6):2295-2302
Cytochrome b2 contains 2-fold targeting information: an amino-terminal signal for targeting to the mitochondrial matrix, followed by a second cleavable sorting signal that functions in directing the precursor into the mitochondrial intermembrane space. The role of the second sorting sequence was analyzed by replacing one, two or all of the three positively charged amino acid residues which are present at the amino-terminal side of the hydrophobic core by uncharged residues or an acidic residue. With a number of these mutant precursor proteins, processing to the mature form was reduced or completely abolished and at the same time targeting to the matrix space occurred. The accumulation in the matrix depended on a high level of intramitochondrial ATP. At low levels of matrix ATP, the mutant proteins were sorted into the intermembrane space like the wild-type precursors. The results: (i) suggest the existence of one or more matrix components that specifically recognize the second sorting signal and thereby trigger the translocation into the intermembrane space; (ii) indicate that the mutant signals have reduced ability to interact with the recognition component(s) and then embark on the default pathway into the matrix by interacting with mitochondrial hsp70 in conjunction with matrix ATP; (iii) strongly argue against a mechanism by which the hydrophobic segment of the sorting sequence stops translocation in the hydrophobic phase of the inner membrane.  相似文献   

6.
An internal deletion in the presequence of the precursor to yeast cytochrome oxidase subunit IV blocks import of the protein into mitochondria. We have identified two mechanisms by which yeast cells can suppress the defect of the plasmid-borne defective gene. One mechanism creates a new functional presequence by point mutations, or local DNA rearrangements, within the open reading frame or its 5'-untranslated region. The second mechanism compensates for the defective presequence by recessive mutations in single nuclear genes. The plasmid-linked mutations may mimic the mechanism(s) by which mitochondrial presequences arose during evolution whereas the chromosomal mutations may help to identify components of the mitochondrial import machinery.  相似文献   

7.
8.
The import of cytochrome b2 and cytochrome c peroxidase into mitochondria was investigated by pulse-chase experiments with intact yeast cells combined with subcellular fractionation. Import and processing of the precursors of these intermembrane space proteins is blocked by uncouplers of oxidative phosphorylation, indicating that an "energized" inner membrane is required. Cytochrome b2 is processed in two steps. The first step involves energy-dependent transport across both mitochondrial membranes and cleavage by a matrix-located protease to yield an intermediate which is smaller than the precursor, but larger than the mature protein. The second step involves conversion of the intermediate to the mature form. Whereas the precursor and the mature form are soluble, the intermediate is membrane-bound and exposed to the intermembrane space. The maturation of cytochrome c peroxidase is much slower than that of cytochrome b2. Proteolytic processing rather than import is rate-limiting since cytochrome c peroxidase precursor labeled during a 3-min pulse is already found attached to the outer face of the mitochondrial inner membrane. Import of cytochrome b2 and probably also of cytochrome c peroxidase thus involves energy-dependent transport to the matrix and cleavage by a matrix-localized protease. Maturation of cytochrome b2 proceeds in the sequence: soluble precursor leads to membrane-bound intermediate form leads to soluble mature form.  相似文献   

9.
Most mitochondrial proteins are synthesized in the cytosol, imported into mitochondria, and sorted to one of the four mitochondrial subcompartments. Here we identified a new inner membrane protein, Tim40, that mediates sorting of small Tim proteins to the intermembrane space. Tim40 is essential for yeast cell growth, and its function in vivo requires six conserved Cys residues but not anchoring of the protein to the inner membrane by its N-terminal hydrophobic segment. Depletion of Tim40 impairs the import of small Tim proteins into mitochondria both in vivo and in vitro. In wild-type mitochondria, Tim40 forms a translocation intermediate with small Tim proteins prior to their assembly in the intermembrane space in vitro. These results suggest the essential role of Tim40 in sorting/assembly of small Tim proteins.  相似文献   

10.
E M Beasley  S Müller    G Schatz 《The EMBO journal》1993,12(6):2303-2311
Cytochrome b2, a protein of the yeast mitochondrial intermembrane space, is synthesized with an 80 residue bipartite presequence. The amino-terminal portion resembles a matrix-targeting signal. The carboxy-terminal portion acts as a 'sorting signal' for the intermembrane space and contains a hydrophobic stretch. In order to define this sorting signal, we fused the first 167 residues of the cytochrome b2 precursor to a passenger protein, expressed the fusion protein in yeast and selected for mutations that caused mislocalization of the passenger protein to the matrix. Most mutations mapped within the first 81 amino-terminal residues of the cytochrome b2 moiety. They were located in three regions, all downstream of the matrix-targeting domain: a cluster of three basic residues upstream of the hydrophobic stretch, the hydrophobic stretch itself and the first residue of mature cytochrome b2. The level of missorting caused by mutations within the hydrophobic stretch did not correlate with their effects on hydrophobicity, but appeared to be related to changes in the conformation of this stretch. We conclude that the intermembrane space sorting signal of cytochrome b2 is decoded by protein-protein interactions rather than by simple partitioning into a lipid bilayer.  相似文献   

11.
The pathway by which cytochromes c1 and b2 reach the mitochondrial intermembrane space has been controversial. According to the "conservative sorting" hypothesis, these proteins are first imported across both outer and inner membranes into the matrix, and then are retranslocated across the inner membrane. Our data argue against this model: import intermediates of cytochromes c1 and b2 were found only outside the inner membrane; maturation of these proteins was independent of the matrix-localized hsp60 chaperone; and dihydrofolate reductase linked to the presequence of either cytochrome was imported to the intermembrane space in the absence of ATP. We conclude that cytochromes c1 and b2 are sorted by a mechanism in which translocation through the inner membrane is arrested by a "stop-transfer" signal in the presequence. The arrested intermediates may be associated with a proteinaceous channel in the inner membrane.  相似文献   

12.
The amino-terminal region of a 70 kDa mitochondrial outer membrane protein of yeast and the presequence of cytochrome c1, an inner membrane protein exposed to the intermembrane space, are thought to be responsible for localizing the proteins in their final destinations after synthesis in the cytosol. Gene fusion experiments were used to identify signals that are responsible for protein sorting between the outer and inner mitochondrial membranes. The submitochondrial localization of cytochrome c1 whose presequence was replaced by the amino-terminal region of the 70 kDa mitochondrial outer membrane protein has been investigated. We have also used an in vivo complementation assay to determine whether or not a 70k-cyt c1 fusion protein is functional. Both the first half and all of the presequence of cytochrome c1 can be replaced by the amino-terminal 12 or 29 residues of the 70 kDa protein for transport to the inner membrane and functional assembly into succinate-cytochrome c reductase. However, replacements by the amino-terminal 61 residues of the 70 kDa protein result in exclusive localization of the fusion proteins to the outer membrane, and the fusions cannot be assembled into the enzyme complex. These data indicate that a mitochondrial targeting signal alone is sufficient to direct cytochrome c1 of mature size to the inner membrane.  相似文献   

13.
I Sadler  K Suda  G Schatz  F Kaudewitz    A Haid 《The EMBO journal》1984,3(9):2137-2143
Cytochrome c1 is a component of the mitochondrial respiratory chain in most eukaryotes. The protein is coded by nuclear DNA, synthesized as a larger precursor outside the mitochondria and then cleaved to the mature form in two successive steps during its import into the mitochondria. We have cloned the structural gene for yeast cytochrome c1 by functional complementation of a cytochrome c1-deficient yeast mutant with a yeast genomic library in the yeast-Escherichia coli 'shuttle' vector YEp 13. The complete nucleotide sequence of the gene and of its 5'- and 3'-flanking regions was determined. The deduced amino acid sequence of the yeast cytochrome c1 precursor reveals an unusually long transient amino-terminal presequence of 61 amino acids. This presequence consists of a strongly basic amino-terminal region of 35 amino acids, a central region of 19 uncharged amino acids and an acidic carboxy-terminal region of seven amino acids. This tripartite structure of the presequence resembles that of the precursor of cytochrome c peroxidase and supports a previous suggestion on the import pathways of these two precursors.  相似文献   

14.
Alcohol dehydrogenase isoenzyme III (ADH III) in Saccharomyces cerevisiae, the product of the ADH3 gene, is located in the mitochondrial matrix. The ADH III protein was synthesized as a larger precursor in vitro when the gene was transcribed with the SP6 promoter and translated with a reticulocyte lysate. A precursor of the same size was detected when radioactively pulse-labeled proteins were immunoprecipitated with anti-ADH antibody. This precursor was rapidly processed to the mature form in vivo with a half-time of less than 3 min. The processing was blocked if the mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. Mutant enzymes in which only the amino-terminal 14 or 16 amino acids of the presequence were retained were correctly targeted and imported into the matrix. A mutant enzyme that was missing the amino-terminal 17 amino acids of the presequence produced an active enzyme, but the majority of the enzyme activity remained in the cytoplasmic compartment on cellular fractionation. Random amino acid changes were produced in the wild-type presequence by bisulfite mutagenesis of the ADH3 gene. The resulting ADH III protein was targeted to the mitochondria and imported into the matrix in all of the mutants tested, as judged by enzyme activity. Mutants containing amino acid changes in the carboxyl-proximal half of the ADH3 presequence were imported and processed to the mature form at a slower rate than the wild type, as judged by pulse-chase studies in vivo. The unprocessed precursor appeared to be unstable in vivo. It was concluded that only a small portion of the presequence contains the necessary information for correct targeting and import. Furthermore, the information for correct proteolytic processing of the presequence appears to be distinct from the targeting information and may involve secondary structure information in the presequence.  相似文献   

15.
《The Journal of cell biology》1993,121(5):1021-1029
We have continued our studies on the import pathway of the precursor to yeast cytochrome c oxidase subunit Va (pVa), a mitochondrial inner membrane protein. Previous work on this precursor demonstrated that import of pVa is unusually efficient, and that inner membrane localization is directed by a membrane-spanning domain in the COOH- terminal third of the protein. Here we report the results of studies aimed at analyzing the intramitochondrial sorting of pVa, as well as the role played by ancillary factors in import and localization of the precursor. We found that pVa was efficiently imported and correctly sorted in mitochondria prepared from yeast strains defective in the function of either mitochondrial heat shock protein (hsp)60 or hsp70. Under identical conditions the import and sorting of another mitochondrial protein, the precursor to the beta subunit of the F1 ATPase, was completely defective. Consistent with previous results demonstrating that the subunit Va precursor is loosely folded, we found that pVa could be efficiently imported into mitochondria after translation in wheat germ extracts. This results suggests that normal levels of extramitochondrial hsp70 are also not required for import of the protein. The results of this study enhance our understanding of the mechanism by which pVa is routed to the mitochondrial inner membrane. They suggest that while the NH2 terminus of pVa is exposed to the matrix and processed by the matrix metalloprotease, the protein remains anchored to the inner membrane before being assembled into a functional holoenzyme complex.  相似文献   

16.
Cytochrome c heme lyase (CCHL) catalyses the covalent attachment of the heme group to apocytochrome c during its import into mitochondria. The enzyme is membrane-associated and is located within the intermembrane space. The precursor of CCHL synthesized in vitro was efficiently translocated into isolated mitochondria from Neurospora crassa. The imported CCHL, like the native protein, was correctly localized to the intermembrane space, where it was membrane-bound. As with the majority of mitochondrial precursor proteins, CCHL uses the MOM19-GIP receptor complex in the outer membrane for import. In contrast to proteins taking the general import route, CCHL was imported independently of both ATP-hydrolysis and an electrochemical potential as external energy sources. CCHL which lacks a cleavable signal sequence apparently does not traverse the inner membrane to reach the intermembrane space; rather, it translocates through the outer membrane only. Thus, CCHL represents an example of a novel, 'non-conservative' import pathway into the intermembrane space, thereby also showing that the import apparatus in the outer membrane acts separately from the import machinery in the inner membrane.  相似文献   

17.
The antioxidative enzyme copper-zinc superoxide dismutase (Sod1) is an important cellular defence system against reactive oxygen species (ROS). While the majority of this enzyme is localized to the cytosol, about 1% of the cellular Sod1 is present in the intermembrane space (IMS) of mitochondria. These amounts of mitochondrial Sod1 are increased for certain Sod1 mutants that are linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). To date, only little is known about the physiological function of mitochondrial Sod1. Here, we use the model system Saccharomyces cerevisiae to generate cells in which Sod1 is exclusively localized to the IMS. We find that IMS-localized Sod1 can functionally substitute wild type Sod1 and that it even exceeds the protective capacity of wild type Sod1 under conditions of mitochondrial ROS stress. Moreover, we demonstrate that upon expression in yeast cells the common ALS-linked mutant Sod1G93A becomes enriched in the mitochondrial fraction and provides an increased protection of cells from mitochondrial oxidative stress. Such an effect cannot be observed for the catalytically inactive mutant Sod1G85R. Our observations suggest that the targeting of Sod1 to the mitochondrial IMS provides an increased protection against respiration-derived ROS.  相似文献   

18.
Yao  Deyang  Li  Yukun  Zeng  Sheng  Li  Zhifan  Shah  Zahir  Song  Bigui  Liu  Jinglei  Wu  Yi  Yang  Liang  Long  Qi  Wang  Wenqian  Hu  Zhijuan  Tang  Haite  Liu  Xingguo 《中国科学:生命科学英文版》2022,65(2):227-235

Mitochondria, double-membrane organelles, are known to participate in a variety of metabolic and signal transduction pathways. The intermembrane space (IMS) of mitochondria is proposed to subject to multiple damages emanating from the respiratory chain. The optic atrophy 1 (OPA1), an important protein for mitochondrial fusion, is cleaved into soluble short-form (S-OPA1) under stresses. Here we report that S-OPA1 could function as a molecular chaperone in IMS. We purified the S-OPA1 (amino acid sequence after OPA1 isoform 5 S1 site) protein and showed it protected substrate proteins from thermally and chemically induced aggregation and strengthened the thermotolerance of Escherichia coli (E. coli). We also showed that S-OPA1 conferred thermotolerance on IMS proteins, e.g., neurolysin. The chaperone activity of S-OPA1 may be required for maintaining IMS homeostasis in mitochondria.

  相似文献   

19.
Oxa1p is a mitochondrial inner membrane protein that is mainly required for the insertion/assembly of complex IV and ATP synthase and is functionally conserved in yeasts, humans, and plants. We have isolated several independent suppressors that compensate for the absence of Oxa1p. Molecular cloning and sequencing reveal that the suppressor mutations (CYT1-1 to -6) correspond to amino acid substitutions that are all located in the membrane anchor of cytochrome c1 and decrease the hydrophobicity of this anchor. Cytochrome c1 is a catalytic subunit of complex III, but the CYT1-1 mutation does not seem to affect the electron transfer activity. The double-mutant cyt1-1,164, which has a drastically reduced electron transfer activity, still retains the suppressor activity. Altogether, these results suggest that the suppressor function of cytochrome c1 is independent of its electron transfer activity. In addition to the membrane-bound cytochrome c1, carbonate-extractable forms accumulate in all the suppressor strains. We propose that these carbonate-extractable forms of cytochrome c1 are responsible for the suppressor function by preventing the degradation of the respiratory complex subunits that occur in the absence of Oxa1p.  相似文献   

20.
The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号