首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polarity is a common feature of many different cell types, including the Caenorhabditis elegans zygote, the Drosophila oocyte and mammalian epithelial cells. The initial establishment of cell polarity depends on asymmetric cues that lead to reorganization of the cytoskeleton and polarized localization of several cortical proteins that act downstream of the polarization cues. The past year revealed that homologs of the C. elegans par (partitioning defective) genes are also essential for establishing polarity in Drosophila and vertebrate cells. There is growing evidence that the proteins encoded by these genes interact with key regulators of both the actin and the microtubule cytoskeletons.  相似文献   

2.
3.
4.
Gastrulation in C. elegans embryos involves ingression of individual cells, but is driven by apical constriction of the kind that promotes migration of epithelial cell sheets. Recent work shows that PAR proteins, known for their role in polarization and unequal cell division, are also associated with the polarization that establishes this apical constriction.  相似文献   

5.
During embryonic development, polarized epithelial cells are either formed during cleavage or formed from mesenchymal cells. Because the formation of epithelia during embryogenesis has to occur with high fidelity to ensure proper development, embryos allow a functional approach to study epithelial cell polarization in vivo. In particular, genetic model organisms have greatly advanced our understanding of the generation and maintenance of epithelial cell polarity. Many novel and important polarity genes have been identified and characterized in invertebrate systems, like Drosophila melanogaster and Caenorhabditis elegans. With the rapid identification of mammalian homologues of these invertebrate polarity genes, it has become clear that many important protein domains, single proteins and even entire protein complexes are evolutionarily conserved. It is to be expected that the field of epithelial cell polarity is just experiencing the 'top of the iceberg' of a large protein network that is fundamental for the specific adhesive, cell signalling and transport functions of epithelial cells.  相似文献   

6.
7.
It has recently become evident that basic mechanisms for the establishment of cell polarity are conserved between epithelial and nonepithelial systems. The vast catalogue of known gene products involved in various aspects of invertebrate and yeast cell polarity provides a repertoire of candidate proteins that can be tested for their roles in the organization of mammalian epithelia. Here, we describe cell biological approaches to study the development and maintenance of cell polarity in Mardin-Darby canine kidney (MDCK) cells, an established mammalian model cell line for simple epithelia. The assays allowed us to characterize the Caenorhabditis elegans PAR-1 homologue EMK1 as a novel regulator of apical surface formation in epithelial cells.  相似文献   

8.
Two PDZ-domain-containing adapter-like proteins, PAR-3 and PAR-6, and a protein kinase, atypical protein kinase C (PKC), cooperate together to establish cell polarity in a variety of biological contexts. These include asymmetric cell division in early Caenorhabditis elegans embryo and Drosophila neuroblasts, as well as the establishment and maintenance of apical-basal polarity in Drosophila and mammalian epithelial cells. Recent studies on the role of this PAR-aPKC complex in epithelial cell polarization provide new insights into the molecular basis of epithelial junctional formation and cell polarity.  相似文献   

9.
Among all cell types that exhibit a polarized phenotype, epithelial cells are unique in that their polarity depends on the integration of the cell into a tissue, the epithelium. In recent years, the analysis of epithelial cell polarity in different epithelia and organisms has contributed to an understanding of the components involved and has further demonstrated that cell polarity and cell adhesion are intimately related to each other. Therefore, processes that mediate and modulate cell adhesion and coordinate adhesion and cell shape are fundamental for the function of epithelia. Recent results obtained in Drosophila melanogaster and Caenorhabditis elegans have provided further insight into the complex circuits regulating these processes, and have laid the direction for future analysis.  相似文献   

10.
Among all cell types that exhibit a polarized phenotype, epithelial cells are unique in that their polarity depends on the integration of the cell into a tissue, the epithelium. In recent years, the analysis of epithelial cell polarity in different epithelia and organisms has contributed to an understanding of the components involved and has further demonstrated that cell polarity and cell adhesion are intimately related to each other. Therefore, processes that mediate and modulate cell adhesion and coordinate adhesion and cell shape are fundamental for the function of epithelia. Recent results obtained in Drosophila melanogaster and Caenorhabditis elegans have provided further insight into the complex circuits regulating these processes, and have laid the direction for future analysis.  相似文献   

11.
In multicellular organisms, most cells are confined to a particular tissue. However, some cells invade organs during normal development and in diseases (e.g., angiogenesis and cancer). Recent studies reveal a fascinating step-by-step process in which specific vulval cells induce and attract a single gonadal cell to invade an epithelial tubular organ in order to connect the uterus to the vulva in C. elegans.  相似文献   

12.
Polarized migration and spreading of epithelial sheets is important during many processes in vivo, including embryogenesis and wound healing. However, the signaling pathways that regulate epithelial migrations are poorly understood. To identify molecular components that regulate the spreading of epithelial sheets, we performed a screen for mutations that perturb epidermal cell migration during embryogenesis in Caenorhabditis elegans. We identified one mutant (jc5) as a weak mutation in itr-1, which encodes the single inositol 1,4,5-trisphosphate receptor (ITR) in C. elegans. During the migration of the embryonic epidermis, jc5 embryos display defects including misdirected migration or premature cessation of migration. Cells that halt their migration have disorganized F-actin and display reduced filopodial protrusive activity at their leading edge. Furthermore, some filopodia formed by epidermal cells in itr-1(jc5) embryos exhibit abnormally long lifetimes. Pharmacological studies with the inositol 1,4,5-trisphosphate antagonist xestospongin C phenocopy these defects, confirming that ITR function is important for proper epidermal migration. Our results provide the first molecular evidence that movements of embryonic epithelial cell sheets can be controlled by ITRs and suggest that such regulation may be a widespread mechanism for coordinating epithelial cell movements during embryogenesis.  相似文献   

13.
Epithelial cells perform important roles in the formation and function of organs and the genesis of many solid tumors. A distinguishing feature of epithelial cells is their apicobasal polarity and the presence of apical junctions that link cells together. The interacting proteins Par-6 (a PDZ and CRIB domain protein) and aPKC (an atypical protein kinase C) localize apically in fly and mammalian epithelial cells and are important for apicobasal polarity and junction formation. Caenorhabditis elegans PAR-6 and PKC-3/aPKC also localize apically in epithelial cells, but a role for these proteins in polarizing epithelial cells or forming junctions has not been described. Here, we use a targeted protein degradation strategy to remove both maternal and zygotic PAR-6 from C. elegans embryos before epithelial cells are born. We find that PKC-3 does not localize asymmetrically in epithelial cells lacking PAR-6, apical junctions are fragmented, and epithelial cells lose adhesion with one another. Surprisingly, junction proteins still localize apically, indicating that PAR-6 and asymmetric PKC-3 are not needed for epithelial cells to polarize. Thus, whereas the role of PAR-6 in junction formation appears to be widely conserved, PAR-6-independent mechanisms can be used to polarize epithelial cells.  相似文献   

14.
Kim SK 《Nature cell biology》2000,2(8):E143-E145
Three recent papers have reported the surprising finding that Cdc42 and Rac1, both of which are known to be involved in maintaining apico-basolateral polarity of epithelial cells, can each bind to a protein complex containing Par6, Par3 and PKCzeta. These latter three proteins have known functions in the polarization of mother cells before asymmetric cell division in Caenorhabditis elegans. These latest results indicate a possible link between the mechanisms used to maintain cell polarity and to set up asymmetric cell divisions.  相似文献   

15.
细胞极性的形成   总被引:1,自引:0,他引:1  
细胞的极性形成对细胞分化、发育及其功能的发挥起着举足轻重的作用。现就线虫受精卵、果蝇卵母细胞和哺乳动物上皮细胞三类细胞极性形成的特点和异同进行阐述,并探讨了近年来三类细胞极性形成的研究进展。  相似文献   

16.
The Drosophila protein Bazooka is required for both apical-basal polarity in epithelial cells and directing asymmetric cell division in neuroblasts. Here we show that the PDZ-domain protein DmPAR-6 cooperates with Bazooka for both of these functions. DmPAR-6 colocalizes with Bazooka at the apical cell cortex of epithelial cells and neuroblasts, and binds to Bazooka in vitro. DmPAR-6 localization requires Bazooka, and mislocalization of Bazooka through overexpression redirects DmPAR-6 to ectopic sites of the cell cortex. In the absence of DmPAR-6, Bazooka fails to localize apically in neuroblasts and epithelial cells, and is distributed in the cytoplasm instead. Epithelial cells lose their apical-basal polarity in DmPAR-6 mutants, asymmetric cell divisions in neuroblasts are misorientated, and the proteins Numb and Miranda do not segregate correctly into the basal daughter cell. Bazooka and DmPAR-6 are Drosophila homologues of proteins that direct asymmetric cell division in early Caenorhabditis elegans embryos, and our results indicate that homologous protein machineries may direct this process in worms and flies.  相似文献   

17.
During Caenorhabditis elegans development, the embryo acquires its vermiform shape due to changes in the shape of epithelial cells, a process that requires an apically localized actin cytoskeleton. We show that SMA-1, an ortholog of beta(H)-spectrin required for normal morphogenesis, localizes to the apical membrane of epithelial cells when these cells are rapidly elongating. In spc-1 alpha-spectrin mutants, SMA-1 localizes to the apical membrane but its organization is altered, consistent with the hypothesis these proteins act together to form an apically localized spectrin-based membrane skeleton (SBMS). SMA-1 is required to maintain the association between actin and the apical membrane; sma-1 mutant embryos fail to elongate because actin, which provides the driving force for cell shape change, dissociates from the apical membrane skeleton during morphogenesis. Analysis of sma-1 expression constructs and mutant strains indicates SMA-1 maintains the association between actin and the apical membrane via interactions at its N-terminus and this activity is independent of alpha-spectrin. SMA-1 also preserves dynamic changes in the organization of the apical membrane skeleton. Taken together, our results show the SMA-1 SBMS plays a dynamic role in converting changes in actin organization into changes in epithelial cell shape during C. elegans embryogenesis.  相似文献   

18.
We have characterized the developmental expression pattern of the Caenorhabditis elegans homologue of the mouse ky gene. The Ky protein has a putative key function in muscle development and has homologues in invertebrates, fungi and a cyanobacterium. The C. elegans Ky homologue gene has been named ltd-1 for LIM and transglutaminase domains gene. The LTD-1::GFP construct is expressed in developing hypodermal cells from the twofold stage embryo through adulthood. These data define the ltd-1 gene as a novel marker for C. elegans epithelial cell development.  相似文献   

19.
Integrity of epithelial tissues relies on the proper apical-basolateral polarity of epithelial cells. Members of the LAP (LRR and PDZ) protein family such as LET-413 and Scribble are involved in maintaining epithelial cell polarity in Caenorhabditis elegans and Drosophila melanogaster, respectively. We previously described Erbin as a mammalian LET-413 homologue interacting with ERBB2/HER2, an epidermal growth factor receptor family member. Erbin and ERBB2/HER2 are located in the basolateral membranes of epithelial cells. We show here that Erbin interacts with p0071 (also called plakophilin-4), an armadillo repeat protein linked to the cytoskeleton. Erbin binds to p0071 in vitro and in vivo in a PDZ domain-dependent manner, and both proteins colocalized in desmosomes of epithelial cells. Using a dominant negative approach, we found that integrity of epithelial cell monolayer is impaired when interaction between Erbin and p0071 is disrupted. We propose that Erbin is connected by p0071 to cytoskeletal networks in an interaction crucial for epithelial homeostasis.  相似文献   

20.
Tube formation is a widespread process during organogenesis. Specific cellular behaviors participate in the invagination of epithelial monolayers that form tubes. However, little is known about the evolutionary mechanisms of cell assembly into tubes during development. In Caenorhabditis elegans, the detailed step-to-step process of vulva formation has been studied in wild type and in several mutants. Here we show that cellular processes during vulva development, which involve toroidal cell formation and stacking of rings, are conserved between C. elegans and Pristionchus pacificus, two species of nematodes that diverged approximately 100 million years ago. These cellular behaviors are divided into phases of cell proliferation, short-range migration, and cell fusion that are temporally distinct in C. elegans but not in P. pacificus. Thus, we identify heterochronic changes in the cellular events of vulva development between these two species. We find that alterations in the division axes of two equivalent vulval cells from Left-Right cleavage in C. elegans to Anterior-Posterior division in P. pacificus can cause the formation of an additional eighth ring. Thus, orthogonal changes in cell division axes with alterations in the number and sequence of cell fusion events result in dramatic differences in vulval shape and in the number of rings in the species studied. Our characterization of vulva formation in P. pacificus compared to C. elegans provides an evolutionary-developmental foundation for molecular genetic analyses of organogenesis in different species within the phylum Nematoda.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号