首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryptococcus neoformans, which causes fatal infection in immunocompromised individuals, has an elaborate polysaccharide capsule surrounding its cell wall. The cryptococcal capsule is the major virulence factor of this fungal organism, but its biosynthetic pathways are virtually unknown. Extracellular polysaccharides of eukaryotes may be made at the cell membrane or within the secretory pathway. To test these possibilities for cryptococcal capsule synthesis, we generated a secretion mutant in C. neoformans by mutating a Sec4/Rab8 GTPase homolog. At a restrictive temperature, the mutant displayed reduced growth and protein secretion, and accumulated approximately 100-nm vesicles in a polarized manner. These vesicles were not endocytic, as shown by their continued accumulation in the absence of polymerized actin, and could be labeled with anti-capsular antibodies as visualized by immunoelectron microscopy. These results indicate that glucuronoxylomannan, the major cryptococcal capsule polysaccharide, is trafficked within post-Golgi secretory vesicles. This strongly supports the conclusion that cryptococcal capsule is synthesized intracellularly and secreted via exocytosis.  相似文献   

2.
Cellular processes, such as the digestion of macromolecules, phosphate acquisition, and cell motility, require bacterial secretion systems. In Bacillus subtilis, the predominant protein export pathways are Sec (generalized secretory pathway) and Tat (twin-arginine translocase). Unlike Sec, which secretes unfolded proteins, the Tat machinery secretes fully folded proteins across the plasma membrane and into the medium. Proteins are directed for Tat-dependent export by N-terminal signal peptides that contain a conserved twin-arginine motif. Thus, utilizing the Tat secretion system by fusing a Tat signal peptide is an attractive strategy for the production and export of heterologous proteins. As a proof of concept, we expressed green fluorescent protein (GFP) fused to the PhoD Tat signal peptide in the laboratory and ancestral strains of B. subtilis. Secretion of the Tat-GFP construct, as well as secretion of proteins in general, was substantially increased in the ancestral strain. Furthermore, our results show that secreted, fluorescent GFP could be purified directly from the extracellular medium. Nonetheless, export was not dependent on the known Tat secretion components or the signal peptide twin-arginine motif. We propose that the ancestral strain contains additional Tat components and/or secretion regulators that were abrogated following domestication.  相似文献   

3.
Secretion of virulence factors is a critical mechanism for the establishment of cryptococcosis, a disease caused by the yeast pathogen Cryptococcus neoformans. One key virulence strategy of C. neoformans is the release of glucuronoxylomannan (GXM), a capsule-associated immune-modulatory polysaccharide that reaches the extracellular space through secretory vesicles. Golgi reassembly and stacking protein (GRASP) is required for unconventional protein secretion mechanisms in different eukaryotic cells, but its role in polysaccharide secretion is unknown. This study demonstrates that a C. neoformans functional mutant of a GRASP orthologue had attenuated virulence in an animal model of cryptococcosis, in comparison with wild-type (WT) and reconstituted cells. Mutant cells manifested altered Golgi morphology, failed to produce typical polysaccharide capsules and showed a reduced ability to secrete GXM both in vitro and during animal infection. Isolation of GXM from cultures of WT, reconstituted or mutant strains revealed that the GRASP orthologue mutant produced polysaccharides with reduced dimensions. The mutant was also more efficiently associated to and killed by macrophages than WT and reconstituted cells. These results demonstrate that GRASP, a protein involved in unconventional protein secretion, is also required for polysaccharide secretion and virulence in C. neoformans.  相似文献   

4.
Calcineurin is a calcium-calmodulin-dependent serine/threonine specific protein phosphatase operating in key cellular processes governing responses to extracellular cues. Calcineurin is essential for growth at high temperature and virulence of the human fungal pathogen Cryptococcus neoformans but the underlying mechanism is unknown. We performed a mass spectrometry analysis to identify proteins that associate with the calcineurin A catalytic subunit (Cna1) in C. neoformans cells grown under non-stress and high temperature stress conditions. A novel prioritization strategy for mass spectrometry data from immunoprecipitation experiments identified putative substrates and proteins potentially operating with calcineurin in common pathways. Cna1 co-purified with proteins involved in membrane trafficking including the COPI component Sec28 and the COPII component Sec13. The association of Cna1 with Sec28 and Sec13 was confirmed by co-immunoprecipitation. Cna1 exhibited a dramatic change in subcellular localization during high temperature stress from diffuse cytoplasmic to ER-associated puncta and the mother-bud neck and co-localized with Sec28 and Sec13.  相似文献   

5.
Gram-positive sporulating Bacillus subtilis secretes high levels of protein. Its complete genome sequence, published in 1997, encodes 4,106 proteins. Bioinformatic searches have predicted that about half of all B. subtilis proteins are related to the cell membrane through export to the extracellular medium, insertion, and attachment. Key features of the B. subtilis protein secretion machinery are the absence of an Escherichia coli SecB homolog and the presence of an SRP (signal recognition particle) that is structurally rather similar to human SRP. In addition, B. subtilis contains five type I signal peptidases (SipS, T, U, V, and W). Our in vitro assay system indicated that co-operation between the SRP-protein targeting system to the cell membrane and the Sec protein translocation machinery across the cytoplasmic membrane constitutes the major protein secretion pathway in B. subtilis. Furthermore, the function of the SRP-Sec pathway in protein localization to the cell membrane and spore was analyzed.  相似文献   

6.
Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) maintain an extracellular lifestyle and use a type III secretion system to translocate effector proteins into the host cytosol. These effectors manipulate host pathways to favor bacterial replication and survival. NleA is an EHEC/EPEC- and related species-specific translocated effector protein that is essential for bacterial virulence. However, the mechanism by which NleA impacts virulence remains undetermined. Here we demonstrate that NleA compromises the Sec23/24 complex, a component of the mammalian COPII protein coat that shapes intracellular protein transport vesicles, by directly binding Sec24. Expression of an NleA-GFP fusion protein reduces the efficiency of cellular secretion by 50%, and secretion is inhibited in EPEC-infected cells. Direct biochemical experiments show that NleA inhibits COPII-dependent protein export from the endoplasmic reticulum. Collectively, these findings indicate that disruption of COPII function in host cells contributes to the virulence of EPEC and EHEC.  相似文献   

7.
8.
The cell wall of pathogenic fungi such as Cryptococcus neoformans , provides a formidable barrier to secrete virulence factors that produce host cell damage. To study secretion of virulence factors to the cell periphery, sec6 RNAi mutant strains of C. neoformans were tested for virulence factor expression. The studies reported here show that SEC6 RNAi mutant strains were defective in a number of virulence factors including laccase, urease as well as soluble polysaccharide and demonstrated attenuated virulence in mice. Further analysis by transmission electron microscopy detected the production of abundant extracellular exosomes in wild-type strains containing empty plasmid, but a complete absence in the i SEC6 strain. In addition, a green fluorescent protein–laccase fusion protein demonstrated aberrant localization within cytoplasmic vesicles in i SEC6 strains. In contrast, i SEC6 strains retained normal growth at 37°C, as well as substantially normal capsule formation, phospholipase activity and total secreted protein. These results provide the first molecular evidence for the existence of fungal exosomes and associate these vesicles with the virulence of C. neoformans .  相似文献   

9.
The mechanisms by which macromolecules are transported through the cell wall of fungi are not known. A central question in the biology of Cryptococcus neoformans, the causative agent of cryptococcosis, is the mechanism by which capsular polysaccharide synthesized inside the cell is exported to the extracellular environment for capsule assembly and release. We demonstrate that C. neoformans produces extracellular vesicles during in vitro growth and animal infection. Vesicular compartments, which are transferred to the extracellular space by cell wall passage, contain glucuronoxylomannan (GXM), a component of the cryptococcal capsule, and key lipids, such as glucosylceramide and sterols. A correlation between GXM-containing vesicles and capsule expression was observed. The results imply a novel mechanism for the release of the major virulence factor of C. neoformans whereby polysaccharide packaged in lipid vesicles crosses the cell wall and the capsule network to reach the extracellular environment.  相似文献   

10.
Sec24 of the COPII (coat protein complex II) vesicle coat mediates the selective export of membrane proteins from the endoplasmic reticulum (ER) in yeast. Human cells express four Sec24 isoforms, but their role is unknown. Here, we report the differential effects of Sec24 isoform-specific silencing on the transport of the membrane reporter protein ERGIC-53 (ER-Golgi intermediate compartment-53) carrying the cytosolic ER export signals di-phenylalanine, di-tyrosine, di-leucine, di-isoleucine, di-valine or terminal valine. Knockdown of single Sec24 isoforms showed dependence of di-leucine-mediated transport on Sec24A, but transport mediated by the other signals was not affected. By contrast, double knockdown of Sec24A with one of the other three Sec24 isoforms impaired all aromatic/hydrophobic signal-dependent transport. Double knockdown of Sec24B/C or Sec24B/D preferentially affected di-leucine-mediated transport, whereas knockdown of Sec24C/D affected di-isoleucine- and valine-mediated transport. The isoform-selective transport correlated with binding preferences of the signals for the corresponding isoforms in vitro. Thus, human Sec24 isoforms expand the repertoire of cargo for signal-mediated ER export, but are in part functionally redundant.  相似文献   

11.
S Bost  D Belin 《The EMBO journal》1995,14(18):4412-4421
The signal sequence of the murine serine protease inhibitor PAI-2 promotes alkaline phosphatase export to the E. coli periplasm. However, high level expression of this chimeric protein interferes with cell growth. Since most suppressors of this toxic phenotype map to secA and secY, growth arrest results from a defective interaction of the chimeric protein with the export machinery. We have characterized suppressors which map in secG, a newly defined gene of the export machinery. All single amino acid substitutions map to three adjacent codons. These secG mutants have a weak Sec phenotype, as determined by their effect on export mediated by wild-type and mutant signal sequences. Whilst a secG disruption allele also confers a weak Sec phenotype, it does not suppress the toxicity of the chimeric protein. This difference results from a selective effect of the secG suppressors on the kinetics of export mediated by the PAI-2 signal sequence. Using a malE signal sequence mutant, which has a Mal-phenotype in secG mutant strains, we have isolated extragenic Mal+ suppressors. Most suppressors map to secY, and several are allele-specific. Finally, SecG overexpression accelerates the kinetics of protein export, suggesting that there are two types of functional translocation complexes: with or without SecG.  相似文献   

12.
J Kim  Y Lee  C Kim    C Park 《Journal of bacteriology》1992,174(16):5219-5227
Ribose-binding protein (RBP) is an exported protein of Escherichia coli that functions in the periplasm. The export of RBP involves the secretion machinery of the cell, consisting of a cytoplasmic protein, SecA, and the integral membrane translocation complex, including SecE and SecY. SecB protein, a chaperone known to mediate the export of some periplasmic and outer membrane proteins, was previously reported not to be involved in RBP translocation even though small amounts of in vitro complexes between SecB and RBP have been detected. In our investigation, it was shown that a dependence on SecB could be demonstrated under conditions in which export was compromised. Species of RBP which carry two mutations, one in the leader that blocks export and a second in the mature protein which partially suppresses the export defect, were shown to be affected by SecB for efficient translocation. Five different changes which suppress the effect of the signal sequence mutation -17LP are all located in the N domain of the tertiary structure of RBP. All species of RBP show similar interaction with SecB. Furthermore, a leaky mutation, -14AE, generated by site-specific mutagenesis causes reduced export in the absence of SecB. These results indicate that SecB can interact with RBP during secretion, although it is not absolutely required under normal circumstances.  相似文献   

13.
Most of the examples of protein translocation across a membrane (such as the import of classical secretory proteins into the endoplasmic reticulum, import of proteins into mitochondria and peroxisomes, as well as protein import into and export from the nucleus), are understood in great detail. In striking contrast, the phenomenon of unconventional protein secretion (also known as nonclassical protein export or ER/Golgi-independent protein secretion) from eukaryotic cells was discovered more than 10 years ago and yet the molecular mechanism and the molecular identity of machinery components that mediate this process remain elusive. This problem appears to be even more complex as several lines of evidence indicate that various kinds of mechanistically distinct nonclassical export routes may exist. In most cases these secretory mechanisms are gated in a tightly controlled fashion. This review aims to provide a comprehensive overview of our current knowledge as a basis for the development of new experimental strategies designed to unravel the molecular machineries mediating ER/Golgi-independent protein secretion. Beyond solving a fundamental problem in current cell biology, the molecular analysis of these processes is of major biomedical importance as these export routes are taken by proteins such as angiogenic growth factors, inflammatory cytokines, components of the extracellular matrix which regulate cell differentiation, proliferation and apoptosis, viral proteins, and parasite surface proteins potentially involved in host infection.  相似文献   

14.
Unlike Bacillus subtilis and Escherichia coli, the gram-positive lactic acid bacterium Lactococcus lactis does not possess the SecDF protein, a component of the secretion (Sec) machinery involved in late secretion stages and required for the high-capacity protein secretion in B. subtilis. In this study, we complemented the L. lactis Sec machinery with SecDF from B. subtilis and evaluated the effect on the secretion of two forms of staphylococcal nuclease, NucB and NucT, which are efficiently and poorly secreted, respectively. The B. subtilis SecDF-encoding gene was tested in L. lactis at different levels. Increased quantities of the precursor and mature forms were observed only at low levels of SecDF and at high NucT production levels. This SecDF secretion enhancement was observed at the optimal growth temperature (30 degrees C) and was even greater at 15 degrees C. Furthermore, the introduction of B. subtilis SecDF into L. lactis was shown to have a positive effect on a secreted form of Brucella abortus L7/L12 antigen.  相似文献   

15.
Extracellular or surface localization of virulence determinants is an important attribute of pathogenic microorganisms. The past decade has seen significant research advances in defining the steps and identifying the necessary machinery for protein secretion from bacterial cells. In Gram-negative pathogens, four distinct classes of secretion pathways have been identified that deliver virulence factors to their sites of action. These pathways are responsible for the delivery of soluble extracellular enzymes into the surrounding medium, or for specifically targeting proteins to the host cell. In several instances protein secretion pathways are similar to those involved in assembly of bacterial appendages. Combination of biochemical and genetic analyses has recently revealed that the pathways of protein secretion and surface localization of various organelles are mechanistically similar which was not apparent simply by comparing amino acid sequences of related proteins. The choice of the pathway that a protein will utilize may not be dictated only by the specific requirement of the secreted protein to traverse the cell envelope in the functional form, but also by the need to assure its delivery to the correct site of action outside the bacterial cell.  相似文献   

16.
Trafficking of secretory proteins between the endoplasmic reticulum (ER) and the Golgi apparatus depends on coat protein complexes I (COPI) and II (COPII) machineries. To date, full characterization of the distribution and dynamics of these machineries in plant cells remains elusive. Furthermore, except for a presumed linkage between COPI and COPII for the maintenance of ER protein export, the mechanisms by which COPI influences COPII-mediated protein transport from the ER in plant cells are largely uncharacterized. Here we dissect the dynamics of COPI in intact cells using live-cell imaging and fluorescence recovery after photobleaching analyses to provide insights into the distribution of COPI and COPII machineries and the mechanisms by which COPI influences COPII-mediated protein export from the ER. We found that Arf1 and coatomer are dynamically associated with the Golgi apparatus and that the COPII coat proteins Sec24 and Sec23 localize at ER export sites that track with the Golgi apparatus in tobacco leaf epidermal cells. Arf1 is also localized at additional structures that originate from the Golgi apparatus but that lack coatomer, supporting the model that Arf1 also has a coatomer-independent role for post-Golgi protein transport in plants. When ER to Golgi protein transport is inhibited by mutations that hamper Arf1-GTPase activity without directly disrupting the COPII machinery for ER protein export, Golgi markers are localized in the ER and the punctate distribution of Sec24 and Sec23 at the ER export sites is lost. These findings suggest that Golgi membrane protein distribution is maintained by the balanced action of COPI and COPII systems, and that Arf1-coatomer is most likely indirectly required for forward trafficking out of the ER due to its role in recycling components that are essential for differentiation of the ER export domains formed by the Sar1-COPII system.  相似文献   

17.
Toll-like receptors (TLR) 2 and 4 are cell surface receptors that in association with CD14 enable phagocytic inflammatory responses to a variety of microbial products. Activation via these receptors triggers signaling cascades, resulting in nuclear translocation of NF-kappa B and a proinflammatory response including TNF-alpha production. We investigated whether TLRs participate in the host response to Cryptococcus neoformans glucuronoxylomannan (GXM), the major capsular polysaccharide of this fungus. Chinese hamster ovary fibroblasts transfected with human TLR2, TLR4, and/or CD14 bound fluorescently labeled GXM. The transfected Chinese hamster ovary cells were challenged with GXM, and activation of an NF-kappa B-dependent reporter construct was evaluated. Activation was observed in cells transfected with both CD14 and TLR4. GXM also stimulated nuclear NF-kappa B translocation in PBMC and RAW 264.7 cells. However, stimulation of these cells with GXM resulted in neither TNF-alpha secretion nor activation of the extracellular signal-regulated kinase 1/2, p38, and stress-activated protein kinase/c-Jun N-terminal kinase mitogen-activated protein kinase pathways. These findings suggest that TLRs, in conjunction with CD14, function as pattern recognition receptors for GXM. Furthermore, whereas GXM stimulates cells to translocate NF-kappa B to the nucleus, it does not induce activation of mitogen-activated protein kinase pathways or release of TNF-alpha. Taken together, these observations suggest a novel scenario whereby GXM stimulates cells via CD14 and TLR4, resulting in an incomplete activation of pathways necessary for TNF-alpha production.  相似文献   

18.
In eukaryotic membrane trafficking, emergent protein folding pathways dictated by the proteostasis network (the 'PN') in each cell type are linked to the coat protein complex II (COPII) system that initiates transport through the exocytic pathway. These coupled pathways direct the transit of protein cargo from the endoplasmic reticulum (ER) to diverse subcellular and extracellular destinations. Understanding how the COPII system selectively manages the trafficking of distinct folded states of nascent cargo (comprising one-third of the proteins synthesized by the eukaryotic genome) in close cooperation with the PN remains a formidable challenge to the field. Whereas the PN may contain a thousand component, the minimal COPII coat components that drive all vesicle budding from the ER include Sar1 (a GTPase), Sec12 (a guanine nucleotide exchange factor), Sec23-Sec24 complexes (protein cargo selectors) and the Sec13-Sec31 complex (that functions as a protein cargo collector and as a polymeric lattice generator to promote vesicle budding). A wealth of data suggests a hierarchical role of the PN and COPII components in coupling protein folding with recruitment and assembly of vesicle coats on the ER. In this minireview, we focus on insights recently gained from the study of inherited human disease states of the COPII machinery. We explore the relevance of the COPII system to human biology in the context of its inherent link with the remarkably flexible folding capacity of the PN in each cell type and in response to the environment. The pharmacological manipulation of this coupled system has important therapeutic implications for restoration of function in human disease.  相似文献   

19.
The secretion pathways of the heme-binding protein HasA from Serratia marcescens and of the metalloproteases A, B, C and G from Erwinia chrysanthemi have been reconstituted in Escherichia coli. They are secreted in a single step from the cytoplasm across both membranes of the Gram-negative envelope, after recognition of their specific C-terminal secretion signal by their cognate ABC transporter. We report strong evidence that both HasA and the metalloproteases bind the SecB chaperone involved in the export of several envelope proteins via the Sec pathway. We also show that the secretion of the HasA protein is strongly dependent upon SecB in the reconstituted system, whereas that of the proteases is not. HasA secretion in the original host is strongly inhibited by a protein known to interfere with E.coli SecB function. We propose that the proteins secreted by the ABC pathway may have to be unfolded for efficient secretion.  相似文献   

20.
Secreted phospholipase B1 (CnPlb1) is essential for dissemination of Cryptococcus neoformans to the central nervous system (CNS) yet essential components of its secretion machinery remain to be elucidated. Using gene deletion analysis we demonstrate that CnPlb1 secretion is dependent on the CnSEC14 product, CnSec14-1p. CnSec14-1p is a homologue of the phosphatidylinositol transfer protein ScSec14p, which is essential for secretion and viability in Saccharomyces cerevisiae. In contrast to CnPlb1, neither laccase 1-induced melanization within the cell wall nor capsule induction were negatively impacted in CnSEC14-1 deletion mutants (CnΔsec14-1 and CnΔsec14-1CnΔsfh5). Similar to the CnPLB1 deletion mutant (CnΔplb1), CnΔsec14-1 was hypovirulent in mice and did not disseminate to the CNS by day 14 post infection. Furthermore, macrophage expulsion of live CnΔsec14-1 and CnΔplb1 (vomocytosis) was reduced. Individual deletion of CnSEC14-2, a closely related CnSEC14-1 homologue, and CnSFH5, a distantly related SEC fourteen like homologue, did not abrogate CnPlb1 secretion or virulence. However, reconstitution of CnΔsec14-1 with CnSEC14-1 or CnSEC14-2 restored both phenotypes, consistent with functional genetic redundancy. We conclude that CnPlb1 secretion is SEC14-dependent and that C. neoformans preferentially exports virulence determinants to the cell periphery via distinct pathways. We also demonstrate that CnPlb1 secretion is essential for vomocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号