首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Members of the subfamily Triatominae, family Reduviidae, comprise a large number of insect species of which some are vectors of Trypanosoma cruzi, the causative agent of Chagas' disease. This article outlines research on the process of transformation and the dynamics of developmental stages of Trypanosoma cruzi in the triatomine insect hosts. Special attention is given to the interactions of parasites with gut molecules, and the gut environment, and with host developmental physiology and intestinal organization. The vector insect's permissiveness to Trypanosoma cruzi, which develops in the vector gut, largely depends on the host nutritional state, the parasite strain, trypanolytic compounds, digestive enzymes, lectins, resident bacteria in the gut and the endocrine system of the insect vector. Finally, the mechanisms of these interactions and their significance for Trypanosoma cruzi transmission are discussed.  相似文献   

2.
Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. The main mode of transmission of this disease in endemic areas is through an insect vector called triatomine bug. Triatomines become infected with T. cruzi by feeding blood of an infected person or animal. Chagas disease is considered the most important vector borne infection in Latin America. It is estimated that between 16 and 18 millions of persons are infected with T. cruzi, and at least 20,000 deaths each year. In this work we formulate a model for the transmission of this infection among humans, vectors and domestic mammals. Our main objective is to assess the effectiveness of Chagas disease control measures. For this, we do sensitivity analysis of the basic reproductive number R? and the endemic proportions with respect to epidemiological and demographic parameters.  相似文献   

3.
Triatomines, or kissing bugs, are vectors of Chagas disease to humans. This disease is a substantial public health problem affecting up to 12 million people throughout the Americas, and its control relies mainly on the insecticide treatment of triatomine-infested houses within villages. In this article, Fernando Monteiro, Ananias Escalante and Ben Beard review how molecular markers have been used to clarify triatomine systematics, and give examples of how our understanding of triatomine population structure and accurate vector identification can be used to optimize vector control.  相似文献   

4.
5.
Integrating how biodiversity and infectious disease dynamics are linked at multiple levels and scales is highly challenging. Chagas disease is a vector‐borne disease, with specificities of the triatomine vectors and Trypanosoma cruzi parasite life histories resulting in a complex multihost and multistrain life cycle. Here, we tested the hypothesis that T. cruzi transmission cycles are shaped by triatomine host communities and gut microbiota composition by comparing the integrated interactions of Triatoma sanguisuga in southern Louisiana with feeding hosts, T. cruzi parasite and bacterial microbiota in two habitats. Bugs were collected from resident's houses and animal shelters and analysed for genetic structure, blood feeding sources, T. cruzi parasites, and bacterial diversity by PCR amplification of specific DNA markers followed by next‐generation sequencing, in an integrative metabarcoding approach. T. sanguisuga feeding host communities appeared opportunistic and defined by host abundance in each habitat, yielding distinct parasite transmission networks among hosts. The circulation of a large diversity of T. cruzi DTUs was also detected, with TcII and TcV detected for the first time in triatomines in the US. The bacterial microbiota was highly diverse and varied significantly according to the DTU infecting the bugs, indicating specific interactions among them in the gut. Expanding such studies to multiple habitats and additional triatomine species would be key to further refine our understanding of the complex life cycles of multihost, multistrain parasites such as T. cruzi, and may lead to improved disease control strategies.  相似文献   

6.
A few days after blood meal the number of bacteria in the anterior midgut (stomach) of Rhodnius prolixus, a vector of Trypanosoma cruzi, the causative agent of Chagas' disease, increases dramatically. Many of the bloodstream trypomastigotes of the pathogenic protozoan as well as ingested erythrocytes are lysed in the stomach. Incubation of T. cruzi with Serratia marcescens variant SM365, lead to parasite lysis. In the present study, this bacterium rapidly adhered to the protozoan surface through d-mannose recognizing fimbriae and rapidly induced its complete lysis. In contrast, the DB11 variant of the same bacterial species did not adhere and did not induce protozoan lysis. Scanning and transmission electron microscopy revealed that following bacteria-protozoan attachment there is an assembly of long filamentous structures, identified as a biofilm, which connect the protozoan to the bacteria forming bacterial clusters. We conclude that parasite lysis and biofilm formation mechanisms are important for understanding parasite-microbiota interactions in the gut of insect vectors of trypanosomatids.  相似文献   

7.
Trypanosoma cruzi and the majority of its insect vectors (Hemiptera, Reduviidae, Triatominae) are confined to the Americas. But while recent molecular studies indicate a relatively ancient origin for the parasite ( approximately 65 million years ago) there is increasing evidence that the blood-sucking triatomine vectors have evolved comparatively recently (<5 mya). This review examines the evidence for these ideas, and attempts to reconcile the apparent paradox by suggesting that marsupial opossums (Didelphidae) may have played a role, not just as original reservoir hosts, but also as original vectors of the parasite.  相似文献   

8.
Insects are known to display strategies that spread the risk of encountering unfavorable conditions, thereby decreasing the extinction probability of genetic lineages in unpredictable environments. To what extent these strategies influence the epidemiology and evolution of vector-borne diseases in stochastic environments is largely unknown. In triatomines, the vectors of the parasite Trypanosoma cruzi, the etiological agent of Chagas’ disease, juvenile development time varies between individuals and such variation most likely decreases the extinction risk of vector populations in stochastic environments. We developed a simplified multi-stage vector-borne SI epidemiological model to investigate how vector risk-spreading strategies and environmental stochasticity influence the prevalence and evolution of a parasite. This model is based on available knowledge on triatomine biodemography, but its conceptual outcomes apply, to a certain extent, to other vector-borne diseases. Model comparisons between deterministic and stochastic settings led to the conclusion that environmental stochasticity, vector risk-spreading strategies (in particular an increase in the length and variability of development time) and their interaction have drastic consequences on vector population dynamics, disease prevalence, and the relative short-term evolution of parasite virulence. Our work shows that stochastic environments and associated risk-spreading strategies can increase the prevalence of vector-borne diseases and favor the invasion of more virulent parasite strains on relatively short evolutionary timescales. This study raises new questions and challenges in a context of increasingly unpredictable environmental variations as a result of global climate change and human interventions such as habitat destruction or vector control.  相似文献   

9.
Faeces-mediated transmission of Trypanosoma cruzi (the aetiological agent of Chagas disease) by triatomine insects is extremely inefficient. Still, the parasite emerges frequently, and has infected millions of people and domestic animals. We synthesize here the results of field and laboratory studies of T. cruzi transmission conducted in and around Arequipa, Peru. We document the repeated occurrence of large colonies of triatomine bugs (more than 1000) with very high infection prevalence (more than 85%). By inoculating guinea pigs, an important reservoir of T. cruzi in Peru, and feeding triatomine bugs on them weekly, we demonstrate that, while most animals quickly control parasitaemia, a subset of animals remains highly infectious to vectors for many months. However, we argue that the presence of these persistently infectious hosts is insufficient to explain the observed prevalence of T. cruzi in vector colonies. We posit that seasonal rains, leading to a fluctuation in the price of guinea pig food (alfalfa), leading to annual guinea pig roasts, leading to a concentration of vectors on a small subpopulation of animals maintained for reproduction, can propel T. cruzi through vector colonies and create a considerable force of infection for a pathogen whose transmission might otherwise fizzle out.  相似文献   

10.
Chagas disease prevention remains mostly based on triatomine vector control to reduce or eliminate house infestation with these bugs. The level of adaptation of triatomines to human housing is a key part of vector competence and needs to be precisely evaluated to allow for the design of effective vector control strategies. In this review, we examine how the domiciliation/intrusion level of different triatomine species/populations has been defined and measured and discuss how these concepts may be improved for a better understanding of their ecology and evolution, as well as for the design of more effective control strategies against a large variety of triatomine species. We suggest that a major limitation of current criteria for classifying triatomines into sylvatic, intrusive, domiciliary and domestic species is that these are essentially qualitative and do not rely on quantitative variables measuring population sustainability and fitness in their different habitats. However, such assessments may be derived from further analysis and modelling of field data. Such approaches can shed new light on the domiciliation process of triatomines and may represent a key tool for decision-making and the design of vector control interventions.  相似文献   

11.
12.
Trypanosoma cruzi, the causative agent of American trypanosomiasis (Chagas disease) is a parasite of wild mammals of Americas. It has been further transmitted to man through an insect vector belonging to the Reduviidae family. In the context of an ecoepidemiological study of this vector borne anthropozoonosis, a medical anthropological overview tries, by using data from literature, to clarify the different ways human activities play on the disease epidemiological cycle. The everyday human activities support domiciliation of triatomine bugs. But, the human intervention in the natural environment disturbs strongly the ecology of the vectors or hosts and leads to a new structuring of the natural foci of the disease with its displacement toward the human environment. The way society or individuals manage the disease plays also an important role. Some human activities, as building dwelling structures, have been well studied, but some others, such as the real impact of the human modes of production, are less known. A medical anthropology study of the role of human activities on the foci of Chagas disease is still needed.  相似文献   

13.
Trypanosoma cruzi epimastigotes adhere in vivo to the luminal surface of their triatomid vector digestive tract by molecular mechanisms, as yet, unknown. Here, we show that the administration of 0.5 microM epimastigote major surface glycoinositolphospholipids (GIPLs) to the infected bloodmeal inhibits up to 90% parasite infection in Rhodnius prolixus. The parasite behavior was investigated in vitro using fragments of the insect midgut. The addition of GIPLs in concentration as low as 50-100 nM impaired 95% the attachment of epimastigotes. Previous treatment of GIPLs with trifluoroacetic acid to remove the terminal beta-galactofuranosyl residues reversed 50% the epimastigote in vitro attachment. The binding sites of purified GIPLs on the luminal surface of the posterior midgut were exposed by immunofluorescence microscopy. These observations indicate that GIPLs are one of the components involved in the adhesion of T. cruzi to the luminal insect midgut surface and possibly one of the determinants of parasite infection in the insect vector.  相似文献   

14.

Background

Chagas disease is a trypanosomiasis whose agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous bugs known as triatomines. Even though insecticide treatments allow effective control of these bugs in most Latin American countries where Chagas disease is endemic, the disease still affects a large proportion of the population of South America. The features of the disease in humans have been extensively studied, and the genome of the parasite has been sequenced, but no effective drug is yet available to treat Chagas disease. The digestive tract of the insect vectors in which T. cruzi develops has been much less well investigated than blood from its human hosts and constitutes a dynamic environment with very different conditions. Thus, we investigated the composition of the predominant bacterial species of the microbiota in insect vectors from Rhodnius, Triatoma, Panstrongylus and Dipetalogaster genera.

Methodology/Principal Findings

Microbiota of triatomine guts were investigated using cultivation-independent methods, i.e., phylogenetic analysis of 16s rDNA using denaturing gradient gel electrophoresis (DGGE) and cloned-based sequencing. The Chao index showed that the diversity of bacterial species in triatomine guts is low, comprising fewer than 20 predominant species, and that these species vary between insect species. The analyses showed that Serratia predominates in Rhodnius, Arsenophonus predominates in Triatoma and Panstrongylus, while Candidatus Rohrkolberia predominates in Dipetalogaster.

Conclusions/Significance

The microbiota of triatomine guts represents one of the factors that may interfere with T. cruzi transmission and virulence in humans. The knowledge of its composition according to insect species is important for designing measures of biological control for T. cruzi. We found that the predominant species of the bacterial microbiota in triatomines form a group of low complexity whose structure differs according to the vector genus.  相似文献   

15.
The home is an important protective element for the health of its inhabitants - but these inhabitants often include not only the householders but also domestic pests and vectors of disease. This is particularly so in Latin America where domestic triatomine bugs thrive in many of the poorer quality rural houses, emerging from their crevices at night to feed and transmit Trypanosoma cruzi in their faeces. At the public health level, there is neither drug nor vaccine suitable for controlling T. cruzi - causative agent of Chagas disease - but transmission can be interrupted by control of the domestic vectors. Traditionally, vector control has involved spraying houses with residual insecticides, but a more long-term solution, with many colateral benefits, is to improve rural housing in such a way that colonization by triatomine bugs is inhibited. Such an approach involves development of low-cost techniques for house construction, and mobilization of rural communities to make use of them. In this, Venezuela has played a leading role, as Roberto Briceno-Leon reports.  相似文献   

16.
Genetic markers for study of the anopheline vectors of human malaria   总被引:6,自引:0,他引:6  
Human malaria is truly a disease of global proportions and is one of the most broadly distributed vector-borne infections. Anopheline mosquitoes are the exclusive vectors of human malaria. A handful of species predominate as the most notorious malaria vectors, but the species and forms involved in the transmission of human malaria world-wide are incredibly diverse. Many of the anophelines that vector malaria exist as members of species complexes that often contain vector and non-vector species. Additionally, single anopheline species often exhibit significant heterogeneity across the species' range. This phenotypic and genotypic plasticity exacerbates the difficulties in identification of vector populations and implementation of effective surveillance and control strategies. Polytene chromosome investigations were among the first to provide researchers with tangible genetic markers that could be used to differentiate between what are now recognised as species and chromosomal forms of anopheline mosquitoes. The advent of the polymerase chain reaction gave access to the molecular genetics of genomes and the techniques that followed have facilitated investigation of the genetics of individual specimens or population size samples. The variety and number of genetic markers available for the study of malaria vectors has literally exploded in the last 10 years. Markers have expanded from the 'traditional tools' to include a vast array of molecular markers. Contemporary markers range from what are now referred to as 'classical genetic markers' to methods used to detect and identify single nucleotide polymorphisms and finally to highly polymorphic markers. One of the greatest advantages of this wide variety of genetic markers is that researchers may choose to utilise any combination of markers or techniques to address multifaceted questions relating to malaria transmission. These molecular markers have proven useful in a wide variety of applications including molecular taxonomy, evolutionary systematics, population genetics, genetic mapping, and investigation of defined phenotypes.  相似文献   

17.
Molecular interactions between Plasmodium and its insect vectors   总被引:7,自引:1,他引:6  
Our understanding of the intricate interactions between the malarial parasite and the mosquito vector is complicated both by the number and diversity of parasite and vector species, and by the experimental inaccessibility of phenomena under investigation. Steady developments in techniques to study the parasite in the mosquito have recently been augmented by methods to culture in their entirety the sporogonic stages of some parasite species. These, together with the new saturation technologies, and genetic transformation of both parasite and vector will permit penetrating studies into an exciting and largely unknown area of parasite-host interactions, an understanding of which must result in the development of new intervention strategies. This microreview highlights key areas of current basic molecular interest, and identifies numerous lacunae in our knowledge that must be filled if we are to make rational decisions for future control strategies. It will conclude by trying to explain why in the opinion of this reviewer understanding malaria-mosquito interactions may be critical to our future attempts to limit a disease of growing global importance.  相似文献   

18.
The re-emergence of arboviral diseases such as Dengue Fever and La Crosse encephalitis is primarily due to the failure of insect vector control strategies. The development of a procedure capable of producing stable germ-line transformants in the insect vectors of these diseases would bridge the gap between gene expression systems being developed to curb vector transmission and the identification of important genes and regulatory sequences and their reintroduction back into the insect genome in the form of vector control strategies. The transposable element piggyBac is capable of transposition in a variety of insect species, and could serve as a versatile insect transformation vector. Using plasmid-based excision and transposition assays, we report that this short-ITR transposon undergoes precise, transposase-dependent excision and transposition in embryos of Aedes albopictus and Aedes triseriatus, the vectors of Dengue fever and LaCrosse encephalitis, respectively. These assays allow us easily and rapidly to confirm and assess the potential utility of piggyBac as a gene transfer tool in a given species. piggyBac is an exceptionally mobile and versatile genetic transformation vector, comparable to other transposons currently in use for the transformation of insects. The mobility of the piggyBac element seen in both Ae. albopictus and Ae. triseriatus is further evidence that it can be employed as a germ-line vector in important insect disease vectors.  相似文献   

19.
Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies.  相似文献   

20.
Antiserum raised against Rhodnius prolixus perimicrovillar membranes (PMM) and midgut tissue interfered with the midgut structural organization and reduced the development of Trypanosoma cruzi in the R. prolixus insect vector. SDS-PAGE and Western blot analyses confirmed the specific recognition of midgut proteins by the antibody. Feeding, mortality, molt, and oviposition of the insects were unaffected by feeding with the antiserum. However, the eclosion of the eggs were reduced from R. prolixus females treated with antiserum. Additionally, in vivo evaluation showed that after oral treatment with the antiserum, the intensity of infection with the Dm-28c clone of T. cruzi decreased in the digestive tract of fifth-instar nymphs and in the excretions of R. prolixus adults. These results suggest that the changes observed in the PMM organization in the posterior midgut of R. prolixus may not be important for triatomine survival but the antiserum acts as a transmission-reduction vaccine able to induce significant decreases in T. cruzi infection in the vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号