首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Disturbances in natural Circadian rhythm are well-known stress factors, affecting a range of metabolic pathways in the living body including the brain. Hence, discovery of natural compounds that could help to prevent and cure of adverse changes is very important. One of the recently discussed substances is creatine, that is believed to have anti-stressor properties. Recent paper describes the impact of intraperitoneally injected creatine (140 mg/kg) into rats with a disturbed natural circadian rhythm for an extended period of time (30 days). Markedly, creatine-treated animals show positive changes in open-field behavioral parameters, and an increase in certain antioxidant enzymes’ (SOD, catalase) activity in the hippocampus, whereas the concentration of nitric oxide, H2O2, and Ca2+ are approximated to the control value. Similar findings were also observed in case of Na+/K+- and Ca2+-ATPases. To sum up, the recent findings allow the conclusion that oxidative stress induced by long-term disturbances in natural circadian rhythm is accompanied and likely provoked by an increase in Ca2+-cytotoxicity, which is supposedly normalized by the creatine’s indirect action on the NMDA receptor. Therefore, impact on energy mediating pathways has a positive effect on stabilization of antioxidant and various metabolic systems and protecting hippocampal cells from stress.  相似文献   

6.
7.
8.
9.
C/EBPβ是转录因子C/EBPs(CCAAT enhancer binding proteins)家族的重要成员,其C端具有高度保守的DNA结合域和二聚化功能域。它主要通过对靶细胞基因转录的调节,参与细胞增殖与分化、肿瘤发生与凋亡、机体炎症反应等重要生命活动;其功能受到蛋白酶降解、磷酸化、蛋白质相互作用等多种途径的调控。本综述有关C/EBPβ的生物学功能及其调控机理近年来的一些研究进展。  相似文献   

10.
Wnt/β-catenin signaling controls multiple steps of neural crest development, ranging from neural crest induction, lineage decisions, to differentiation. In mice, conditional β-catenin inactivation in premigratory neural crest cells abolishes both sensory neuron and melanocyte formation. Intriguingly, the generation of melanocytes is also prevented by activation of β-catenin in the premigratory neural crest, which promotes sensory neurogenesis at the expense of other neural crest derivatives. This raises the question of how Wnt/β-catenin signaling regulates the formation of distinct lineages from the neural crest. Using various Cre lines to conditionally activate β-catenin in neural crest cells at different developmental stages, we show that neural crest cell fate decisions in vivo are subject to temporal control by Wnt/β-catenin. Unlike in premigratory neural crest, β-catenin activation in migratory neural crest cells promotes the formation of ectopic melanoblasts, while the production of most other lineages is suppressed. Ectopic melanoblasts emerge at sites of neural crest target structures and in many tissues usually devoid of neural crest-derived cells. β-catenin activation at later stages in glial progenitors or in melanoblasts does not lead to surplus melanoblasts, indicating a narrow time window of Wnt/β-catenin responsiveness during neural crest cell migration. Thus, neural crest cells appear to be multipotent in vivo both before and after emigration from the neural tube but adapt their response to extracellular signals in a temporally controlled manner.  相似文献   

11.
We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of human ASC and at later stages in human immature adipocytes.  相似文献   

12.
13.
CCAAT增强子结合蛋白β(CCAAT enhancer-binding proteinβ,C/EBPβ)是转录因子C/EBP家族的重要成员。它通过对靶基因转录的调节,参与细胞增殖与分化、肿瘤发生与凋亡、细胞周期调控等重要生命活动,同时这些功能受到磷酸化、乙酰化、泛素化等多种翻译后修饰的调控。本文综述近年来有关C/EBPβ的翻译后修饰的研究进展。这些研究不仅为人们认识C/EBPβ的调控机制提供了一个新的角度,同时也可能为肥胖及相关代谢疾病的发生和治疗提供新的理解。  相似文献   

14.
15.
AimsThoracic aortic aneurysm/dissection (TAAD) is a life-threatening disease with diverse clinical manifestations. Although the association between methamphetamine (METH) and TAAD is frequently observed, the causal relationship between METH abuse and aortic aneurysm/dissection has not been established. This study was designed to determine if METH causes aortic aneurysm/dissection and delineate the underlying mechanism.Methods and resultsA new TAAD model was developed by exposing METH to SD rats pre-treated with lysyl oxidase inhibitor β-aminopropionitrile (BAPN). Combination of METH and BAPN caused thoracic aortic aneurysm/dissection in 60% of rats. BAPN+METH significantly increased the expression and activities of both matrix metalloproteinase MMP2 and MMP9, consistent with the severe elastin breakage and dissection. Mechanistically, METH increased CCAAT-enhancer binding protein β (C/EBPβ) expression by enhancing mothers against decapentaplegic homolog 3 (Smad3) and extracellular regulated protein kinase (ERK1/2) signaling. METH also promoted C/EBPβ binding to MMP2 and MMP9 promoters. Blocking C/EBPβ significantly attenuated METH+BAPN-induced TAAD and MMP2/MMP9 expression. Moreover, BAPN+METH promoted aortic medial smooth muscle cell (SMC) apoptosis through C/EBPβ-mediated IGFBP5/p53/PUMA signaling pathways. More importantly, the expression of C/EBPβ, MMP2/MMP9, and apoptosis-promoting proteins was increased in the aorta of human patients with thoracic aortic dissection, suggesting that the mechanisms identified in animal study could be relevant to human disease.ConclusionsOur study demonstrated that METH exposure has a casual effect on TAAD. C/EBPβ mediates METH-introduced TAAD formation by causing elastin breakage, medial cell loss and degeneration. Therefore, C/EBPβ may be a potential factor for TAAD clinical diagnosis or treatment.  相似文献   

16.
17.
Niacin is converted to NAD and NADP in tissues, whose products are involved in a number of cellular processes; and it is associated with the regulation of adipogenesis. In this study, we identified the molecular mechanism by which niacin promotes the adipogenesis in mouse 3T3-L1 cells. When the cells were cultured with niacin, the expression of adipogenic peroxisome proliferator-activated receptor γ, CCAAT enhancer binding protein (C/EBP)α, and their target genes was enhanced concomitant with an increase in triglyceride storage. Moreover, niacin suppressed the expression of cyclooxygenase-2 and decreased the production of prostaglandin (PG) F(2α) in the early phase of adipogenesis, which PG suppresses the progression of adipogenesis via the PGF(2α) receptor. Furthermore, niacin decreased the C/EBPβ level in the early phase of adipogenesis. These results indicate that niacin promoted adipogenesis by suppressing the production of the anti-adipogenic PGF(2α) through down-regulation of C/EBPβ-activated cyclooxygenase-2 expression in adipocytes.  相似文献   

18.
19.
Mammalian genomes are punctuated by DNA sequences containing an atypically high frequency of CpG sites (CpG islands; CGIs) that are associated with the majority of annotated gene promoters. Methylated C bases of CpG sites inhibit the expression of downstream genes. During the differentiation of 3T3-L1 preadipocytes, the CCAAT/enhancer-binding protein (C/EBP) β gene plays an important role. We studied the CpG island methylation status of the C/EBP β promoter and its relationship with the GATA-2 protein. We used computer analysis to determine that the C/EBP β promoter sequence is rich in CGIs, and observed that two of seven methylated C bases were demethylated during the preadipocyte differentiation using bisulfite sequencing PCR (BSP). This corresponded with the onset of notable C/EBP β gene expression. Immunofluorescence and molecular docking showed that the GATA-2 protein binds the C/EBP β promoter in front of the first demethylated CpG site. We also found that expression of GATA-2 and C/EBP β proteins is negatively correlated. These results indicate that the methylated C bases in the C/EBP β promoter relate to expression of the C/EBP β gene, and that its demethylation is linked with GATA-2 protein association.  相似文献   

20.
Autophagy is a highly conserved self-digestion pathway involved in various physiological and pathophysiological processes. Recent studies have implicated a pivotal role of autophagy in adipocyte differentiation, but the molecular mechanism for its role and how it is regulated during this process are not clear. Here, we show that CCAAT /enhancer-binding protein β (C/EBPβ), an important adipogenic factor, is required for the activation of autophagy during 3T3-L1 adipocyte differentiation. An autophagy-related gene, Atg4b, is identified as a de novo target gene of C/EBPβ and is shown to play an important role in 3T3-L1 adipocyte differentiation. Furthermore, autophagy is required for the degradation of Klf2 and Klf3, two negative regulators of adipocyte differentiation, which is mediated by the adaptor protein p62/SQSTM1. Importantly, the regulation of autophagy by C/EBPβ and the role of autophagy in Klf2/3 degradation and in adipogenesis are further confirmed in mouse models. Our data describe a novel function of C/EBPβ in regulating autophagy and reveal the mechanism of autophagy during adipocyte differentiation. These new insights into the molecular mechanism of adipose tissue development provide a functional pathway with therapeutic potential against obesity and its related metabolic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号