首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蜘蛛丝蛋白研究进展   总被引:4,自引:0,他引:4  
由于蜘蛛丝蛋白分子高度重复的一级结构、特殊的溶解特性和分子折叠行为以及具有形成非凡力学特性丝纤维的能力而引人注目。本文从蛛丝蛋白基因、天然蛛丝形成过程、蛛丝蛋白的基因工程生产及蛛丝蛋白的应用前景等几个方面着重介绍了近20年来对蛛丝蛋白的研究进展。围绕蛛丝蛋白展开的研究将有助于揭示蛋白质一级结构、蛋白质分子折叠与蛋白质大分子特性之间的内在联系。  相似文献   

2.
Spider major ampullate silk is a high-performance biomaterial that has received much attention. However, most studies ignore plasticity in silk properties. A better understanding of silk plasticity could clarify the relative importance of chemical composition versus processing of silk dope for silk properties. It could also provide insight into how control of silk properties relates to spider ecology and silk uses. We compared silk plasticity (defined as variation in the properties of silk spun by a spider under different conditions) between three spider clades in relation to their anatomy and silk biochemistry. We found that silk plasticity exists in RTA clade and orbicularian spiders, two clades that differ in their silk biochemistry. Orbiculariae seem less dependent on external spinning conditions. They probably use a valve in their spinning duct to control friction forces and speed during spinning. Our results suggest that plasticity results from different processing of the silk dope in the spinning duct. Orbicularian spiders seem to display better control of silk properties, perhaps in relation to their more complex spinning duct valve.  相似文献   

3.
As a promising biomaterial with numerous potential applications, various types of synthetic spider silk fibers have been produced and studied in an effort to produce man-made fibers with mechanical and physical properties comparable to those of native spider silk. In this study, two recombinant proteins based on Nephila clavipes Major ampullate Spidroin 1 (MaSp1) consensus repeat sequence were expressed and spun into fibers. Mechanical test results showed that fiber spun from the higher molecular weight protein had better overall mechanical properties (70 KD versus 46 KD), whereas postspin stretch treatment in water helped increase fiber tensile strength significantly. Carbon-13 solid-state NMR studies of those fibers further revealed that the postspin stretch in water promoted protein molecule rearrangement and the formation of β-sheets in the polyalanine region of the silk. The rearrangement correlated with improved fiber mechanical properties and indicated that postspin stretch is key to helping the spider silk proteins in the fiber form correct secondary structures, leading to better quality fibers.  相似文献   

4.
Since thousands of years humans have utilized insect silks for their own benefit and comfort. The most famous example is the use of reeled silkworm silk from Bombyx mori to produce textiles. In contrast, despite the more promising properties of their silk, spiders have not been domesticated for large-scale or even industrial applications, since farming the spiders is not commercially viable due to their highly territorial and cannibalistic nature. Before spider silks can be copied or mimicked, not only the sequence of the underlying proteins but also their functions have to be resolved. Several attempts to recombinantly produce spider silks or spider silk mimics in various expression hosts have been reported previously. A new protein engineering approach, which combines synthetic repetitive silk sequences with authentic silk domains, reveals proteins that closely resemble silk proteins and that can be produced at high yields, which provides a basis for cost-efficient large scale production of spider silk-like proteins.  相似文献   

5.
Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring 1,2. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion.Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel 3. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences 4. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands.Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk] 5,6, tubuliform [synthesizes egg case silk] 7,8, flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg case threads] 9 and pyriform [produces attachment disc silk] 10. This approach is based upon anesthetizing the spider with carbon dioxide gas, subsequent separation of the cephalothorax from the abdomen, and microdissection of the abdomen to obtain the silk-producing glands. Following the separation of the different silk-producing glands, these tissues can be used to retrieve different macromolecules for distinct biochemical analyses, including quantitative real-time PCR, northern- and western blotting, mass spectrometry (MS or MS/MS) analyses to identify new silk protein sequences, search for proteins that participate in the silk assembly pathway, or use the intact tissue for cell culture or histological experiments.  相似文献   

6.
As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks.  相似文献   

7.
Although phylogenetic studies have shown covariation between the properties of spider major ampullate (MA) silk and web building, both spider webs and silks are highly plastic so we cannot be sure whether these traits functionally covary or just vary across environments that the spiders occupy. As MaSp2‐like proteins provide MA silk with greater extensibility, their presence is considered necessary for spider webs to effectively capture prey. Wolf spiders (Lycosidae) are predominantly non‐web building, but a select few species build webs. We accordingly collected MA silk from two web‐building and six non‐web‐building species found in semirural ecosystems in Uruguay to test whether the presence of MaSp2‐like proteins (indicated by amino acid composition, silk mechanical properties and silk nanostructures) was associated with web building across the group. The web‐building and non‐web‐building species were from disparate subfamilies so we estimated a genetic phylogeny to perform appropriate comparisons. For all of the properties measured, we found differences between web‐building and non‐web‐building species. A phylogenetic regression model confirmed that web building and not phylogenetic inertia influences silk properties. Our study definitively showed an ecological influence over spider silk properties. We expect that the presence of the MaSp2‐like proteins and the subsequent nanostructures improves the mechanical performance of silks within the webs. Our study furthers our understanding of spider web and silk co‐evolution and the ecological implications of spider silk properties.  相似文献   

8.

Background

Several materials have been used for tissue engineering purposes, since the ideal matrix depends on the desired tissue. Silk biomaterials have come to focus due to their great mechanical properties. As untreated silkworm silk has been found to be quite immunogenic, an alternative could be spider silk. Not only does it own unique mechanical properties, its biocompatibility has been shown already in vivo. In our study, we used native spider dragline silk which is known as the strongest fibre in nature.

Methodology/Principal Findings

Steel frames were originally designed and manufactured and woven with spider silk, harvesting dragline silk directly out of the animal. After sterilization, scaffolds were seeded with fibroblasts to analyse cell proliferation and adhesion. Analysis of cell morphology and actin filament alignment clearly revealed adherence. Proliferation was measured by cell count as well as determination of relative fluorescence each after 1, 2, 3, and 5 days. Cell counts for native spider silk were also compared with those for trypsin-digested spider silk. Spider silk specimens displayed less proliferation than collagen- and fibronectin-coated cover slips, enzymatic treatment reduced adhesion and proliferation rates tendentially though not significantly. Nevertheless, proliferation could be proven with high significance (p<0.01).

Conclusion/Significance

Native spider silk does not require any modification to its application as a biomaterial that can rival any artificial material in terms of cell growth promoting properties. We could show adhesion mechanics on intracellular level. Additionally, proliferation kinetics were higher than in enzymatically digested controls, indicating that spider silk does not require modification. Recent findings concerning reduction of cell proliferation after exposure could not be met. As biotechnological production of the hierarchical composition of native spider silk fibres is still a challenge, our study has a pioneer role in researching cellular mechanics on native spider silk fibres.  相似文献   

9.

Background

Spider silk is a tear-resistant and elastic biopolymer that has outstanding mechanical properties. Additionally, exiguous immunogenicity is anticipated for spider silks. Therefore, spider silk represents a potential ideal biomaterial for medical applications. All known spider silk proteins, so-called spidroins, reveal a composite nature of silk-specific units, allowing the recombinant production of individual and combined segments.

Results

In this report, a miniaturized spidroin gene, named VSO1 that contains repetitive motifs of MaSp1 has been synthesized and combined to form multimers of distinct lengths, which were heterologously expressed as elastin-like peptide (ELP) fusion proteins in tobacco. The elastic penetration moduli of layered proteins were analyzed for different spidroin-based biopolymers. Moreover, we present the first immunological analysis of synthetic spidroin-based biopolymers. Characterization of the binding behavior of the sera after immunization by competitive ELISA suggested that the humoral immune response is mainly directed against the fusion partner ELP. In addition, cytocompatibility studies with murine embryonic fibroblasts indicated that recombinant spidroin-based biopolymers, in solution or as coated proteins, are well tolerated.

Conclusion

The results show that spidroin-based biopolymers can induce humoral immune responses that are dependent on the fusion partner and the overall protein structure. Furthermore, cytocompatibility assays gave no indication of spidroin-derived cytotoxicity, suggesting that recombinant produced biopolymers composed of spider silk-like repetitive elements are suitable for biomedical applications.

Electronic supplementary material

The online version of this article (doi:10.1186/s12896-015-0123-2) contains supplementary material, which is available to authorized users.  相似文献   

10.
In the last two decades it was shown that plants have a great potential for production of specific heterologous proteins. But high cost and inefficient downstream processing are a main technical bottleneck for the broader use of plant‐based production technology especially for protein‐based products, for technical use as fibres or biodegradable plastics and also for medical applications. High‐performance fibres from recombinant spider silks are, therefore, a prominent example. Spiders developed rather different silk materials that are based on proteins. These spider silks show excellent properties in terms of elasticity and toughness. Natural spider silk proteins have a very high molecular weight, and it is precisely this property which is thought to give them their strength. Transgenic plants were generated to produce ELPylated recombinant spider silk derivatives. These fusion proteins were purified by Inverse Transition Cycling (ITC) and enzymatically multimerized with transglutaminase in vitro. Layers produced by casting monomers and multimers were characterized using atomic force microscopy (AFM) and AFM‐based nanoindentation. The layered multimers formed by mixing lysine‐ and glutamine‐tagged monomers were associated with the highest elastic penetration modulus.  相似文献   

11.
Biology of spider silk.   总被引:1,自引:0,他引:1  
Studies are beginning to show that spider silk can be highly variable in chemical composition and mechanical properties. Clearly, both external and internal conditions affect silk production and thus the mechanical properties of the finished thread. An argument can be made that silk is optimised for a wide range of conditions rather than maximised for strength or toughness. Moreover, it seems that the spider is able to induce rapid and temporary adaptations of silk properties.  相似文献   

12.
Spider silk has been studied extensively for its attractive mechanical properties and potential applications in medicine and industry. The production of spider silk, however, has been lagging behind for lack of suitable systems. Our approach focuses on solving the production of spider silk by designing, expressing, purifying and characterizing the silk from cylindriform glands. We show that the cylindriform silk protein, in contrast to the commonly used dragline silk protein, is fully folded and stable in solution. With the help of GFP as a fusion tag we enhanced the expression of the silk protein in Escherichia coli and could optimize the downstream processing. Secondary structures analysis by circular dichroism and FTIR shows that the GFP‐silk fusion protein is predominantly α‐helical, and that pH can trigger a α‐ to β‐transition resulting in aggregation. Structural analysis by small angle X‐ray scattering suggests that the GFP‐Silk exists in the form of a hexamer in solution. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 378–390, 2014.  相似文献   

13.
Microbial production of spider silk proteins.   总被引:9,自引:0,他引:9  
The remarkable properties of spider dragline silk and related protein polymers will find many applications if the materials can be produced economically. We have demonstrated the production of high molecular weight spider dragline silk analog proteins encoded by synthetic genes in several microbial systems, including Escherichia coli and Pichia pastoris. In E. coli, proteins of up to 1000 amino acids in length could be produced efficiently, but the yield and homogeneity of higher molecular weight silk proteins were found to be limited by truncated synthesis, probably as a result of ribosome termination errors. No such phenomenon was observed in the yeast P. pastoris, where higher molecular weight silk proteins could be produced without heterogeneity due to truncated synthesis. Spider dragline silk analog proteins could be secreted by P. pastoris when fused to both the signal sequence and N-terminal pro-sequence of the Saccharomyces cerevisiae alpha-mating factor gene.  相似文献   

14.
Due to their biocompatibility, biodegradability, and low immunogenicity, recombinant spider silk proteins have a high potential for a variety of applications when processed into morphologies such as films, capsules, beads, or hydrogels. Here, hydrogels made of the engineered and recombinantly produced spider silk protein eADF4(C16) were analyzed in detail. It has previously been shown that eADF4(C16) nanofibrils self-assemble by a mechanism of nucleation-aggregation, providing the basis of silk hydrogels. We focused on establishing a reproducible gelation process by employing different protein concentrations, chemical crosslinking, and functionalization of eADF4(C16) with fluorescein. Fluorescein strongly influenced assembly as well as the properties of the hydrogels, such as pore sizes and mechanical behavior, possibly due to its interference with packing of silk nanofibrils during hydrogel formation.  相似文献   

15.
Dragline spider silk has been intensively studied for its superior qualities as a biomaterial. In previous studies, we made use of the baculovirus mediated expression system for the production of a recombinant Araneus diadematus spider silk dragline ADF4 protein and its self‐assembly into intricate fibers in host insect cells. In this study, our aim was to explore the function of the major repetitive domain of the dragline spider silk. Thus, we generated an array of synthetic proteins, each containing a different number of identical repeats up to the largest recombinantly expressed spider silk to date. Study of the self‐assembly properties of these proteins showed that depending on the increasing number of repeats they give rise to different assembly phenotypes, from a fully soluble protein to bona fide fibers with superior qualities. The different assembly forms, the corresponding chemical resistance properties obtained as well as ultrastructural studies, revealed novel insights concerning the structure and intermolecular interactions of the repetitive and nonrepetitive domains. Based on these observations and current knowledge in the field, we hereby present a comprehensive hypothetical model for the mechanism of dragline silk self‐assembly and fiber formation. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 458–468, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

16.
Spider silks are characterized by remarkable diversity in their chemistry, structure and functions, ranging from orb web construction to adhesives and cocoons. These unique materials have prompted efforts to explore potential applications of spider silk equivalent to those of silkworm silks, which have undergone 5,000 years of domestication and have a variety of uses, from textiles to biomedical materials. Recent progress in genetic engineering of spider silks and the development of new chimeric spider silks with enhanced functions and specific characteristics have advanced spider silk technologies. Further progress in yields of expressed spider-silk proteins, in the control of self-assembly processes and in the selective exploration of material applications is anticipated in the future. The unique features of spider silks, the progress and challenges in the cloning and expression of these silks, environmentally triggered silk assembly and disassembly and the formation of fibers, films and novel chimeric composite materials from genetically engineered spider silks will be reviewed.  相似文献   

17.
Spider silk is renowned for its high tensile strength, extensibility and toughness. However, the variability of these material properties has largely been ignored, especially at the intra-specific level. Yet, this variation could help us understand the function of spider webs. It may also point to the mechanisms used by spiders to control their silk production, which could be exploited to expand the potential range of applications for silk. In this study, we focus on variation of silk properties within different regions of cobwebs spun by the common house spider, Achaearanea tepidariorum. The cobweb is composed of supporting threads that function to maintain the web shape and hold spiders and prey, and of sticky gumfooted threads that adhere to insects during prey capture. Overall, structural properties, especially thread diameter, are more variable than intrinsic material properties, which may reflect past directional selection on certain silk performance. Supporting threads are thicker and able to bear higher loads, both before deforming permanently and before breaking, compared with sticky gumfooted threads. This may facilitate the function of supporting threads through sustained periods of time. In contrast, sticky gumfooted threads are more elastic, which may reduce the forces that prey apply to webs and allow them to contact multiple sticky capture threads. Therefore, our study suggests that spiders actively modify silk material properties during spinning in ways that enhance web function.  相似文献   

18.
Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4–2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms.  相似文献   

19.
Transgenic modification of Bombyx mori silkworms is a benign approach for the production of silk fibers with extraordinary properties and also to generate therapeutic proteins and other biomolecules for various applications. Silk fibers with fluorescence lasting more than a year, natural protein fibers with strength and toughness exceeding that of spider silk, proteins and therapeutic biomolecules with exceptional properties have been developed using transgenic technology. The transgenic modifications have been done primarily by modifying the silk sericin and fibroin genes and also the silk producing glands. Although the genetic modifications were typically performed using the sericin 1 and other genes, newer techniques such as CRISPR/Cas9 have enabled successful modifications of both the fibroin H-chain and L-chain. Such modifications have led to the production of therapeutic proteins and other biomolecules in reasonable quantities at affordable costs for tissue engineering and other medical applications. Transgenically modified silkworms also have distinct and long-lasting fluorescence useful for bioimaging applications. This review presents an overview of the transgenic techniques for modifications of B. mori silkworms and the properties obtained due to such modifications with particular focus on production of growth factors, fluorescent proteins, and high performance protein fibers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号