首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extensive body of research on the structural properties of cytochrome P450 enzymes has established that these proteins possess a b-type heme prosthetic group which is noncovalently bound at the active site. Coordinate, electrostatic, and hydrogen bond interactions between the protein backbone and heme functional groups are readily overcome upon mild acid treatment of the enzyme, which releases free heme from the protein. In the present study, we have used a combination of HPLC, LC/ESI-MS, and SDS-PAGE techniques to demonstrate that members of the mammalian CYP4B, CYP4F, and CYP4A subfamilies bind their heme in an unusually tight manner. HPLC chromatography of CYP4B1 on a POROS R2 column under mild acidic conditions caused dissociation of less than one-third of the heme from the protein. Moreover, heme was not substantially removed from CYP4B1 under electrospray or electrophoresis conditions that readily release the prosthetic group from other non-CYP4 P450 isoforms. This was evidenced by an intact protein mass value of 59,217 +/- 3 amu for CYP4B1 (i.e., apoprotein plus heme) and extensive staining of this approximately 60 kDa protein with tetramethylbenzidine/H(2)O(2) following SDS-PAGE. In addition, treatment of CYP4B1, CYP4F3, and CYP4A5/7 with strong base generated a new, chromatographically distinct, polar heme species with a mass of 632.3 amu rather than 616.2 amu. This mass shift is indicative of the incorporation of an oxygen atom into the heme nucleus and is consistent with the presence of a novel covalent ester linkage between the protein backbone of the CYP4 family of mammalian P450s and their heme catalytic center.  相似文献   

2.
In order to obtain cDNA clones coding for CYP4 proteins in frog Xenopus laevis, degenerate primers were designed utilizing the conserved sequences of known CYP4s and were used to amplify partial cDNA fragments from liver mRNA. Five new CYP genes were identified. Three of these genes, XL-1, -2 and -3, were assigned to the CYP4T subfamily found previously in fish and amphibians. The other two genes, XL-4 and XL-5, were quite similar to CYP4F and CYP4V subfamilies, respectively. Subsequently, two full-length cDNA clones corresponding to XL-4 and XL-5 were isolated and characterized. The resultant cDNAs, designated as CYP4F42 and CYP4V4, had open reading frames encoding proteins of 528 and 520 residues, respectively. RT-PCR analysis indicated that the expression of CYP4F42 was limited to the liver, kidney, intestine and brain. In contrast, CYP4V4 mRNA was expressed ubiquitously.  相似文献   

3.
Typical cytochrome P450s secure the heme prosthetic group with a cysteine thiolate ligand bound to the iron, electrostatic interactions with the heme propionate carboxylates, and hydrophobic interactions with the heme periphery. In addition to these interactions, CYP4B1 covalently binds heme through a monoester link furnished, in part, by a conserved I-helix acid, Glu310. Chromatography, mass spectrometry, and NMR have now been utilized to identify the site of attachment on the heme. Native CYP4B1 covalently binds heme solely at the C-5 methyl position. Unexpectedly, recombinant CYP4B1 from insect cells and Escherichia coli also bound their heme covalently at the C-8 methyl position. Structural heterogeneity may be common among recombinant CYP4 proteins because CYP4A3 exhibited this duality. Attempts to evaluate functional heterogeneity were complicated by the complexity of the system. The phenomenon of covalent heme binding to P450 provides a novel method for assessing microheterogeneity in heme orientation and raises questions about the fidelity of heme incorporation in recombinant systems.  相似文献   

4.
Cloning and characterization of the rat cytochrome P450 4F5 (CYP4F5) gene   总被引:1,自引:0,他引:1  
Cui X  Strobel HW 《Gene》2002,300(1-2):179-187
The analysis of a non-redundant set of human proteins, for which both the crystallographic structures and the corresponding gene sequences are available, show that bases at third codon position are non-uniformly distributed along the coding sequences. Significant compositional differences are found by comparing the gene regions corresponding to the different secondary structures of the proteins. Inter-and intra-structure differences were most pronounced in the GC-richest genes. These results are not compatible with any proposed hypotheses based on a neutral process of formation/maintenance of the high GC3 levels of the genes localized in the GC-richest isochores of the human genome.  相似文献   

5.
The cytochrome P450 (CYP) 4 family of enzymes contains several recently identified membersthat are referred to as “orphan P450s” because their endogenous substrates are unknown.Human CYP4V2 and CYP4F22 are two such orphan P450s that are strongly linked to ocular andskin disease, respectively. Genetic analyses have identified a wide spectrum of mutations in the CYP4V2gene from patients suffering from Bietti’s crystalline corneoretinal dystrophy, and mutations in theCYP4F22 gene have been linked to lamellar ichthyosis. The strong gene–disease associations provideunique opportunities for elucidating the substrate specificity of these orphan P450s and unraveling thebiochemical pathways that may be impacted in patients with CYP4V2 and CYP4F22 functional deficits.  相似文献   

6.
The prosthetic heme group in the CYP4A family of cytochrome P450 enzymes is covalently attached to an I-helix glutamic acid residue. This glutamic acid is conserved in the CYP4 family but is absent in other P450 families. As shown here, the glutamic acid is linked, presumably via an ester bond, to a hydroxyl group on the heme 5-methyl group. Mutation of the glutamic acid to an alanine in CYP4A1, CYP4A3, and CYP4A11 suppresses covalent heme binding. In wild-type CYP4A3 68% of the heme is covalently bound to the heterologously expressed protein, but in the CYP4A3/E318D mutant, 47% of the heme is unchanged, 47% is present as noncovalently bound 5-hydroxymethylheme, and only 6% is covalently bound to the protein. In the CYP4A3/E318Q mutant, the majority of the heme is unaltered, and <2% is covalently linked. The proportion of covalently bound heme in the recombinant CYP4A proteins increases with time under turnover conditions. The catalytic activity is sensitive in some, but not all, CYP4A enzymes to the extent of covalent heme binding. Mutations of Glu(318) in CYP4A3 decrease the apparent k(cat) values for lauric acid hydroxylation. The key conclusions are that (a) covalent heme binding occurs via an ester bond to the heme 5-methyl group, (b) covalent binding of the heme is mediated by an autocatalytic process, and (c) fatty acid oxidation is sensitive in some CYP4A enzymes to the presence or absence of the heme covalent link.  相似文献   

7.
8.
Previous studies on mammalian peroxidases and cytochrome P450 family 4 enzymes have shown that a carboxylic group positioned close to a methyl group of the prosthetic heme is required for the formation of a covalent link between a protein carboxylic acid side chain and the heme. To determine whether there are additional requirements for covalent bond formation in the P450 enzymes, a glutamic acid or an aspartic acid has been introduced into P450(cam) close to the heme 5-methyl group. Spectroscopic and kinetic studies of the resulting G248E and G248D mutants suggest that the carboxylate group coordinates with the heme iron atom, as reported for a comparable P450(BM3) mutant [Girvan, H. M., Marshall, K. R., Lawson, R. J., Leys, D., Joyce, M. G., Clarkson, J., Smith, W. E., Cheesman, M. R., and Munro, A. W. (2004) J. Biol. Chem. 279, 23274-23286]. The two P450(cam) mutants have low catalytic activity, but in contrast to the P450(BM3) mutant, incubation of the G248E (but not G248D) mutant with camphor, putidaredoxin, putidaredoxin reductase, and NADH results in partial covalent binding of the heme to the protein. No covalent attachment is observed in the absence of camphor or any of the other reaction components. Pronase digestion of the G248E P450(cam) mutant after covalent attachment of the heme releases 5-hydroxyheme, establishing that the heme is covalently attached through its 5-methyl group as predicted by in silico modeling. The results establish that a properly positioned carboxyl group is the sole requirement for autocatalytic formation of a heme-protein link in P450 enzymes, but also show that efficient covalent binding requires placement of the carboxyl close to the methyl but in a manner that prevents strong coordination to the iron atom.  相似文献   

9.
Phylogenetic and functional analyses of the cytochrome P450 family 4   总被引:1,自引:0,他引:1  
Cytochrome P450 family 4 (CYP4) proteins metabolize fatty acids, eicosanoids, and vitamin D and are important for chemical defense. The purpose of this study was to determine the evolutionary relationships between vertebrate CYP4 subfamilies and raise functional hypotheses regarding CYP4 subfamilies with little empirical data. 132 CYP4 sequences from 28 species were utilized for phylogenetic reconstructions by maximum likelihood and Bayesian inference. Monophyly was not found with the CYP4T and CYP4B subfamilies. CYP4V clustered with invertebrate subfamilies. Evolutionary rates of functional divergence were high in pairwise comparison with CYP4X yet, comparisons with mammalian CYP4F22 genes generally had no statistically significant divergence. Radical biochemical changes were detected in regions associated with substrate binding and the active site in comparisons among the CYP4A, CYP4X, and CYP4B subfamilies. Lastly, gene expression patterns, determined in silico with EST libraries from human, chicken, frog and fish, for CYP4V was markedly different between human and actinopterygian species. Further consideration should be given to the nomenclature of the CYP4T and CYP4B subfamily genes. Strong support was seen for the placement of CYP4A as a basal subfamily to CYP4X and CYP4Z. The B, B', J', K', K″ helices and a region at the end of C-terminus were suggested as conserved regions in CYP4 genes. The function of CYP4X was hypothesized to specialize in metabolism of long chain fatty acids. CYP4F22 genes may share a similar function to other CYP4F genes, although gene expression sites were different.  相似文献   

10.
A burst of evolutionary duplication upon land colonization seems to have led to the large superfamily of cytochromes P450 in higher plants. Within this superfamily some clans and families are heavily duplicated. Others, such as genes involved in the phenylpropanoid pathway have led to fewer duplication events. Eight coding sequences belonging to the CYP98 family reported to catalyze the 3-hydroxylation step in this pathway were isolated from Triticum aestivum (wheat) and expressed in yeast. Comparison of the catalytic properties of the recombinant enzymes with those of CYP98s from other plant taxa was coupled to phylogenetic analyses. Our results indicate that the unusually high frequency of gene duplication in the wheat CYP98 family is a direct or indirect result from ploidization. While ancient duplication led to evolution of enzymes with different substrate preferences, most of recent duplicates underwent silencing via degenerative mutations. Three of the eight tested CYP98s from wheat have phenol meta-hydroxylase activity, with p-coumaroylshikimate being the primary substrate for all of these, as it is the case for CYP98s from sweet basil and Arabidopsis thaliana. However, CYP98s from divergent taxa have acquired different additional subsidiary activities. Some of them might be significant in the metabolism of various free or conjugated phenolics in different plant species. One of the most significant is meta-hydroxylation of p-coumaroyltyramine, predominantly by the wheat enzymes, for the synthesis of suberin phenolic monomers. Homology modeling, confirmed by directed mutagenesis, provides information on the protein regions and structural features important for some observed changes in substrate selectivity. They indicate that the metabolism of quinate ester and tyramine amide of p-coumaric acid rely on the same recognition site in the protein.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

11.
Three cytochrome P450 monooxygenases belonging to the CYP52 family were isolated from the genome of the sophorolipid-producing yeast Candida bombicola using degenerate PCR and genomic walking. One gene displayed high identity with the CYP52E members and was classified into this group ( CYP52E3 ), whereas the other genes belonged to new groups: CYP52M and CYP52N. CYP52E3 and CYP52N1 turned out to be of no relevance for sophorolipid production, but show clear upregulation when the yeast cells are grown on alkanes as the sole carbon source. On the other hand, CYP52M1 is clearly upregulated during sophorolipid synthesis and very likely takes part in sophorolipid formation.  相似文献   

12.
Genetic variants of cytochrome P450 4F2 (CYP4F2) gene have been suggested to be risk factors for hypertension, cardiovascular diseases and stroke. In the present case–control study we investigated the association of 1347 G/A polymorphism (rs2108622) in the 11th exon region of CYP4F2 gene with hypertension, ischemic stroke and stroke subtypes classified according to TOAST (Trial of Org 10172 in Acute Stroke Treatment) classification. Five hundred and seven stroke patients (hypertensives: normotensives = 279:228) and four hundred and eighty seven, age and sex matched controls (males: females = 356:131) (hypertensives: normotensives = 148:339) were involved in the study. The genotypes were determined by PCR-RFLP technique. Genotypes were confirmed by subjecting the PCR products to sequencing. Significant difference was observed in the genotypic distribution and allelic frequency between the stroke patients and healthy controls. AA genotype and A allele associated significantly with stroke and hypertension [P = 0.009; OR = 1.59 (95% CI = 1.119–2.283) and P = 0.010; OR = 1.26 (95% CI = 1.056–1.502); P = 0.01; OR = 1.58 (95% CI = 1.11–2.272) and P = 0.010; OR = 1.25(95% CI = 1.054–1.504) respectively]. A stepwise logistic regression analysis confirmed these findings. To establish that this polymorphism is associated with stroke independent of hypertension; we compared stroke patients without hypertension with normotensive controls. Significant difference was observed in genotypic distribution and allelic frequency between the two groups (P = 0.001 and 0.002 respectively). Evaluating the association of this polymorphism with stroke subtypes we found significant associations with cardioembolic stroke (P < 0.001). In conclusion our study suggests that 1347A allele of CYP4F2 gene is an important risk factor for hypertension and ischemic stroke.  相似文献   

13.
Here we describe for the first time the formation of a complex of reduced CYP102 (cytochrome P450 BM-3) heme domain with molecular oxygen. To stabilize the oxycomplex, the experiments had to be done under argon atmosphere at cryogenic temperatures (-25 degrees C) in the presence of 50% glycerol. The spectral properties of this species were different from those of another P450-type autosuffisant enzyme, i.e., the neuronal nitric oxide synthase. On the contrary, the oxyferrous complex of CYP102 possesses spectral properties similar to those of complexes of microsomal cytochromes P450, e.g., CYP2B4.  相似文献   

14.
The function of CYP4 genes in insects is poorly understood. Some CYP genes are up-regulated by ecdysteroids and a number of Cyp4 genes in Drosophila melanogaster have been shown by microarray to be down-regulated when the ecdysteroid titre is high, suggesting hormonal regulation. Here, we report the utilization of certain cloned CYP4 cDNAs/fragments to probe their developmental/tissue expression in the Lepidopteran, Spodoptera littoralis, including the effects of ecdysteroid receptor agonists (bis-acyl hydrazines). CYP4L8 is expressed essentially throughout the final larval instar of S. littoralis and, together with CYP4M12, is down-regulated by agonist. Furthermore, expression of these genes occurs in midgut, but is undetectable in brain, fat body, and integument. Similarly, in D. melanogaster, Cyp4ac1, Cyp4ac3, Cyp4ad1 and Cyp4d1 gene expression is drastically down-regulated by ecdysteroid agonist. The significance of the results is discussed in relation to the plausible functions of the CYP4 genes in Lepidoptera and mechanisms of down-regulation.  相似文献   

15.
16.
Many cytochrome P450 (P450)-dependent reactions have been shown to be stimulated by another microsomal protein, cytochrome b(5) (b(5)). Two major explanations are (i) direct electron transfer from b(5) and (ii) a conformational effect in the absence of electron transfer. Some P450s (e.g. 3A4, 2C9, 17A, and 4A7) are stimulated by either b(5) or b(5) devoid of heme (apo-b(5)), indicating a lack of electron transfer, whereas other P450s (e.g. 2E1) are stimulated by b(5) but not by apo-b(5). Recently, a proposal has been made by Guryev et al. (Biochemistry 40, 5018-5031, 2001) that the stimulation by apo-b(5) can be explained only by transfer of heme from P450 preparations to apo-b(5), enabling electron transfer. We have repeated earlier findings of stimulation of catalytic activity of testosterone 6beta-hydroxylation activities with four P450 preparations, in which nearly all of the heme was accounted for as P450. Spectral analysis of mixtures indicated that only approximately 5% of the heme can be transferred to apo-b(5), which cannot account for the observed stimulation. The presence of the heme scavenger apomyoglobin did not inhibit the stimulation of P450 3A4-dependent testosterone or nifedipine oxidation activity. Further evidence against the presence of loosely bound P450 3A4 heme was provided in experiments with apo-heme oxygenase, in which only 3% of the P450 heme was converted to biliverdin. Finally, b(5) supported NADH-b(5) reductase/P450 3A4-dependent testosterone 6beta-hydroxylation, but apo-b(5) did not. Thus, apo-b(5) can stimulate P450 3A4 reactions as well as b(5) in the absence of electron transfer, and heme transfer from P450 3A4 to apo-b(5) cannot be used to explain the catalytic stimulation.  相似文献   

17.
Cui X  Nelson DR  Strobel HW 《Genomics》2000,68(2):161-166
By a combination of cDNA library screening and rapid amplification of cDNA ends analysis, a novel human cytochrome P450 4F isoform has been cloned and sequenced. The new 4F isoform is designated CYP4F11 and contains 1765 nucleotides. The coding region encodes 524 amino acid residues, and the heme-binding region is highly conserved. The CYP4F11 amino acid sequence has 80.0, 82.3, and 79.2% identity to CYP4F2, CYP4F3, and CYP4F8 amino acid sequences, respectively. In vitro translation shows the molecular mass of CYP4F11 is approximately 57 kDa, consistent with the calculated molecular mass. CYP4F11 is expressed mainly in human liver, followed by kidney, heart, and skeletal muscle. The genomic structure of CYP4F11 was solved by database searching and computer analysis. The coding region of CYP4F11 has 12 exons. The CYP4F11 gene is located 16 kb upstream of the CYP4F2 gene on chromosome 19. This is consistent with the notion that the human cytochrome P450 4F genes form a cluster on chromosome 19.  相似文献   

18.
Bioinformatic analysis and site-directed mutagenesis allowed identification of the determinants of catalysis for CYP74, which are located in the central part of the I-helix and ERR triad. Mutations K302S and T366Y in tomato allene oxide syntase LeAOS3 induced possession of hydroperoxide lyase activity. In contrast to the wild-type MtHPL enzyme that produces C12-aldoacid, mutant forms F284I, F287V, G288I, N285A, and N285T of alfalfa hydroperoxide lyase MtHPL synthesized C13- and C11-fragments. Our data provide evidence that the CYP74 family originated from a common ancestor with hydroperoxide lyase activity.  相似文献   

19.
The heme in lactoperoxidase is attached to the protein by ester bonds between the heme 1- and 5-methyl groups and Glu-375 and Asp-275, respectively. To investigate the cross-linking process, we have examined the D225E, E375D, and D225E/E375D mutants of bovine lactoperoxidase. The heme in the E375D mutant is only partially covalently bound, but exposure to H(2)O(2) results in complete covalent binding and a fully active protein. Digestion of this mutant shows that the heme is primarily bound through its 5-methyl group. Excess H(2)O(2) increases the proportion of the doubly linked species without augmenting enzyme activity. The D225E mutant has little covalently bound heme and a much lower activity, neither of which are significantly increased by the addition of heme and H(2)O(2). The heme is linked to this protein through a single bond to the 1-methyl group. The D225E/E375D mutant has no covalently bound heme and no activity. A small amount of iron 1-hydroxymethylprotoporphyrin IX is obtained from the wild-type enzyme along with the predominant dihydroxylated derivative. The results establish that a single covalent link suffices to achieve maximum catalytic activity and suggest that the 5-hydroxymethyl bond may form before the 1-hydroxymethyl bond.  相似文献   

20.
Harnessing the isolated protein synthesis machinery, cell‐free protein synthesis reproduces the cellular process of decoding genetic information in artificially controlled environments. More often than not, however, generation of functional proteins requires more than simple translation of genetic sequences. For instance, many of the industrially important enzymes require non‐protein prosthetic groups for biological activity. Herein, we report the complete cell‐free biogenesis of a heme prosthetic group and its integration with concurrent apoenzyme synthesis for the production of functional P450 monooxygenase. Step reactions required for the syntheses of apoenzyme and the prosthetic group have been designed so that these two separate pathways take place in the same reaction mixture, being insulated from each other. Combined pathways for the synthesis of functional P450 monooxygenase were then further integrated with in situ assay reactions to enable real‐time measurement of enzymatic activity during its synthesis. Biotechnol. Bioeng. 2013; 110: 1193–1200. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号