首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The detailed anatomical distribution of iron in the post-mortem human brain has been studied using Perl's and Turnbull's methods with the diaminobenzidine intensification procedure for the demonstration of non-haem Fe3+ and Fe2+, respectively. Attention to methodological procedures has revealed that even brief immersion of tissue in routinely used fixatives causes a reduction of staining intensity in areas of high iron content and, often, loss of staining in areas of low iron content. Optimal staining is obtained using frozen section briefly fixed for 5 min in 4% formalin and Perl's stain (Fe3+) with diaminobenzidine intensification. Highest levels of stainable iron were found in the extrapyramidal system with the globus pallidus, substantia nigra zona reticulata, red nucleus and myelinated fibres of the putamen showing highest staining reactivity. Moderate staining intensity with Perl's technique was found in the majority of forebrain, midbrain and cerebellar structures with the striatum, thalamus, cortex and deep white matter, substantia nigra zona compacta, and cerebellar cortex showing consistent staining patterns with intensification of Perl's stain. The brain-stem and spinal cord generally only showed staining with the intensification procedure and even this was of low intensity. Microscopically the non-heam iron appears to be found predominantly in glial cells as fine cytoplasmic granules which in heavily stained areas coalesce to fill the entire cell. Iron-positive granules appear to be free in the neuropil and also around blood vessels in the globus pallidus, striatum and substantia nigra. The neuropil shows a fibrous impregnation when stained for iron which is, in part, derived from glial processes, myelinated fibres and fibre bundles. Neurones, in general, show only very low reactivity for iron, and this is difficult to discern due, often, to the higher reactivity of the surrounding neuropil. In the globus pallidus and substantia nigra zona reticulata, neurones with highly stainable iron content are found with granular cytoplasmic iron reactivity similar to that seen in the local glial cells. Our results are comparable with those of early workers, but with the use of intensification extend the distribution of non-haem iron to areas previously reported as negative. No apparent correlation of iron staining with known neurotransmitter systems is seen and the predilection for the extrapyramidal system is not easily explained, though the non-haem iron in the brain appears to be as a storage form in the iron storage protein ferritin. The localization of iron in the brain provides a foundation for the study of iron in certain neurodegenerative diseases such as Parkinson's disease, where iron has been implicated in the pathogenesis.  相似文献   

2.
Abstract: Specific [3H]strychnine binding was used to identify the glycine receptor macromolecular complex in human spinal cord, substantia nigra, inferior olivary nucleus, and cerebral cortex. In material from control patients a high-affinity K d (3–8 n m ) was observed in the spinal cord and the substantia nigra, both the pars compacta and the pars reticulata. This is very similar to the values observed in the rat and bovine spinal cord (8 and 3 n m , respectively) and rat substantia nigra (12 n m ). In the human brain the distribution of [3H]strychnine binding (at 10 n m ) was: spinal cord – substantia nigra, pars compacta > substantia nigra, pars reticulata = inferior olivary nucleus > cerebral cortex. The binding capacity ( B max) of the rat brain (substantia nigra or spinal cord) was approximately 10-fold that of the human brain. [ 3 H]Strychnine binding was significantly decreased in the substantia nigra from Parkinson's disease patients, both in the pars compacta (67% of control) and the pars reticulata (50% of control), but not in the inferior olivary nucleus. The results were reproduced in a preliminary experiment in rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. In the substantia nigra from patients who died with Huntington's disease, [3H]strychnine binding tended to be high (150% of control, NS) in both the pars compacta and the reticulata. [3H]Strychnine binding was unaltered in the substantia nigra of patients with senile dementia. Together with previous neurophysiological and neuropharmacological findings, those results support the hypothesis of glycine receptors occurring on dopamine cell bodies and/or dendrites in the substantia nigra.  相似文献   

3.
Abstract: Chemical ionization mass spectrometry was introduced for the assay of GABA in the cat brain. The method is quite simple, sensitive, and specific for quantitative analysis. Study of the regional distribution of the GABA content within the thalamus disclosed that the ventromedial nucleus (VM) of the thalamus had a high concentration of GABA. The VM receives the afferent projection from the zona reticulata of the substantia nigra. The result, together with the results obtained by physiological as well as pharmacological studies, supports the hypothesis that the transmitter substance of the nigrothalamic pathway is GABA.  相似文献   

4.
A highly sensitive electron capture gas chromatographic method was developed for quantitation of γ-hydroxybutyrate (GHB) in tissue. This method involves an improved, extraction and purification procedure and a one-step derivatization of GHB to the methyl ester-O-heptafluorobutyrate. As low as 5 ng of GHB in tissue was accurately quantitated by this method. By means of this improved method, endogenous levels of GHB in several regions of brains obtained post-mortem from patients with Huntington's disease were determined, and compared with brain samples obtained post-mortem from non-neurological controls. The levels of GHB found in the caudate and substantia nigra obtained from Huntington's patients were significantly higher than the GHB levels found in similar regions of brain obtained from a non-neurological control group. The content of GABA in the same choreic and control brain samples was also determined. No significant correlation between changes in GHB and GABA levels was observed although there was a trend towards an inverse relationship. The high level of GHR in Huntington's disease may be related to the decrease in succinate:oxidoreductase (EC 1.3.99.1) activity reported by Stahl & Swanson (1974). In two subjects (one control and one Huntington patient) the zonal distribution of GHB in substantia nigra was also determined. The zona reticulata from choreic brain contained a substantially higher level of GHB, whereas the zona compacta contained an amount similar to the level found in control brain.  相似文献   

5.
Abstract: This study compared the turnover of GABA neurons in different brain areas of the male rat and examined the effect of castration on GABA turnover in regions of the brain associated with the control of gonadotropin secretion. To estimate GABA turnover, GABA was quantified by HPLC in microdissected brain regions 0,30,60,90, and 120 min after inhibition of GABA degradation by aminooxyacetic acid (100 mg/kg, i.p.). GABA accumulation was linear in all areas for 90 min ( p < 0.01), and GABA turnover was estimated as the slope of the line formed by increased GABA concentration versus time, determined by linear regression. There was considerable regional variation both in the initial steady-state concentrations of GABA and in the rates of GABA turnover. Of 10 discrete brain structures, GABA turnover was highest in the medial preoptic nucleus and lowest in the caudate nucleus. Turnover times in the terminal fields of known GABAergic projection neurons ranged sevenfold, from 2.6 h in the substantia nigra to 0.4 h in the lateral vestibular nucleus. The effect of castration on GABA turnover in 13 microdissected brain regions was investigated by measuring regional GABA concentrations before and 30 min after injection of aminooxyacetic acid in intact rats or 2 or 6 days postcastration. Following castration, steady-state GABA concentrations were increased, and GABA turnover decreased in the diagonal band of Broca, the medial preoptic area, and the median eminence. GABA turnover increased in the medial septal nucleus and was unaffected in the cortex, striatum, and hindbrain. These results are consistent with the hypothesis that testosterone negative-feedback control of luteinizing hormone-releasing hormone involves steroid-sensitive GABAergic neurons in the rostral and medial basal hypothalamus.  相似文献   

6.
After rapid inactivation of the enzymes responsible for glucose metabolism by microwave irradiation, concentrations of glucose in 20 regions of the mouse brain were estimated with combined gas chromatography-mass spectrometry (GC-MS). The highest concentrations of glucose were found in the periventricular nuclei of the hypothalamus and nucleus preopticus (P<0.05). The septum and nucleus amygdaloideus showed significantly higher glucose concentration compared with the cerebral neocortex, olfactory bulb, corpus striatum, cingulum, fornix, colliculus inferior, cerebellar cortex, corpus geniculatum laterale, substantia nigra, and nucleus ruber (P<0.05). The glucose concentration in the substantia nigra and nucleus ruber was significantly lower than in the other regions (P<0.01).  相似文献   

7.
Abstract: The somatodendritic release of dopamine in substantia nigra previously has been suggested to be nonvesicular in nature and thus to differ from the classical, exocytotic release of dopamine described for the dopaminergic nerve terminal in striatum. We have compared the effects of reserpine, a compound that disrupts vesicular sequestration of monoamines, on the storage and release of dopamine in substantia nigra and striatum of rats. Reserpine administration (5 mg/kg, i.p.) significantly decreased the tissue level of dopamine in substantia nigra pars reticulata, substantia nigra pars compacta, and striatum. In these brain areas, reserpine-induced reductions in tissue dopamine level occurred within 2 h and persisted at 24 h postdrug. In vivo measurements using microdialysis revealed that reserpine administration rapidly decreased the extracellular dopamine concentration to nondetectable levels in substantia nigra as well as in striatum. In both structures, it was observed that reserpine treatment significantly attenuated the release of dopamine evoked by a high dose of amphetamine (10 mg/kg, i.p.) given 2 h later. In contrast, dopamine efflux in response to a low dose of amphetamine (2 mg/kg, i.p.) was not altered by reserpine pretreatment either in substantia nigra or in striatum. The present data suggest the existence, both at the somatodendritic and at the nerve terminal level, of a vesicular pool of dopamine that is the primary site of transmitter storage and that can be displaced by high but not low doses of amphetamine. The physiological release of dopamine in substantia nigra and in striatum is dependent on the integrity of this vesicular store.  相似文献   

8.
Abstract— A simple and rapid semiautomated assay for GABA in central nervous tissue is described. The method is based on a simple manual procedure of isolating GABA from tissue extracts on small CM Sepharose Cl 6B columns, followed by an automated fluorimetric detection (continuous flow system) with o -phthalaldehyde (OPA) and β-mercapto-ethanol (β-ME) at an alkaline pH. GABA is separated from other compounds that fluoresce in our detection system. By using low concentration of OPA and β-ME and allowing only a short reaction time with these reagents, the detection is specific towards GABA. The detection limit of the assay is 1 nmol.
A procedure is described for the prevention of postmortem GABA increase in rat and mouse brain by intravenous injection of 3-mercapto-propionic acid (1.2 nmol/kg) 2min before decapitating the animal. This treatment and microwave irradiation result in similar GABA levels in mouse brain and substantia nigra tissue from rat brain. We found a great conformity in regional GABA levels in the rat and the mouse brain.  相似文献   

9.
Using an antiserum directed against human calcitonin gene-related peptide (hCGRP), which fully cross reacts with rat CGRP, a sensitive radioimmunoassay was developed. The antiserum was characterized by displacement curve characteristics and high performance liquid chromatography. The assay was applied to rat brain tissue and the concentration of CGRP for 48 microdissected brain areas is presented. Highest levels (1000–4500 fmol/mg protein) were found in the central amygdaloid, caudate putamen, and spinal trigeminal nerve nucleus and tract, substantia gelatinosa, and the dorsal horn of the spinal cord. Moderate levels (200–600 fmol/mg protein) were found in the bed nucleus of the stria terminalis, the subfornical organ, the paraventricular, arcuate, dorsomedial, dorsal parabrachial, ambiguus and tractus solitarii nuclei and in the median eminence. These results coincide with those previously obtained by immunohistochemistry. The widespread distribution in the brain suggests involvement of CGRP in a variety of behavioral functions.  相似文献   

10.
A major output nucleus of the basal ganglia is the substantia nigra pars reticulata, which sends GABAergic projections to brainstem and thalamic nuclei. The GABAergic (GABA) neurons are reciprocally connected with nearby dopaminergic neurons, which project mainly to the basal ganglia, a set of subcortical nuclei critical for goal-directed behaviors. Here we examined the impact of motivational states on the activity of GABA neurons in the substantia nigra pars reticulata and the neighboring dopaminergic (DA) neurons in the pars compacta. Both types of neurons show short-latency bursts to a cue predicting a food reward. As mice became sated by repeated consumption of food pellets, one class of neurons reduced cue-elicited firing, whereas another class of neurons progressively increased firing. Extinction or pre-feeding just before the test session dramatically reduced the phasic responses and their motivational modulation. These results suggest that signals related to the current motivational state bidirectionally modulate behavior and the magnitude of phasic response of both DA and GABA neurons in the substantia nigra.  相似文献   

11.
Using autoradiographic method and 125I-Tyro rat CGRP as a ligand, receptor binding sites were demonstrated in the rat central nervous system. Saturation studies and Scatchard analysis of CGRP-binding to slide mounted tissue sections containing primarily cerebellum showed a single class of receptors with a dissociation constant of 0.96 nM and a Bmax of 76.4 fmol/mg protein. 125I-Tyro rat CGRP binding sites were demonstrated throughout the rat central nervous system. Dense binding was observed in the telencephalon (medial prefrontal, insular and outer layers of the temporal cortex, nucleus accumbens, fundus striatum, central and inferior lateral amygdaloid nuclei, most caudal caudate putamen, organum vasculosum laminae terminalis, subfornical organ), the diencephalon (anterior hypothalamic, suprachiasmatic, arcuate, paraventricular, dorsomedial, periventricular, reuniens, rhomboid, lateral thalamic pretectalis and habenula nuclei, zona incerta), in the mesencephalon (superficial layers of the superior colliculus, central nucleus of the geniculate body, inferior colliculus, nucleus of the fifth nerve, locus coeruleus, nucleus of the mesencephalic tract, the dorsal tegmental nucleus, superior olive), in the molecular layer of the cerebellum, in the medulla oblongata (inferior olive, nucleus tractus solitarii, nucleus commissuralis, nuclei of the tenth and twelfth nerves, the prepositus hypoglossal and the gracilis nuclei, dorsomedial part of the spinal trigeminal tract), in the dorsal gray matter of the spinal cord (laminae I-VI) and the confines of the central canal. Moderate receptor densities were found in the septal area, the "head" of the anterior caudate nucleus, medial amygdaloid and bed nucleus of the stria terminalis, the pyramidal layers of the hippocampus and dentate gyri, medial preoptic area, ventromedial nucleus, lateral hypothalamic and ventrolateral thalamic area, central gray, reticular part of the substantia nigra, parvocellular reticular nucleus. Purkinje cell layer of the cerebellum, nucleus of the spinal trigeminal tract and gracile fasciculus of the spinal cord. The discrete distribution of CGRP-like binding sites in a variety of sensory systems of the brain and spinal cord as well as in thalamic and hypothalamic areas suggests a widespread involvement of CGRP in a variety of brain functions.  相似文献   

12.
A sensitive GABA assay using HPLC coupled with fluorimetric detection with o-phthalaldehyde is described. GABA, lysine and ethanolamine can be measured within approx 12 min. The detection limits for these compounds (signal/noise = 3) is 0.67 pmol, 1.8 pmol and 0.73 pmol respectively. Using this assay the in vivo release of GABA from rat substantia nigra was studied with a push-pull perfusion technique. A pronounced increase in the rate of endogenous GABA release was observed after addition of depolarizing amounts of K+ to the perfusion medium, whereas the concentrations of lysine and ethanolamine in the perfusate did not change. This enhanced release of GABA was not diminished after omission of Ca2+ and Mg2+ from the medium. Increasing the Mg2+ concentration and leaving out Ca2+ however, resulted in a marked depression in the K+-induced GABA release. Electrical stimulation of the striatum also produced an increase in release of GABA from the substantia nigra. Inhibition of glutamic acid decarboxylase (with 3-mercaptopropionic acid) caused an immediate decrease in GABA release. Inhibition of GABA transminase (with aminooxyacetic acid) leads to an increased release of GABA after approx 15 min. These findings suggest that the technique is suitable for measuring neuronal release of endogenous GABA in vivo  相似文献   

13.
Abstract: Angiotensin-converting enzyme (ACE) activity was measured by a radiochemical assay in 30 specific areas of the rat brain stem. ACE activity is unevenly distributed, with a 60-fold difference between the lowest and the highest activity. The area postrema exhibits the highest activity. The substantia nigra (pars reticulata), the locus coeruleus, the areas A1 and A2, the nuclei commissuralis, and tractus solitarii have a substantial ACE activity, whereas the lowest activity is found in the raphe nuclei and the nuclei of the reticular formation.  相似文献   

14.
Abstract: The ionic species 1-methyl-4-phenylpyridinium (MPP+) seems to be the metabolite responsible for the damage to dopaminergic neurons occurring after administration of the parkinsonian drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In the present study we show that the unilateral stereotaxic microinjection of MPP+ into the substantia nigra pars reticulata in rats produces immediately intense and long-lasting (up to 96 h) contralateral turning behavior in a dose-dependent manner. This behavioral effect was correlated with a dose- and time-dependent decrease (up to 90%) of glutamate decarboxylase activity and with a notable loss of neurons in the injected nigra reticulata. GABA levels in the injected nigra were also decreased, whereas the dopamine concentration in the ipsilateral striatum was not affected at 24 h, when maximal behavioral effects were observed. The circling behavior was prevented by the dopamine carrier blocker nomifensine only during the first 2 h, whereas the dopamine receptor antagonist haloperidol was ineffective. The results indicate that MPP+ is toxic for inhibitory GABAergic neurons in the nigra pars reticulata and, furthermore, suggest that disruption of the function of these GABAergic neurons may be involved in the abnormal motor behavior produced by the injection of MPP+ in the substantia nigra.  相似文献   

15.
Nucleosides are neuromodulators that have a wide range of biological roles in the brain. In order to better understand the function of nucleosides in the human central nervous system (CNS), we constructed a nucleoside map showing the concentration of various nucleosides and their metabolites using post mortem samples from 61 human brain areas and 4 spinal cord areas. We evaluated in vivo tissue levels of four nucleosides (uridine, inosine, guanosine, and adenosine) and three of their metabolites (uracil, hypoxanthine, and xanthine). The concentrations of nucleosides were unevenly distributed across different brain regions, where the highest levels were found in the cerebral cortex and basal ganglia, whereas the lowest concentrations were located in the locus coeruleus, the zona incerta, the substantia nigra, and the inferior colliculus. The regional differences in nucleoside levels in the CNS may reflect the distinct physiological functions adopted by these compounds in different brain areas.  相似文献   

16.
The localization of gamma-aminobutyric acid transaminase (GABA-T), the degrading enzyme for γ-aminobutyric acid, was examined in the striatum and substantia nigra using biochemical techniques. Selective destruction of the nigrostriatal dopaminergic system with 6-hydroxydopamine had no effect on the activity of GABA-T in either the striatum or the substantia nigra, although striatal tyrosine hydroxylase activity was reduced by half. Intrastriatal injection of kainic acid in adult rats resulted in a significant dose-dependent decrease in GABA-T activity in both the striatum and the substantia nigra. The decrease in both of these regions was significantly correlated with the decrease in the GABA synthetic enzyme glutamate decarboxylase (GAD). The intrastriatal injection of kainic acid in ten day old rats did not affect striatal GAD or GABA-T activities, although striatal choline acetyl-transferase activity was reduced by half.It is concluded that the GABA-T activity in the striatum is predominantly localized in neuronal elements, although not, apparently, in cholinergic neurons. Some GABA-T activity is also present in the terminals of the striatonigral neurons. However, the dopaminergic nigrostriatal neurons do not appear to contain GABA-T. It is suggested that high GABA-T activity may be characteristic of GABA neurons.  相似文献   

17.
Axoplasmic transport of dopamine in the nigro-neostriatal system has previously been shown by the specific accumulation of labelled dopamine in the striatum following injections of labelled DOPA or dopamine into the substantia nigra. To test the specificity, 17 different labelled materials (pipecolic acid, inulin, taurine, GABA, glycine, histidine, histamine, serotonin, 5-HTP, D-amphetamine, 3-methoxytyramine, dopamine, tyramine, norepinephrine, octopamine and high and low specificity activity DOPA) were injected into the substantia nigra and the distribution of radioactivity in the brain studied after 6 and 24 h. Only the catecholamines and octopamine gave evidence of specific accumulation in the ipsilateral striatum although some of the other compounds caused diffuse labelling of the striatum along with other brain areas.  相似文献   

18.
The bilateral intracerebral injection of the specific GABA agonists muscimol (25, 100 ng) and THIP (500 ng) into the pallido-entopeduncular nucleus (EP) and the subthalamic nucleus (STN) of rats induced a behavioural stimulation closely resembling the syndrome evoked by direct stimulation of dopamine receptors in the striatum or by the systemic injection of dopamine agonists. The rats showed strong locomotor and rearing activity followed by characteristic stereotyped behaviour consisting of sniffing and gnawing activity. The stimulation induced by muscimol (25 ng) was found independent of dopamine, since the dopamine antagonist haloperidol (1 mg/kg s.c.) induced no blockade. Injection of the GABA antogonist picrotoxin (100 ng) into the EP or STN induced sedation and catalepsy. The unilateral injection of muscimol and picrotoxin provoked contraversive and ipsiversive postural changes. Related behavioral effects were induced by GABAergic drugs injected in substantia nigra, zona reticulata (SNR). These data provide support for the new hypothesis that GABA in the EP, SNR and STN is important for the expression of behavior related to stimulation of dopamine receptors in the striatum. The effects may be induced by a dopamine activation of the descending striato-EP, striato-SNR GABAergic pathways and possibly also the pallido-STN GABAergic pathway. The findings suggest that in addition to a pathology of the dopamine system there may also be a GABAergic dysfunction in the efferent system of the basal ganglia localized to the EP, SNR and STN in diseases, such as parkinsonism, Huntington's chorea and possibly schizophrenia.  相似文献   

19.
Taurine Levels in Discrete Brain Nuclei of Rats   总被引:7,自引:1,他引:6  
Concentrations of taurine have been measured in 44 microdissected rat brain nuclei or areas. Taurine is ubiquitously present and distributed unevenly in the rat brain: the ratio of the highest (pyriform cortex) to lowest (midbrain reticular formation) concentrations is 4.7:1. High taurine levels were found in cerebral cortical areas, caudate-putamen, cerebellum, median eminence, and supraoptic nucleus. Acute pain stress reduced taurine levels in the hypothalamus and the lower brainstem nuclei but not in cortical areas. Increased locomotor and behavioral activities following a high dose of amphetamine elevated taurine concentrations significantly in the substantia nigra and locus ceruleus.  相似文献   

20.
Rats were injected intracerebroventricularly (i.c.v.) or i.v. with [14C]homocarnosine (250 nmol). Distribution of the dipeptide in brain structures, transport from the brain to the blood, distribution in peripheral organs, and excretion in the urine were studied by measuring radioactivity in tissue, plasma, and urine samples by liquid scintillation counting 15–120 min after injection. After i.c.v. injection, [14C]homocarnosine was taken up into all parts of the brain investigated (highest uptake in structures close to the site of injection), it was transported to the blood, and radioactive substances were found in low concentration in muscle, spleen, and liver, in high concentration in the kidneys, and very high concentration in the urine. Investigations using high pressure liquid chromatography (HPLC) showed that no degradation took place in the brain, all radioactivity was found in the homocarnosine fraction. In the plasma 86% of the radioactivity was found in the GABA fraction presumed to be formed by cleavage of the peptide, while in the kidneys 35% and in the urine 40% was found in the GABA fraction. After i.v. injection of [14C]homocarnosine, no radioactivity was measured in hippocampus, striatum, cerebellum and cerebral cortex 15 min after injection, however, 60 min after injection a very low activity was detected in these structures (estimated intravascular radioactivity subtracted). A low activity was also measured in the spinal cord both 15 and 60 min after injection. When homocarnosine and GABA were separated on HPLC, all radioactivity in brain tissue was found in the GABA fraction, indicating either that [14C]homocarnosine did not cross the blood-brain barrier in amounts that could be measured with the method used, or that peptide entering the brain was rapidly transported back to the blood. [14C]Homocarnosine was not taken up either into crude synaptosomal preparations from hippocampus, striatum, cerebellum, cortex and spinal cord, or into slices prepared from the hippocampus and striatum. Transport from the brain to the kidneys and excretion in the urine seems to be a major route for disposal of this peptide in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号