首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human epidermal growth factor receptor 2 (HER2) is a member of the human epidermal growth factor receptor kinases (other members include EGFR or HER1, HER3, and HER4) that are involved in signaling cascades for cell growth and differentiation. It is well established that HER2-mediated heterodimerization has important implications in cancer. Deregulation of signaling pathways and overexpression of HER2 is known to occur in cancer cells, indicating a role of HER2 in tumorigenesis. Therefore, blocking HER2-mediated signaling has potential therapeutic value. We have designed several peptidomimetics to inhibit HER2-mediated signaling for cell growth. One of the compounds (HERP5, Arg-beta Naph-Phe) exhibited antiproliferative activity with IC(50) values in the micromolar-to-nanomolar range in breast cancer cell lines. Binding of fluorescently labeled HERP5 to HER2 protein was evaluated by fluorescence assay, microscopy, and circular dichroism spectroscopy. Results indicated that HERP5 binds to the extracellular region of the HER2 protein. Structure of the peptidomimetic HERP5 was studied by NMR and molecular dynamics simulations. Based on these results a model was proposed for HER2-EGFR dimerization and possible blocking by HERP5 peptidomimetic using a protein-protein docking method.  相似文献   

2.
Trastuzumab, a humanized antibody targeting HER2, exhibits remarkable therapeutic efficacy against HER2-positive breast and gastric cancers; however, acquired resistance presents a formidable obstacle to long-term tumor responses in the majority of patients. Here, we show the mechanism of resistance to trastuzumab in HER2-positive human cancer cells and explore the molecular sensitization by exogenous expression of HER2-extracellular domain (ECD) in HER2-negative or trastuzumab-resistant human cancer cells. We found that long-term exposure to trastuzumab induced resistance in HER2-positive cancer cells; HER2 expression was downregulated, and antibody-dependent cellular cytotoxicity (ADCC) activity was impaired. We next examined the hypothesis that trastuzumab-resistant cells could be re-sensitized by the transfer of non-functional HER2-ECD. Exogenous HER2-ECD expression induced by the stable transfection of a plasmid vector or infection with a replication-deficient adenovirus vector had no apparent effect on the signaling pathway, but strongly enhanced ADCC activity in low HER2-expressing or trastuzumab-resistant human cancer cells. Our data indicate that restoration of HER2-ECD expression sensitizes HER2-negative or HER2-downregulated human cancer cells to trastuzumab-mediated ADCC, an outcome that has important implications for the treatment of human cancers.  相似文献   

3.
4.
Human epidermal growth factor receptor 2 (HER2) is a member of the human epidermal growth factor receptor kinases and is involved in a signaling cascade for cell growth and differentiation. It is well established that HER2-mediated heterodimerization has important implications in cancer. Deregulation of signaling pathways and overexpression of HER2 is known to occur in cancer cells, indicating the role of HER2 in tumorigenesis. Therefore, blocking HER2-mediated signaling has potential therapeutic value. We have designed several peptidomimetics to inhibit HER2-mediated signaling for cell growth. One of the compounds (compound 5, Arg-[3-amino-3(1-napthyl)-propionic acid]-Phe) exhibited antiproliferative activity with IC(50) values in the nanomolar to micromolar range in breast cancer cell lines. To further investigate the structure-activity relationship of the compounds, various analogs of compound 5 were designed. Conformational constraints were initiated in the peptidomimetic with introduction of a Pro residue in the peptidomimetic sequence. Results of antiproliferative activity indicated that analogs of compound 5 with C-and N-terminal ends capped (compound 16) and compound 9 with Asp at the C-terminal exhibited antiproliferative activity in the lower micromolar range against breast cancer cell lines. Introduction of conformational constraints such as Pro residue in the sequence or cyclization did not enhance the activity of the peptidomimetic. Competitive binding studies were carried out to evaluate the binding of potent peptidomimetics to HER2-overexpressing cancer cell lines. Results indicated that compounds exhibiting antiproliferative activity in breast cancer cell lines bind to the cells that overexpress HER2 protein.  相似文献   

5.
6.
The zinc-dependent disintegrin metalloproteinases (a disintegrin and metalloproteinases (ADAMs) have been implicated in several disease processes, including human cancer. Previously, we demonstrated that the expression of a catalytically active member of the ADAM family, ADAM15, is associated with the progression of prostate and breast cancer. The accumulation of the soluble ectodomain of E-cadherin in human serum has also been associated with the progression of prostate and breast cancer and is thought to be mediated by metalloproteinase shedding. Utilizing two complementary models, overexpression and stable short hairpin RNA-mediated knockdown of ADAM15 in breast cancer cells, we demonstrated that ADAM15 cleaves E-cadherin in response to growth factor deprivation. We also demonstrated that the extracellular shedding of E-cadherin was abrogated by a metalloproteinase inhibitor and through the introduction of a catalytically inactive mutation in ADAM15. We have made the novel observation that this soluble E-cadherin fragment was found in complex with the HER2 and HER3 receptors in breast cancer cells. These interactions appeared to stabilize HER2 heterodimerization with HER3 and induced receptor activation and signaling through the Erk pathway, supporting both cell migration and proliferation. In this study, we provide evidence that ADAM15 catalyzes the cleavage of E-cadherin to generate a soluble fragment that in turn binds to and stimulates ErbB receptor signaling.  相似文献   

7.
To elucidate the molecular mechanisms by which human epidermal growth factor receptor/heregulin (HER2/HRG) influence the migratory potential of breast cancer cells, we have used phospho-specific antibodies against c-Src kinase and focal adhesion kinase (FAK). This study establishes that HER2/HRG signaling selectively upregulates Tyr phosphorylation of c-Src at Tyr-215 located within the SH2 domain, increases c-Src kinase activity and selectively upregulates Tyr phosphorylation of FAK at Tyr-861. HER2-overexpressing tumors showed increased levels of c-Src phosphorylation at Tyr-215. These findings suggest that HER2/HRG influence metastasis of breast cancer cells through a novel signaling pathway involving phosphorylation of FAK tyrosine 861 via activation of c-Src tyrosine 215.  相似文献   

8.
《Cancer epidemiology》2014,38(6):765-772
In breast cancer cells, overexpression of human epidermal growth factor receptor 2 (HER2) increases the translation of fatty acid synthase (FASN) by altering the activity of PI3K/Akt signaling pathways. Cancer chemotherapy causes major side effects and is not effective enough in slowing down the progression of the disease. Earlier studies showed a role for resveratrol in the inhibition of FASN, but the molecular mechanisms of resveratrol-induced inhibition are not known. In the present study, we examined the novel mechanism of resveratrol on Her2-overexpressed breast cancer cells.The effect of resveratrol on the growth of breast cancer cells was assessed as percent cell viability by cytotoxicity-based MTT assay and the induction of apoptosis was determined by cell-death detection ELISA and flow cytometric analysis of Annexin-V–PI binding. Western immunobloting was used to detect signaling events in human breast cancer (SKBR-3) cells.Data showed that resveratrol-mediated down-regulation of FASN and HER2 genes synergistically induced apoptotic death in SKBR-3 cells. This concurrently caused a prominent up-regulation of PEA3, leads to down-regulation of HER2 genes. Resveratrol also alleviated the PI3K/Akt/mTOR signaling by down-regulation of Akt phosphorylation and up-regulation of PTEN expression.These findings suggest that resveratrol alters the cell cycle progression and induce cell death via FASN inhibition in HER2 positive breast cancer.  相似文献   

9.
Aberrant signaling of ErbB family members human epidermal growth factor 2 (HER2) and epidermal growth factor receptor (EGFR) is implicated in many human cancers, and HER2 expression is predictive of human disease recurrence and prognosis. Small molecule kinase inhibitors of EGFR and of both HER2 and EGFR have received approval for the treatment of cancer. We present the first high resolution crystal structure of the kinase domain of HER2 in complex with a selective inhibitor to understand protein activation, inhibition, and function at the molecular level. HER2 kinase domain crystallizes as a dimer and suggests evidence for an allosteric mechanism of activation comparable with previously reported activation mechanisms for EGFR and HER4. A unique Gly-rich region in HER2 following the α-helix C is responsible for increased conformational flexibility within the active site and could explain the low intrinsic catalytic activity previously reported for HER2. In addition, we solved the crystal structure of the kinase domain of EGFR in complex with a HER2/EGFR dual inhibitor (TAK-285). Comparison with previously reported inactive and active EGFR kinase domain structures gave insight into the mechanism of HER2 and EGFR inhibition and may help guide the design and development of new cancer drugs with improved potency and selectivity.  相似文献   

10.
Overexpression of human epidermal growth factor receptor 2 (HER2) is observed in breast cancer. The major snag faced by the human population is the development of chemoresistance to HER2 inhibitors by advanced stage breast cancer cells. Moreover, recent researchers focussed on fisetin as an antiproliferative and chemotherapeutic agent. Therefore, this study was intended to analyze the effects of fisetin on HER2/neu‐overexpressing breast cancer cell lines. Our results depicted that fisetin induced apoptosis of these cells by various mechanisms, such as inactivation of the receptor, induction of proteasomal degradation, decreasing its half‐life, decreasing enolase phosphorylation, and alteration of phosphatidylinositol 3‐kinase/Akt signaling.  相似文献   

11.
Protein-protein interactions (PPI) play a crucial role in many biological processes and modulation of PPI using small molecules to target hot spots has therapeutic value. As a model system we will use PPI of human epidermal growth factor receptors (EGFRs). Among the four EGFRs, EGFR-HER2 and HER2-HER3 are well known in cancer. We have designed a small molecule that is targeted to modulate HER2-mediated signaling. Our approach is novel because the small molecule designed disrupts dimerization not only of EGFR-HER2, but also of HER2-HER3. In the present study we have shown, using surface plasmon resonance analysis, that a peptidomimetic, compound 5, binds specifically to HER2 protein extracellular domain and disrupts the dimerization of EGFRs. To evaluate the effect of compound 5 on HER2 signaling in vitro, Western blot and PathHunter assays were used. Results indicated that compound 5 inhibits the phosphorylation of HER2 kinase domain and inhibits the heterodimerization in a dose-dependent manner. Molecular modeling methods were used to model the PPI of HER2-HER3 heterodimer.  相似文献   

12.
《MABS-AUSTIN》2013,5(4):978-990
HER2, a ligand-free tyrosine kinase receptor of the HER family, is frequently overexpressed in breast cancer. The anti-HER2 antibody trastuzumab has shown significant clinical benefits in metastatic breast cancer; however, resistance to trastuzumab is common. The development of monoclonal antibodies that have complementary mechanisms of action results in a more comprehensive blockade of ErbB2 signaling, especially HER2/HER3 signaling. Use of such antibodies may have clinical benefits if these antibodies can become widely accepted. Here, we describe a novel anti-HER2 antibody, hHERmAb-F0178C1, which was isolated from a screen of a phage display library. A step-by-step optimization method was employed to maximize the inhibitory effect of this anti-HER2 antibody. Crystallographic analysis was used to determine the three-dimensional structure to 3.5 Å resolution, confirming that the epitope of this antibody is in domain III of HER2. Moreover, this novel anti-HER2 antibody exhibits superior efficacy in blocking HER2/HER3 heterodimerization and signaling, and its use in combination with pertuzumab has a synergistic effect. Characterization of this antibody revealed the important role of a ligand binding site within domain III of HER2. The results of this study clearly indicate the unique potential of hHERmAb-F0178C1, and its complementary inhibition effect on HER2/HER3 signaling warrants its consideration as a promising clinical treatment.  相似文献   

13.
HER2, a ligand-free tyrosine kinase receptor of the HER family, is frequently overexpressed in breast cancer. The anti-HER2 antibody trastuzumab has shown significant clinical benefits in metastatic breast cancer; however, resistance to trastuzumab is common. The development of monoclonal antibodies that have complementary mechanisms of action results in a more comprehensive blockade of ErbB2 signaling, especially HER2/HER3 signaling. Use of such antibodies may have clinical benefits if these antibodies can become widely accepted. Here, we describe a novel anti-HER2 antibody, hHERmAb-F0178C1, which was isolated from a screen of a phage display library. A step-by-step optimization method was employed to maximize the inhibitory effect of this anti-HER2 antibody. Crystallographic analysis was used to determine the three-dimensional structure to 3.5 Å resolution, confirming that the epitope of this antibody is in domain III of HER2. Moreover, this novel anti-HER2 antibody exhibits superior efficacy in blocking HER2/HER3 heterodimerization and signaling, and its use in combination with pertuzumab has a synergistic effect. Characterization of this antibody revealed the important role of a ligand binding site within domain III of HER2. The results of this study clearly indicate the unique potential of hHERmAb-F0178C1, and its complementary inhibition effect on HER2/HER3 signaling warrants its consideration as a promising clinical treatment.  相似文献   

14.
The human epidermal growth factor receptor (EGFR) family is known to be involved in cell signaling pathways. The extracellular domain of EGFR consists of four domains, of which domain II and domain IV are known to be involved in the dimerization process. Overexpression of these receptors is known to play a significant role in heterodimerization of these receptors leading to the development of cancer. We have designed peptidomimetic molecules to inhibit the EGFR heterodimerization interaction that have shown antiproliferative activity and specificity for HER2-positive cancer cell lines. Among these, a peptidomimetic, compound 5, exhibited antiproliferative activity at low nanomolar concentrations in HER2-overexpressing cancer cell lines. To improve the stability of this peptidomimetic, we have designed and synthesized a novel conjugate of peptidomimetic compound 5 with a lipid, stearic acid. The antiproliferative activity of this conjugate was evaluated in HER2-positive cancer cell lines. Results suggested that the conjugate exhibited selective antiproliferative activity in HER2-overexpressing breast and lung cancer cell lines and was able to block HER2:HER3 heterodimerization. Also, the conjugate showed improved stability with a half-life of 5?h in human serum compared to the half-life of 2?h for parent compound 5. The binding affinity of the conjugate to HER2 protein was evaluated by SPR analysis, and the mode of binding of the lipid conjugate to domain IV of HER2 protein was demonstrated by docking analysis. Thus, this novel lipid conjugate can be used to target HER2-overexpressing cancers.  相似文献   

15.
Role of HER2 gene overexpression in breast carcinoma   总被引:23,自引:0,他引:23  
The HER2 proto-oncogene encodes a transmembrane glycoprotein of 185 kDa (p185(HER2)) with intrinsic tyrosine kinase activity. Amplification of the HER2 gene and overexpression of its product induce cell transformation. Numerous studies have demonstrated the prognostic relevance of p185(HER2), which is overexpressed in 10% to 40% of human breast tumors. Recent data suggest that p185(HER2) is a ligand orphan receptor that amplifies the signal provided by other receptors of the HER family by heterodimerizing with them. Ligand-dependent activation of HER1, HER3, and HER4 by EGF or heregulin results in heterodimerization and, thereby, HER2 activation. HER2 overexpression is associated with breast cancer patient responsiveness to doxorubicin, to cyclophosphamide, methotrexate, and fluorouracil (CMF), and to paclitaxel, whereas tamoxifen was found to be ineffective and even detrimental in patients with HER2-positive tumors. In vitro analyses have shown that the role of HER2 overexpression in determining the sensitivity of cancer cells to drugs is complex, and molecules involved in its signaling pathway are probably the actual protagonists of the sensitivity to drugs. The association of HER2 overexpression with human tumors, its extracellular accessibility, as well as its involvement in tumor aggressiveness are all factors that make this receptor an appropriate target for tumor-specific therapies. A number of approaches are being investigated as possible therapeutic strategies that target HER2: (1) growth inhibitory antibodies, which can be used alone or in combination with standard chemotherapeutics; (2) tyrosine kinase inhibitors (TKI), which have been developed in an effort to block receptor activity because phosphorylation is the key event leading to activation and initiation of the signaling pathway; and (3) active immunotherapy, because the HER2 oncoprotein is immunogenic in some breast carcinoma patients.  相似文献   

16.
The Src homology phosphotyrosyl phosphatase 2 (SHP2) is an essential transducer of mitogenic and cell survival signaling in the epidermal growth factor receptor (EGFR) signaling pathway. However, the role of SHP2 in aberrant EGFR and human EGFR2 (HER2) signaling and cancer, particularly in breast cancer, has not been investigated. Here, we report that SHP2 is required for mitogenic and cell survival signaling and for sustaining the transformation phenotypes of breast cancer cell lines that overexpress EGFR and HER2. Inhibition of SHP2 suppressed EGF-induced activation of the Ras-ERK and the phosphatidylinositol 3 kinase-Akt signaling pathways, abolished anchorage-independent growth, induced epithelial cell morphology and led to reversion to a normal breast epithelial phenotype. Furthermore, inhibition of SHP2 led to upregulation of E-cadherin (epithelial marker) and downregulation of fibronectin and vimentin (mesenchymal markers). These results indicate that SHP2 promotes breast cancer cell phenotypes by positively modulating mitogenic and cell survival signaling, by suppressing E-cadherin expression which is known to play a tumor suppressor role and by sustaining the mesenchymal state as evidenced by the positive impact on fibronectin and vimentin expression. Therefore, SHP2 promotes epithelial to mesenchymal transition, whereas its inhibition leads to mesenchymal to epithelial transition. On the basis of these premises, we propose that interference with SHP2 function might help treat breast cancer.  相似文献   

17.
The function of the epidermal growth factor receptor (EGFR) family member HER4 remains unclear because its activating ligand, heregulin, results in either proliferation or differentiation. This variable response may stem from the range of signals generated by HER4 homodimers versus heterodimeric complexes with other EGFR family members. The ratio of homo- and heterodimeric complexes may be influenced both by a cell's EGFR family member expression profile and by the ligand or even ligand isoform used. To define the role of HER4 in mediating antiproliferative and differentiation responses, human breast cancer cell lines were screened for responses to heregulin. Only cells that expressed HER4 exhibited heregulin-dependent antiproliferative responses. In-depth studies of one line, SUM44, demonstrated that the antiproliferative and differentiation responses correlated with HER4 activation and were abolished by stable expression of a kinase-inactive HER4. HB-EGF, a HER4-specific ligand in this EGFR-negative cell line, also induced an antiproliferative response. Moreover, introduction and stable expression of HER4 in HER4-negative SUM102 cells resulted in the acquisition of a heregulin-dependent antiproliferative response, associated with increases in markers of differentiation. The role of HER2 in these heregulin-dependent responses was examined through elimination of cell surface HER2 signaling by stable expression of a single-chain anti-HER2 antibody that sequestered HER2 in the endoplasmic reticulum. In the cell lines with either endogenously (SUM44) or exogenously (SUM102) expressed HER4, elimination of HER2 did not alter HER4-dependent decreases in cell growth. These results suggest that HER4 is both necessary and sufficient to trigger an antiproliferative response in human breast cancer cells.  相似文献   

18.
Acquired resistance to tamoxifen has become a serious obstacle in breast cancer treatment. The underlying mechanism responsible for this condition has not been completely elucidated. In this study, a tamoxifen-resistant (Tam-R) MCF-7 breast cancer cell line was developed to mimic the occurrence of acquired tamoxifen resistance as seen in clinical practice. Increased expression levels of HER1, HER2 and the estrogen receptor (ER)-AIB1 complex were found in tamoxifen-resistant cells. EGF stimulation and gefitinib inhibition experiments further demonstrated that HER1/HER2 signaling and AIB1 were involved in the proliferation of cells that had acquired Tam resistance. However, when AIB1 was silenced with AIB1-siRNA in Tam-R cells, the cell growth stimulated by the HER1/HER2 signaling pathway was significantly reduced, and the cells were again found to be inhibited by tamoxifen. These results suggest that the AIB1 protein could be a limiting factor in the HER1/HER2-mediated hormone-independent growth of Tam-R cells. Thus, AIB1 may be a new therapeutic target, and the removal of AIB1 may decrease the crosstalk between ER and the HER1/HER2 pathway, resulting in the restoration of tamoxifen sensitivity in tamoxifen-resistant cells.  相似文献   

19.
Evaluation of: Wulfkuhle JD, Berg D, Wolff C et al. Molecular analysis of HER2 signaling in human breast cancer by functional protein pathway activation mapping. Clin. Cancer Res. 18(23), 6426–6435 (2012).

Exhaustive characterization and mapping of pivotal molecules and downstream effectors deregulated in breast cancer is of fundamental clinical value to define the most effective therapy. Wulfkuhle et al. applied reverse-phase protein microarray, a highly sensitive immunoassay able to perform quantitative and multiplexed analysis of total and/or modified cellular proteins, to assess protein levels and activation/phosphorylation status of the HER family (EGFR, HER2, HER3) and downstream signaling molecules in HER2+ and HER2- breast cancers. The research was performed using laser capture microdissected tumor epithelial cells from frozen samples and formalin-fixed paraffin embedded specimens, which were also analyzed by immunohistochemistry (IHC) and FISH. This study identified a subgroup of IHC/FISH/HER2- patients with HER2 activation/phosphorylation levels comparable with those obtained from IHC/FISH/HER2+ tumors. HER2 signaling activation was independent from total HER2 expression and involved HER3 and EGFR activation. These findings indicate that molecular characterization by reverse-phase protein microarray of HER2 and its partners/effectors in the signaling cascade enables the identification of a subgroup of IHC/FISH/HER2- patients showing HER2 signaling activation. These patients, currently excluded from targeted therapy administration, could potentially benefit from this and it could improve prognosis and survival.  相似文献   

20.
HER2 is overexpressed in 20–25% of breast cancers. Overexpression of HER2 is an adverse prognostic factor and correlates with decreased patient survival. HER2 stimulates breast tumorigenesis via a number of intracellular signaling molecules, including PI3K/AKT and MAPK/ERK. S100A14, one member of the S100 protein family, is significantly associated with outcome of breast cancer patients. Here, for the first time, we show that S100A14 and HER2 are coexpressed in invasive breast cancer specimens, and there is a significant correlation between the expression levels of the two proteins by immunohistochemistry. S100A14 and HER2 are colocalized in plasma membrane of breast cancer tissue cells and breast cancer cell lines BT474 and SK-BR3. We demonstrate that S100A14 binds directly to HER2 by co-immunoprecipitation and pull-down assays. Further study shows that residues 956–1154 of the HER2 intracellular domain and residue 83 of S100A14 are essential for the two proteins binding. Moreover, we observe a decrease of HER2 phosphorylation, downstream signaling, and HER2-stimulated cell proliferation in S100A14-silenced MCF-7, BT474, and SK-BR3 cells. Our findings suggest that S100A14 functions as a modulator of HER2 signaling and provide mechanistic evidence for its role in breast cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号