首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Asada  K Tanizawa  S Sawada  T Suzuki  H Misono  K Soda 《Biochemistry》1981,20(24):6881-6886
The stereochemistry of the decarboxylation of meso-alpha,epsilon-diaminopimelate catalyzed by meso-alpha,epsilon-diaminopimelate decarboxylase (EC 4.1.1.20) of Bacillus sphaericus was determined by stereochemical analyses of [6-2H]-L-lysine produced by the reaction in D2O. The product [6-2H]-L-lysine was converted to levorotatory methyl 5-phthalimido[5-2H]valerate by the reactions not affecting the absolute configuration of the asymmetric carbon atom. By contrast, methyl 5-phthalimido[5-2H]valerate derived from [2,6-2H2]-L-lysine, which was produced from [2,6-2H2]diaminopimelate by decarboxylation in H2O, was dextrorotatory. The authentic methyl (R)-5-phthalimido[5-2H]valerate prepared from L-glutamate with glutamate decarboxylase was levorotatory. These results indicate that the meso-alpha,epsilon-diaminopimelate decarboxylase reaction proceeds in an inversion mode. The deuterium label in [6-2H]-L-lysine was fully conserved during the conversion into pelletierine through [1-2H]cadaverine by the stereospecific diamine oxidase reaction. Thus, the enzymatic decarboxylation of meso-alpha,epsilon-diaminopimelate occurs with inversion of configuration in contrast to the other amino acid decarboxylase reported so far.  相似文献   

2.
A Hoffmann  P Dimroth 《FEBS letters》1987,220(1):121-125
The steric course of the decarboxylation of (S)-methylmalonyl-CoA to propionyl-CoA, catalyzed by the biotin-dependent sodium pump methylmalonyl-CoA decarboxylase of Veillonella alcalescens was determined. The decarboxylation of (S)-methylmalonyl-CoA in 3H2O yielded (R)-[2-3H]propionyl-CoA; and the decarboxylation of (S)-[2-3H]methylmalonyl-CoA in H2O produced (S)-[2-3H]propionyl-CoA. The results demonstrate retention of configuration during the decarboxylation reaction. The substrate stereochemistry of methylmalonyl-CoA decarboxylase is thus the same as that of all other biotin-containing enzymes investigated.  相似文献   

3.
To determine the steric course of the reaction of bacterial ornithine decarboxylase [EC 4.1.1.17], we have carried out the decarboxylation of L-ornithine in 2H2O and that of DL-[2-2H]ornithine in H2O, and obtained putrescine bearing a single deuterium atom in the C-1 position. The stereochemistry of [1-2H]putrescine was established by conversion to 1-(2-pyrrolidinyl)-2-propanone with acetoacetate and the pro-S hydrogen-specific diamine oxidase from pea seedlings. Analysis of deuterium content by gas chromatography-mass spectrometry showed that the deuterium label was fully retained during the conversion of [1-2H]putrescine produced by the decarboxylation of L-ornithine in 2H2O to 1-(2-pyrrolidinyl)-2-propanone, in contrast with the considerable loss of label from [1-2H]putrescine which was produced by the decarboxylation of DL-[2-2H]ornithine in H2O. The extent of loss of the deuterium label was in good agreement with the estimated value based on the isotope effect in the diamine oxidase reaction. These results indicate that the introduced deuterium (or hydrogen) is in the pro-R position at C-1 of putrescine, and consequently the ornithine decarboxylase reaction proceeds with retention of configuration.  相似文献   

4.
H Yamada  M H O'Leary 《Biochemistry》1978,17(4):669-672
When the decarboxylation of L-glutamic acid by the glutamate decarboxylase from Escherichia coli is carried out in D2O, the product gamma-aminobutyric acid contains a single deuterium atom. The stereochemistry of this material was established by conversion to levorotatory methyl 4-phthalimido [4(-2)H] butyrate. The dextrorotatory isomer of the latter compound was synthesized from S-[2(-2)H] glycine by a series of reactions not affecting the stereochemistry at the chiral center. Thus, the decarboxylation of glutamic acid occurs with retention of configuration. Decarboxylation of L-alpha-methylglutamic acid by this enzyme produced levorotatory gamma-aminovaleric acid and thus also occurs with retention of configuration.  相似文献   

5.
D E Stevenson  M Akhtar  D Gani 《Biochemistry》1990,29(33):7631-7647
L-Methionine decarboxylase from the male fern Dryopteris filix-mas has been purified 256-fold from acetone powder extracts to very near homogeneity. The enzyme is membrane-associated and requires detergent for solubilization during the initial extraction. The enzyme is a homodimer of subunit Mr 57,000 and shows a pH optimum at approximately 5.0 with 20 mM (2S)-methionine as substrate. The specific activity, kcat, for methionine is approximately 50 mol s(-1) (mol of active site)(-1) at pH 4.5 and below. A wide range of straight- and branched-chain (2S)-alkylamino acids are substrates for the enzyme. The values for the rate of decarboxylation, Vmax, and for the apparent Michaelis constant, Km, however, vary with structure and with the chirality at C-3. The pH dependence of V and V/K has been examined for three substrates: (2S)-methionine, valine, and leucine. Pyridoxal 5'-phosphate (PLP) is required for activity, and in the absence of excess PLP, the activity of the enzyme in incubations reduced with respect to time. The addition of PLP fully restores the activity, indicating that an abortive decarboxylation-transamination accompanies the normal decarboxylation reaction. The occurrence of the abortive reaction was confirmed by showing that [35S]methionine is converted to labeled 3-(methylthio)propionaldehyde while [4'-3H]PLP is converted to labeled pyridoxamine 5'-phosphate (PMP). The decarboxylation of (2S)-methionine gave 3-(methylthio)-1-aminopropane. Preparation of the N-camphanamide derivative of the amine allowed the C-1 methylene protons to be distinguished by 1H NMR spectroscopy. Synthetic samples of the camphanamide were prepared in which each of the C-1 methylene protons was replaced by deuterium. When (2S)-methionine and the C-2 deuteriated isotopomer were incubated with the enzyme in deuterium oxide and protium oxide, respectively, and the products were converted to their camphanamide derivatives and analyzed by 1H NMR spectroscopy, it was evident that decarboxylation occurred with retention of configuration at C-2. When the decarboxylation of six other substrates was studied, examination of the N-camphanamide derivatives of the amines indicated that decarboxylation occurred stereospecifically and, by analogy, with retention of configuration at C-2. When tritiated pyridoxal phosphate was incubated with the enzyme, tritiated pyridoxamine phosphate was formed. Analysis of the chirality of the methylene group at C-4' indicated that, during abortive transamination, protonation occurred from the 4'-si face of the coenzyme, the same stereochemical result as that obtained for several bona fide transaminase enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
1. The decarboxylations of uroporphyrinogens, hepta-, hexa- and penta-carboxyporphyrinogens I and III by porphyrinogen carboxy-lyase (EC 4.1.1.37) in rat liver supernatant have been compared as functions of substrate concentrations. Although Km and Vmax. (for total porphyrinogens formed) were estimated, prophyrinogens and CO2 produced at 1 microM were considered to be a better indication of real relative rates, owing to substrate/product inhibitions. Uroporphyrinogen III was the best substrate by the criteria of Km/Vmax. and decarboxylation at 1 microM and was converted into coproporphyrinogen more quickly than its series-I isomer. 2. The difference between uroporphyrinogens I and III as substrates was confirmed by using a mixture of [14C8]uroporphyrinogens, the discrimination occurring principally in the first decarboxylation. 3. Porphyrins, especially oxidation products of the substrates, inhibited the enzyme. Heptacarboxyporphyrin III was the most effective inhibitor of both uroporphyrinogen III and heptacarboxyporphyrinogen III conversion into coproporphyrinogen. 4. Rapid analysis of the livers from rats made porphyric with hexachlorobenzene demonstrated that substantial quantities of the tetrapyrroles were present in vivo as the porphyrinogens (21-42%). 5. Enzymic decarboxylation of uroporphyrinogen III in 2H2O-containing buffer gave [2H4]coproporphyrinogen. 6. Rats treated with cycloheximide for 10h showed no decrease in uroporphyrinogen decarboxylase activity/mg of protein, suggesting a relatively slow turnover of the enzyme.  相似文献   

7.
Using highly purified ornithine decarboxylase isolated from androgen-treated mice, [1R-2H]putrescine was generated by the decarboxylation of l-ornithine in D2O, and [1S-2H]putrescine was generated from [2-2H]ornithine by carrying out the decarboxylation in H2O. Chirality of the putrescines was then determined from the 200-MHz 1H NMR spectra of their bis-camphanamides in the presence of Eu(fod)3. These results demonstrated that decarboxylation had taken place with retention of configuration.  相似文献   

8.
The spent media of HepG2 human hepatoma cells and 3Y1 rat embryo fibroblasts labeled with [35S]sulfate, upon ultrafiltration, were analyzed by a two-dimensional thin-layer separation procedure. Autoradiographs of the cellulose thin-layer plate revealed the presence of tyramine-O-[35S]sulfate in addition to tyrosine-O-[35S]sulfate in spent medium from human hepatoma cells. In contrast, only tyrosine-O-[35S]sulfate was observed in spent medium of 3Y1 rat fibroblasts. Using adenosine, 3'-phosphate, 5'-phospho[35S]sulfate as the sulfate donor, sulfotransferase(s) present in HepG2 cell homogenate catalyzed the sulfation of tyramine to tyramine-O-[35S]sulfate, but not the sulfation of tyrosine to tyrosine-O-[35S]sulfate. Endogenous aromatic amino acid decarboxylase present in HepG2 homogenate was shown to catalyze the decarboxylation of [3H]tyrosine to form [3H]tyramine while attempts to use it for the decarboxylation of tyrosine-O-sulfate to form tyramine-O-sulfate were unsuccessful. These results suggest that tyramine-O-sulfate may be derived from the de novo sulfation of tyramine, instead of the decarboxylation of tyrosine-O-sulfate.  相似文献   

9.
The biotin-containing oxaloacetate decarboxylase from Klebsiella aerogenes catalyzed the Na+-dependent decarboxylation of oxaloacetate to pyruvate and bicarbonate (or CO2) but not the reversal of this reaction, not even in the presence of an oxaloacetate trapping system. The enzyme catalyzed an avidin-sensitive isotopic exchange between [1-14C]pyruvate and oxaloacetate, which indicated the intermediate formation of a carboxybiotin enzyme. Sodium ions were not required for this partial reaction, but promoted the second partial reaction, the decarboxylation of the carboxybiotin enzyme, thus accounting for the Na+ requirement of the overall reaction. Therefore, the 14CO2-enzyme which was formed upon incubation of the decarboxylase with [4-15C]oxaloacetate, could only be isolated if Na+ ions were excluded. Preincubation of the decarboxylase with avidin also prevented its labelling with 14CO2. The isolated 14CO2-labelled oxaloacetate decarboxylase revealed the following properties. It was slowly decarboxylated at neutral pH and rapidly upon acidification. The 14CO2 residues of the 14CO2-enzyme could be transferred to pyruvate yielding [4-14C]oxaloacetate. In the presence of Na+ this 14CO2 transfer was repressed by the simultaneous decarboxylation of the 14CO2-enzyme. However, Na+ alone was insufficient as a cofactor for the decarboxylation of the isolated 14CO2-enzyme, since this required pyruvate in addition to Na+. It is therefore concluded that the decarboxylation of oxaloacetate proceeds over a CO2-enzyme--pyruvate complex and that free CO2-enzyme is an abortive reaction intermediate. The activation energy of the enzymic decarboxylation of oxaloacetate changed with temperature and was about 113 kJ below 11 degrees C, 60 kJ between 11 degrees C and 31 degrees C and 36 kJ between 31--45 degrees C.  相似文献   

10.
The steric course of the decarboxylation of glutaconyl-CoA to crotonyl-CoA, catalysed by the biotin-dependent sodium pump glutaconyl-CoA decarboxylase from Acidaminococcus fermentans, was elucidated using the sequence: chiral acetate----citrate----glutamate----glutaconyl-CoA----crotonyl-CoA ----chiral acetate. Since glutaconyl-CoA or glutaconate labeled at C-4 was subjected to rapid chemical or enzymatic exchanges, glutamate was fermented to acetate by growing cells of A. fermentans. The analysis of the final chiral acetates gave following deviations from 50% in the fumarase exchange: + 13.8% starting with (R)-acetate and - 13.9% starting with (S)-acetate. The results demonstrated a retention of configuration during the decarboxylation. Thus glutaconyl-CoA decarboxylase adds to the list of biotin enzymes in which exclusive retention of configuration was observed. Glutaconate CoA-transferase from A. fermentans catalysed a 3H exchange of [2,4,4-3H]glutaconate with water when acetyl-CoA was present. At low concentration of acetyl-CoA (20 microM) the exchange ceased after exactly one atom 3H was released into the water, at high concentrations (1 mM) the exchange proceeded further. The apparent Km of acetyl-CoA in the exchange (1.1 microM) was 150 times smaller than that of the complete CoA transfer. It was concluded that either a mixed anhydride, between a carboxyl group of the enzyme and [2,4,4-3H]glutaconate, or enzyme-bound glutaconyl-CoA was the exchanging species.  相似文献   

11.
Biosynthesis of mevalonic acid (MVA), total formation of 14CO2 from [1,3-14C]malonyl-CoA and the activity of malonyl-CoA decarboxylase in subcellular fractions of rat liver were studied. The dependence of the rate of MVA biosynthesis on malonyl-CoA concentration was found to be linear both in 140,000 g supernatant and solubilized microsomal fractions. It was shown that in a composite system (140,000 g supernatant fraction added to washed microsomes, 10 : 1) the optimal concentration ratio for the substrates of MVA biosynthesis (malonyl-CoA and acetyl-CoA) is 1 to 2. In the absence of acetyl-CoA decarboxylation of [1,3-14C]malonyl-CoA was prevalent. In all subcellular fractions studied decarboxylation of [1,3-14C]malonyl-CoA prevailed over its incorporation into MVA, total non-saponified lipid fraction and fatty acids. The degree of malonyl-CoA, decarboxylation was not correlated with the rate of its incorporation into MVA, i. e. the increase in the 14CO2 formation was not accompanied by stimulation of [1,3-14C]malonyl-CoA incorporation either into MVA or into total non-saponified lipid fractions. The incorporation of [1-14C]acetyl-CoA into MVA under the same conditions was considerably lower than that of [1,3-14C]malonyl-CoA. In all subcellular fractions under study the activity of malonyl-CoA decarboxylase was found. The experimental data suggest that a remarkable part of malonyl-CoA is incorporated into MVA without preliminary decarboxylation. A possible role of malonyl-CoA decarboxylase as an enzyme which protects the cell against accumulation of malonyl-CoA and its immediate metabolites -- malonate and methylmalonyl-CoA is disucssed.  相似文献   

12.
The mechanism of inactivation of rodent ornithine decarboxylase by alpha-difluoromethylornithine (DFMO) was studied using the inhibitor labelled with 14C in both the 1 and the 5 positions. [1-14C]DFMO was a substrate and was decarboxylated by the enzyme yielding 14CO2. A radioactive metabolite derived from [5-14C]DFMO was bound to the enzyme, and the extent of binding paralleled the irreversible inactivation of ornithine decarboxylase. The partition ratio of decarboxylation to binding was approx. 3.3. These results provide support for the postulated mechanism of action of DFMO [Metcalf, Bey, Danzin, Jung, Casera & Vevert (1978) J. Am. Chem. Soc. 100, 2551-2553], in which enzymic decarboxylation of the inhibitor leads to the generation of a conjugated imine, which then alkylates a nucleophilic residue on the enzyme.  相似文献   

13.
Malonate decarboxylases, which catalyze the conversion of malonate to acetate, can be classified into biotin-dependent and biotin-independent enzymes. In order to reveal the stereochemical course of the reactions catalyzed by the biotin-independent enzymes from Acinetobacter calcoaceticus and Pseudomonas fluorescens, a chiral substrate, malonate carrying (13)C in one carboxyl group and (3)H at one of the methylene positions, was prepared and used in the reactions catalyzed by these two enzymes. The decarboxylation of (R)-[1-(13)C(1), 2-(3)H]malonate in (2)H(2)O gave a pseudo-racemate of chiral acetate which was converted via acetyl-CoA into malate with malate synthase. From the relative proportions of the isotopomers of malate present, determined by (3)H NMR analysis, it was concluded that in the decarboxylation of malonate by these two biotin-independent enzymes COOH is replaced by H with retention of configuration. The same stereochemical outcome had been previously observed for the reaction catalyzed by the biotin-dependent malonate decarboxylase from Malonomonas rubra (J. Micklefield et al. J. Am. Chem. Soc. 117, 1153-1154, 1995).  相似文献   

14.
We investigated the biosynthetic pathway for 2-phenylethanol, the dominant floral scent compound in roses, using enzyme assays. L-[(2)H8] Phenylalanine was converted to [(2)H8] phenylacetaldehyde and [(2)H8]-2-phenylethanol by two enzymes derived from the flower petals of R. 'Hoh-Jun,' these being identified as pyridoxal-5'-phosphate-dependent L-aromatic amino acid decarboxylase (AADC) and phenylacetaldehyde reductase (PAR). The activity of rose petal AADC to yield phenylacetaldehyde was nine times higher toward L-phenylalanine than toward its D-isomer, and this conversion was not inhibited by iproniazid, a specific inhibitor of monoamine oxidase. Under aerobic conditions, rose petal AADC stoichiometrically produced NH3 together with phenylacetaldehyde during the course of decarboxylation and oxidation, followed by the hydrolysis of L-phenylalanine. Phenylacetaldehyde was subsequently converted to 2-phenylethanol by the action of PAR. PAR showed specificity toward several volatile aldehydes.  相似文献   

15.
4-[4-2H]Aminobutyrate was prepared by incubation in 2H2O of glutamate with a partially purified glutamate decarboxylase from mouse brain. The 4R configuration was assigned to the compound on the basis of 1H nmr analysis of the ω-camphanoylamide of its methyl ester in the presence of Eu(dpm)3. Moreover 4-[4(S)4-3H,U-14C]aminobutyrate was shown to be formed from [2(S)2-3H,U-14C]glutamate by the same enzyme fraction. It is therefore demonstrated that glutamate decarboxylation catalyzed by this enzyme preparation occurs with retention of configuration.  相似文献   

16.
Zhou X  Jin X  Medhekar R  Chen X  Dieckmann T  Toney MD 《Biochemistry》2001,40(5):1367-1377
The two half-reactions of the pyridoxal 5'-phosphate (PLP)-dependent enzyme dialkylglycine decarboxylase (DGD) were studied individually by multiwavelength stopped-flow spectroscopy. Biphasic behavior was found for the reactions of DGD-PLP, consistent with two coexisting conformations observed in steady-state kinetics [Zhou, X., and Toney, M. D. (1998) Biochemistry 37, 5761--5769]. The half-reaction kinetic parameters depend on alkali metal ion size in a manner similar to that observed for steady-state kinetic parameters. The fast phase maximal rate constant for the 2-aminoisobutyrate (AIB) decarboxylation half-reaction with the potassium form of DGD-PLP is 25 s(-1), while that for the transamination half-reaction between DGD-PMP and pyruvate is 75 s(-1). The maximal rate constant for the transamination half-reaction of the potassium form of DGD-PLP with L-alanine is 24 s(-1). The spectral data indicate that external aldimine formation with either AIB or L-alanine and DGD-PLP is a rapid equilibrium process, as is ketimine formation from DGD-PMP and pyruvate. Absorption ascribable to the quinonoid intermediate is not observed in the AIB decarboxylation half-reaction, but is observed in the dead-time of the stopped-flow in the L-alanine transamination half-reaction. The [1-(13)C]AIB kinetic isotope effect (KIE) on k(cat) for the steady-state reaction is 1.043 +/- 0.003, while a value of 1.042 +/- 0.009 was measured for the AIB half-reaction. The secondary KIE measured for the AIB decarboxylation half-reaction with [C4'-(2)H]PLP is 0.92 +/- 0.02. The primary [2-(2)H]-L-alanine KIE on the transamination half-reaction is unity. Small but significant solvent KIEs are observed on k(cat) and k(cat)/K(M) for both substrates, and the proton inventories are linear in each case. NMR measurements of C2--H washout vs product formation give ratios of 105 and 14 with L-alanine and isopropylamine as substrates, respectively. These results support a rate-limiting, concerted C alpha-decarboxylation/C4'-protonation mechanism for the AIB decarboxylation reaction, and rapid equilibrium quinonoid formation followed by rate-limiting protonation to the ketimine intermediate for the L-alanine transamination half-reaction. Energy profiles for the two half-reactions are constructed.  相似文献   

17.
The action of adriamycin (an inhibitor of precursor protein import into mitochondria) upon phosphatidylserine (PtdSer) import into mitochondria was examined in permeabilized CHO-K1 cells. The decarboxylation of nascent PtdSer to phosphatidylethanolamine was used as an indicator reaction for the lipid translocation process. Adriamycin was without effect upon new PtdSer synthesis but blocked the time- and translocation-dependent decarboxylation of this lipid at the mitochondrial inner membrane of permeabilized cells. The effect of adriamycin was concentration-dependent with an IC50 of 150 microM and was not due to direct inhibition of PtdSer decarboxylase. To determine at which level of PtdSer transport adriamycin was working, the adriamycin-treated permeabilized cells were incubated with 1-acyl-2-[N-(6-[(7-nitrobenz-2-oxa-1,3-diazo-4-yl)] aminocaproyl)]phosphatidyl[1'-14C] serine (NBD-Ptd[1'-14C]Ser), and its decarboxylation was determined. Since the NBD-Ptd[1'-14C]Ser freely partitions into all cell membranes, it can partition into the outer mitochondrial membrane in an ATP-independent fashion. The NBD-Ptd[1'-14C]Ser was readily decarboxylated in an ATP-independent manner in permeabilized cells. Adriamycin inhibited the decarboxylation of NBD-Ptd[1'-14C]Ser, thereby indicating that it can act upon lipid transport processes between the outer and inner mitochondrial membrane.  相似文献   

18.
4-Oxalocrotonate decarboxylase (4-OD) and vinylpyruvate hydratase (VPH) from Pseudomonas putida mt-2 form a complex that converts 2-oxo-3-hexenedioate to 2-oxo-4-hydroxypentanoate in the catechol meta fission pathway. To facilitate mechanistic and structural studies of the complex, the two enzymes have been coexpressed and the complex has been purified to homogeneity. In addition, Glu-106, a potential catalytic residue in VPH, has been changed to glutamine, and the resulting E106QVPH mutant has been coexpressed with 4-OD and purified to homogeneity. The 4-OD/E106QVPH complex retains full decarboxylase activity, with comparable kinetic parameters to those observed for 4-OD in the wild-type complex, but is devoid of any detectable hydratase activity. Decarboxylation of (5S)-2-oxo-3-[5-D]hexenedioate by either the 4-OD/VPH complex or the mutant complex generates 2-hydroxy-2,4E-[5-D]pentadienoate in D(2)O. Ketonization of 2-hydroxy-2,4-pentadienoate by the wild-type complex is highly stereoselective and results in the formation of 2-oxo-(3S)-[3-D]-4-pentenoate, while the mutant complex generates a racemic mixture. These results indicate that 2-hydroxy-2, 4-pentadienoate is the product of 4-OD and that 2-oxo-4-pentenoate results from a VPH-catalyzed process. On this basis, the previously proposed hypothesis for the conversion of 2-oxo-3-hexenedioate to 2-oxo-4-hydroxypentanoate has been revised [Lian, H., and Whitman, C. P. (1994) J. Am. Chem. Soc. 116, 10403-10411]. Finally, the observed (13)C kinetic isotope effect on the decarboxylation of 2-oxo-3-hexenedioate by the 4-OD/VPH complex suggests that the decarboxylation step is nearly rate-limiting. Because the value is not sensitive to either magnesium or manganese, it is likely that the transition state for carbon-carbon bond cleavage is late and that the metal positions the substrate and polarizes the carbonyl group, analogous to its role in oxalacetate decarboxylase.  相似文献   

19.
The review is concerned with three Na(+)-dependent biotin-containing decarboxylases, which catalyse the substitution of CO(2) by H(+) with retention of configuration (DeltaG degrees '=-30 kJ/mol): oxaloacetate decarboxylase from enterobacteria, methylmalonyl-CoA decarboxylase from Veillonella parvula and Propiogenium modestum, and glutaconyl-CoA decarboxylase from Acidaminococcus fermentans. The enzymes represent complexes of four functional domains or subunits, a carboxytransferase, a mobile alanine- and proline-rich biotin carrier, a 9-11 membrane-spanning helix-containing Na(+)-dependent carboxybiotin decarboxylase and a membrane anchor. In the first catalytic step the carboxyl group of the substrate is converted to a kinetically activated carboxylate in N-carboxybiotin. After swing-over to the decarboxylase, an electrochemical Na(+) gradient is generated; the free energy of the decarboxylation is used to translocate 1-2 Na(+) from the inside to the outside, whereas the proton comes from the outside. At high [Na(+)], however, the decarboxylases appear to catalyse a mere Na(+)/Na(+) exchange. This finding has implications for the life of P. modestum in sea water, which relies on the synthesis of ATP via Delta(mu)Na(+) generated by decarboxylation. In many sequenced genomes from Bacteria and Archaea homologues of the carboxybiotin decarboxylase from A. fermentans with up to 80% sequence identity have been detected.  相似文献   

20.
The stereochemistry of the decarboxylation reaction catalyzed by an aromatic l-amino acid decarboxylase, purified from Micrococcus percitreus, was studied using stereospecifically deuterium labelled phenylalanine (Phe). The 1H NMR spectrum of [1,2-2H2]-β-phenethylamine enzymatically derived from (2S, 3R)-[3-2H]-Phe in 2H2O was compared with that of [1-2H]-β-phenethylamine from unlabelled Phe in 2H2O. The results clearly indicate that the decarboxylation reaction of this enzyme proceeds exclusively through a course in which the configuration at C-2 of Phe is retained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号