首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Ivanov B  Asada K  Kramer DM  Edwards G 《Planta》2005,220(4):572-581
Redox changes of the reaction-center chlorophyll of photosystem I (P700) and chlorophyll fluorescence yield were measured in bundle sheath strands (BSS) isolated from maize (Zea mays L.) leaves. Oxidation of P700 in BSS by actinic light was suppressed by nigericin, indicating the generation of a proton gradient across the thylakoid membranes of BSS chloroplasts. Methyl viologen, which transfers electrons from photosystem I (PSI) to O2, caused a considerable decrease in the reduction rate of P700+ in BSS after turning off actinic light, showing that electron flow from the acceptor side of PSI to stromal components is critical for this reduction. Ascorbate (Asc), and to a lesser extent malate (Mal), caused a lower level of P700+ in BSS under aerobic conditions in far-red light, implying electron donation from these substances to the intersystem carriers. When Asc or Mal was added to BSS during pre-illumination under anaerobic conditions in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), the far-red-induced level of P700+ was lowered. The results suggest Asc and Mal can cause reduction of stromal donors, which in turn establishes conditions for rapid PSI-driven P700+ reduction. Addition of these metabolites also strongly stimulated the development of a proton gradient in thylakoids under aerobic conditions in the absence of DCMU, i.e. under conditions analogous to those in vivo. Ascorbate was a much more effective electron donor than Mal, suggesting it has a physiological role in activation of cyclic electron flow around PSI.  相似文献   

2.
In this work, we have investigated the effects of atmospheric CO(2) and O(2) on induction events in Hibiscus rosa-sinensis leaves. These effects manifest themselves as multiphase kinetics of P(700) redox transitions and non-monotonous changes in chlorophyll fluorescence. Depletion of CO(2) and O(2) in air causes a decrease in linear electron flux (LEF) and dramatic lowering of P(700)(+) level. This is explained by the impediment to electron efflux from photosystem 1 (PS1) at low acceptor capacity. With the release of the acceptor deficit, the rate of LEF significantly increases. We have found that oxygen promotes the outflow of electrons from PS1, providing the rise of P(700)(+) level. The effect of oxygen as an alternative electron acceptor becomes apparent at low and ambient concentrations of atmospheric CO(2) < or = 0.06-0.07%). A decrease in LEF at low CO(2) is accompanied by a significant (about 3-fold) rise of non-photochemical quenching (NPQ) of chlorophyll fluorescence. Such an increase in NPQ can be explained by more significant acidification of the thylakoid lumen. This occurs due to lessening the proton flux through the ATP synthases caused by a decrease in the ATP consumption in the Bassham-Benson-Calvin (BBC) cycle. pH-dependent mechanisms of electron transport control have been described within the frames of our mathematical model. The model describes the reciprocal changes in LEF and NPQ and predicts the redistribution of electron fluxes on the acceptor side of PS1. In particular, the contribution of cyclic electron flow around PS1 (CEF1) and water-water cycle gradually decays during the induction phase. This result is consistent with experimental data indicating that under the steady-state conditions the contribution of CEF1 to photosynthetic electron transport in Hibiscus rosa-sinensis is insignificant (< or = 10%).  相似文献   

3.
This paper explores the effects of high light stress on Fe-deficient plants. Maize (Zea mays) plants were grown under conditions of Fe deficiency and complete nutrition. Attached, intact leaves of Fe-deficient and control plants were used for gas exchange experiments under suboptimal, optimal and photoinhibitory illumination. Isolated chloroplasts were used to study photosynthetic electron transport system, compromised by the induction of Fe deficiency. The reaction centers of PS II (measured as reduction of Q, the primary electron acceptor of P 680) and PS I (measured as oxidation of P 700) were estimated from the amplitude of light induced absorbance change at 320 and 700 nm, respectively. Plants were subjected to photoinhibitory treatment for different time periods and isolated chloroplasts from these plants were used for electron transport studies. Carbon dioxide fixation in control as well as in Fe-deficient plants decreased in response to high light intensities. Total chlorophyll, P 700 and Q content in Fe-deficient chloroplasts decreased, while Chl a/b ratio and Q/P 700 ratio increased. However, electron transport through PS II suffered more after photoinhibitory treatment as compared to electron transport through PS I or whole chain. Electron transfer through PS I+PS II, excluding the water oxidation complex showed a decrease in Fe-deficient plants. However, electron transport through this part of the chain did not suffer much as a result of photoinhibition, suggesting a defect in the oxidising side of PS II.  相似文献   

4.
The light-dependent quenching of 9-aminoacridine fluorescence was used to monitor the state of the transthylakoid proton gradient in illuminated intact chloroplasts in the presence or absence of external electron acceptors. The absence of appreciable light-dependent fluorescence quenching under anaerobic conditions indicated inhibition of coupled electron transport in the absence of external electron acceptors. Oxygen relieved this inhibition. However, when DCMU inhibited excessive reduction of the plastoquinone pool in the absence of oxygen, coupled cyclic electron transport supported the formation of a transthylakoid proton gradient even under anaerobiosis. This proton gradient collapsed in the presence of oxygen. Under aerobic conditions, and when KCN inhibited ribulose bisphosphate carboxylase and ascorbate peroxidase, fluorescence quenching indicated the formation of a transthylakoid proton gradient which was larger with oxygen in the Mehler reaction as electron acceptor than with methylviologen at similar rates of linear electron transport. Apparently, cyclic electron transport occured simultaneously with linear electron transport, when oxygen was available as electron acceptor, but not when methylviologen accepted electrons from Photosystem I. The ratio of cyclic to linear electron transport could be increased by low concentrations of DCMU. This shows that even under aerobic conditions cyclic electron transport is limited in isolated intact chloroplasts by excessive reduction of electron carriers. In fact, P700 in the reaction center of Photosystem I remained reduced in illuminated isolated chloroplasts under conditions which resulted in extensive oxidation of P700 in leaves. This shows that regulation of Photosystem II activity is less effective in isolated chloroplasts than in leaves. Assuming that a Q-cycle supports a H+/e ratio of 3 during slow linear electron transport, vectorial proton transport coupled to Photosystem I-dependent cyclic electron flow could be calculated. The highest calculated rate of Photosystem I-dependent proton transport, which was not yet light-saturated, was 330 mol protons (mg chlorophyll h)–1 in intact chloroplasts. If H+/e is not three but two proton transfer is not 330 but 220 mol (mg Chl H)–1. Differences in the regulation of cyclic electron transport in isolated chloroplasts and in leaves are discussed.  相似文献   

5.
In this work we have performed a computer analysis of electron and proton transport in cyanobacterial cells using a mathematical model of light-dependent stages of photosynthesis taking into account the key stages of pH-dependent regulation of electron transport on both acceptor and donor sides of photosystem 1 (PS1). Comparison of theoretical and experimental data shows that the model adequately describes the multiphase kinetics of photoinduced redox transformations of P700 (the primary electron donor in PS1). Our computer simulation describes the effect of variations of atmospheric gases (CO2 and O2) on the induction events in cyanobacteria (P700 photooxidation, generation of transmembrane ΔpH), which strongly depends on the preillumination conditions (aerobic or anaerobic atmosphere). It has been shown that the variations of CO2 concentration in the cell interior may noticeably affect the kinetics of electron transport, acidification of lumen, and ATP synthesis. The contributions of alternative pathways of electron transport (cyclic electron transport around PS1 and electron outflow to O2) to the function of cyanobacterial photosynthetic apparatus have been analyzed. At the initial stage of induction period, cyclic electron flows around PS1 (“short” and “long” pathways) substantially contribute to photosynthetic electron transport. These flows, however, attenuate with the light-induced activation of the Calvin-Benson cycle reactions. In the meantime, the outflow of electrons from PS1 to O2 (or to other metabolic chains) increases with oxygen accumulation in the medium. The effects of ferredoxin oxidation by hydrogenase catalyzing the H2 formation on the kinetics of P700 photooxidation and distribution of electron flows on the acceptor side of PS1 have been modeled.  相似文献   

6.
The variation of the rate of cyclic electron transport around Photosystem I (PS I) during photosynthetic induction was investigated by illuminating dark-adapted spinach leaf discs with red + far-red actinic light for a varied duration, followed by abruptly turning off the light. The post-illumination re-reduction kinetics of P700+, the oxidized form of the photoactive chlorophyll of the reaction centre of PS I (normalized to the total P700 content), was well described by the sum of three negative exponential terms. The analysis gave a light-induced total electron flux from which the linear electron flux through PS II and PS I could be subtracted, yielding a cyclic electron flux. Our results show that the cyclic electron flux was small in the very early phase of photosynthetic induction, rose to a maximum at about 30 s of illumination, and declined subsequently to <10% of the total electron flux in the steady state. Further, this cyclic electron flow, largely responsible for the fast and intermediate exponential decays, was sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, suggesting an important role of redox poising of the cyclic components for optimal function. Significantly, our results demonstrate that analysis of the post-illumination re-reduction kinetics of P700+ allows the quantification of the cyclic electron flux in intact leaves by a relatively straightforward method.  相似文献   

7.
A mathematical model is presented that describes the key steps of photosynthetic electron transport and transmembrane proton transfer in chloroplasts. Numerical modeling has been performed with due regard for regulatory processes at the donor and acceptor parts of photosystem (PS) I. The influence of pH-dependent activation of the Calvin cycle enzymes and energy dissipation in PS II (nonphotochemical quenching of chlorophyll fluorescence) on the light-induced redox transients of P700, plastoquinone, and NADP as well as on the changes in intrathylakoid pH and ATP level is examined. It is demonstrated that pH-dependent regulatory processes alter the distribution of electron fluxes on the acceptor side of PS I and the total rate of electron flow between PS II and PS I. The light-induced activation of the Calvin cycle leads to significant enhancement of the electron flow from PS I to NADP+ and attenuation of the electron flow to molecular oxygen.  相似文献   

8.
This paper examines the effect of inorganic carbon transport and accumulation in Synechococcus PCC7942 on fluorescence quenching, photosynthetic oxygen reduction and both linear and cyclic electron flow. The data presented support the previous findings of Miller et al. (1991) that the accumulation of Ci by the CO2 concentrating mechanism is able to stimulate oxygen photoreduction, particularly so when CO2 fixation is inhibited by PCR cycle inhibitors such as glycolaldehyde. This effect is found with both high and low-Ci grown cells, but the potential for oxygen photoreduction is about two-fold higher in low-Ci grown cells. This greater potential for O2 photoreduction is also correlated with a higher ability of low-Ci cells to photoreduce H2O2. Experiments with a mutant which transports Ci but does not accumulate it internally, indicates that the stimulation of O2 photoreduction appears to be a direct effect of the internal accumulation of Ci rather than from its participation in the transport process. In the absence of Ci, no specific partial reactions of photosynthetic electron transport appear to be inhibited, and the PS 1 acceptors PNDA and MV as well as the PS 2 acceptor DMQ can all run electron transport at levels approaching those during active CO2 fixation. Measurements of P700+ show that when the cells are depleted of Ci during photosynthesis, P700 becomes more oxidised. This indicates that the resupply of electrons from the intersystem chain is relatively more restricted under conditions of Ci limitation than is the availability of PS 1 electron acceptors. It is proposed that the accumulated Ci pool can directly stimulate the ability of O2 to act as a PS 1 acceptor and that the ability of PS 1 acceptors, such as O2, to relieve restrictions on intersystem electron transfer is perhaps a result of a reduction in cyclic electron flow and a subsequent increase in the oxidation state of the plastoquinone pool.Abbreviations BTP 1,3-bis[tris(hydroxymethyl)-methylaminopropane] - CA carbonic anhydrase' - Ci inorganic carbon (CO2+HCO3 +CO3 2–) - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMQ 2,6-dimethylbenzoquinone - EZ ethoxyzolamide or 6-ethoxy-2-benzothiazole-sulfonamide - FCCP carbonyl cyanide p-trifluoro methoxyphenyl-hydrazone - F steady-state chlorophyll fluorescence - Fm chlorophyll fluorescence during a saturating light pulse - Fo chlorophyll fluorescence in the dark, prior to illumination by actinic light - MV methyl viologen or 1,1-dimethyl-4,4-bipyridinium dichloride - PCR cycle photosynthetic carbon reduction cycle - PNDA N,N-dimethyl-p-nitrosoaniline - PS 1 the quantum yield of Photosystem 1 - PS 2 the quantum yield of Photosystem 2  相似文献   

9.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP(+), and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700(+).  相似文献   

10.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP+, and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700+.  相似文献   

11.
Zhang XC  Yu XF  Ma YF 《应用生态学报》2011,22(3):673-680
采用开顶式气室盆栽培养小麦,设计2个大气CO2浓度(正常:400 μmol.mol-1;高:760 μmol·mol-1)、2个氮素水平(0和200 mg·kg-1土)的组合处理,通过测定小麦抽穗期旗叶氮素和叶绿素浓度、光合速率(Pn)-胞间CO2浓度(C1)响应曲线及荧光动力学参数,来测算小麦叶片光合电子传递速率等,研究了高大气CO2浓度下施氮对小麦旗叶光合能量分配的影响.结果表明:与正常大气CO2浓度相比,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,高氮处理的小麦叶片叶绿素a/b升高.施氮后小麦叶片PSⅡ最大光化学效率(Fv/Fm)、PSⅡ反应中心最大量子产额(Fv'/Fm')、PSⅡ反应中心的开放比例(qr)和PSⅡ反应中心实际光化学效率(φPSⅡ)在大气CO2浓度升高后无明显变化,虽然叶片非光化学猝灭系数(NPQ)显著降低,但PSⅡ总电子传递速率(JF)无明显增加;不施氮处理的Fv'/Fm'、φPSⅡ和NPQ在高大气CO2浓度下显著降低,尽管Fv/Fm和qp无明显变化,JF仍显著下降.施氮后小麦叶片JF增加,参与光化学反应的非环式电子流传递速率(Jc)明显升高.大气CO2浓度升高使参与光呼吸的非环式电子流传递速率(J0)、Rubisco氧化速率(V0)、光合电子的光呼吸/光化学传递速率比(J0/Jc)和Rubisco氧化/羧化比(V0/Vc)降低,但使Jc和Rubisco羧化速率(Vc)增加.因此,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,而增施氮素使通过PSⅡ反应中心的电子流速率显著增加,促进了光合电子流向光化学方向的传递,使更多的电子进入Rubisco羧化过程,Pn显著升高.  相似文献   

12.
Šeršeň  F.  Král'ová  K.  Bumbálová  A. 《Photosynthetica》1998,35(4):551-559
In chloroplasts of Spinacea oleracea L., Hg2+ ions interact with some sites in the photosynthetic electron transport chain: (l) with the intermediates Z+/D+ situated in the D1 and D2 proteins and with the manganese cluster in the oxygen evolving complex which are located on the donor side of photosystem (PS) 2, (2) with the chlorophyll a dimer in the core of PS1 (P700). P700 is oxidized in the dark by HgCl2. The Hg2+ ions form organometallic complexes with amino acids contained in chloroplast proteins.  相似文献   

13.
We investigated the photodynamic action of hypericin, a natural naphthodianthrone, on photosynthetic electron transport and fluorescence of the cyanobacterium Anacystis nidulans (Synechococcus 6301). The most drastic effect was the inactivation of photosynthetic oxygen evolution in the presence of the electron acceptor phenyl-p-benzoquinone in aerobic cells which required 1 hypericin/5 chlorophyll a for half-maximal effect. Anaerobic A. nidulans was only partially inactivated and variable chlorophyll a fluorescence remained unperturbed suggesting that photoreaction center II was not a target. Further, hypericin, stimulated photoinduced oxygen uptake in the presence of methylviologen in aerobic cells. This action was less specific than the inactivation of oxygen evolution (1 hypericin/0.5–0.7 chlorophyll a for half-maximal effect). Results point to the involvement of molecular oxygen in two ways. Type I mechanism (Henderson BW and Dougherty TJ (1992) Photochem Photobiol 55: 145–157) in which ground state oxygen reacts with excited substrate triplets appears probable for the inactivation of oxygen evolution. On the other hand, Type II mechanism in which excited oxygen singlets react with ground state substrate molecules appears probable in the stimulation of methylviologen mediated oxygen uptake.Abbreviations Chl chlorophyll - DAD diaminodurene - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Hepes N-[2-hydroxyethyl]-N-[ethanesulfonic acid] - MV methyl viologen - PBQ phenyl-p-benzoquinone - PPFD photosynthetic photon flux density - PS I, PS II Photosystems I and II - RC I, RC II reaction centers of PS I and PS II  相似文献   

14.
Tobacco plants (Nicotiana tabacum) were kept in CO2 free air for several days to investigate the effect of lack of electron acceptors on the photosynthetic electron transport chain. CO2 starvation resulted in a dramatic decrease in photosynthetic activity. Measurements of the electron transport activity in thylakoid membranes showed that a loss of Photosystem II activity was mainly responsible for the observed decrease in photosynthetic activity. In the absence of CO2 the plastoquinone pool and the acceptor side of Photosystem I were highly reduced in the dark as shown by far-red light effects on chlorophyll fluorescence and P700 absorption measurements. Reduction of the oxygen content of the CO2 free air retarded photoinhibitory loss of photosynthetic activity and pigment degradation. Electron flow to oxygen seemed not to be able to counteract the stress induced by severe CO2 starvation. The data are discussed in terms of a donation of reducing equivalents from mitochondria to chloroplasts and a reduction of the plastoquinone pool via the NAD(P)H-plastoquinone oxidoreductase during CO2 starvation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
A. Wild  J. Belz  W. Rühle 《Planta》1981,153(4):308-311
Noncyclic electron transport to ferricyanide and photophosphorylation as well as the methylviologen mediated aerobic and anaerobic photophosphorylation with dichlorophenolindophenol-ascorbate as the electron donor of photosystem I were measured during the development of high-light and low-light adapted leaves of Sinapis alba. Anaerobic methylviologen-catalyzed phosphorylation is more than twice as high as aerobic phosphorylation. The difference between the rates of aerobic and anaerobic phosphorylation is sensitive to dibromothymoquinone. Thus, under anaerobic conditions, methylviologen mediates a cyclic phosphorylation including plastoquinone. All photochemical activities of high-light chloroplasts are about twice as high as that of low-light chloroplasts and show a permanent decline with increasing plant age. The lower activities of low-light chloroplasts correlate with a decrease of electron transport components, such as cytochrome f. This indicates that the number of electron transport chains is decreased under low-light conditions and more chlorophyll molecules interact with one electrontransport chain.Abbreviations Asc ascorbate - Chl chlorophyll a+b - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(dichlorophenyl)-1,1-dimethylurea - DCPIP dichlorophenolindophenol - HL high light - LL low light - MV methylviologen - PhAR photosynthetically active radiation - PS photosystem  相似文献   

16.
Winter wheat (Triticum aestivum L. cv Norin No. 61) was grown at 25 degrees C until the third leaves reached about 10 cm in length and then at 15 degrees C, 25 degrees C, or 35 degrees C until full development of the third leaves (about 1 week at 25 degrees C, but 2-3 weeks at 15 degrees C or 35 degrees C). In the leaves developed at 15 degrees C, 25 degrees C, and 35 degrees C, the optimum temperature for CO(2)-saturated photosynthesis was 15 degrees C to 20 degrees C, 25 degrees C to 30 degrees C, and 35 degrees C, respectively. The photosystem II (PS II) electron transport, determined either polarographically with isolated thylakoids or by measuring the modulated chlorophyll a fluorescence in leaves, also showed the maximum rate near the temperature at which the leaves had developed. Maximum rates of CO(2)-saturated photosynthesis and PS II electron transport determined at respective optimum temperatures were the highest in the leaves developed at 25 degrees C and lowest in the leaves developed at 35 degrees C. So were the levels of chlorophyll, photosystem I and PS II, whereas the level of Rubisco decreased with increasing temperature at which the leaves had developed. Kinetic analyses of chlorophyll a fluorescence changes and P700 reduction showed that the temperature dependence of electron transport at the plastoquinone and water-oxidation sites was modulated by the temperature at which the leaves had developed. These results indicate that the major factor that contributes to thermal acclimation of photosynthesis in winter wheat is the plastic response of PS II electron transport to environmental temperature.  相似文献   

17.
Effects of oxygen and photosynthesis and respiration inhibitors on the electron transport in photosystem I (PSI) of the cyanobacterium Arthrospira platensis cells were studied. Redox transients of P700 were induced by illumination at 730 nm and monitored as kinetics of the absorption changes at 810 nm; to block electron influx from PSII, the measurements were performed in the presence of 30 microM 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Inhibitors of terminal oxidases (potassium cyanide and pentachlorophenol) insignificantly influenced the fast oxidation of P700 under aerobic conditions, whereas removal of oxygen significantly decelerated the accumulation of P700(+). In the absence of oxygen the slow oxidation of P700 observed on the first illumination was accelerated on each subsequent illumination, suggesting an activation of the carbon cycle enzymes. Under the same conditions, pentachlorophenol (an uncoupler) markedly accelerated the P700 photooxidation. Under anaerobic conditions, potassium cyanide (an inhibitor of carbon dioxide assimilation) failed to influence the kinetics of redox transients of P700, whereas iodoacetamide (an inhibitor of NADP(H)-glyceraldehyde-3-phosphate dehydrogenase) completely prevented the photooxidation of P700. Thus, the fast photooxidation of P700 in the A. platensis cells under aerobic conditions in the presence of DCMU was caused by electron transport from PSI onto oxygen, and complicated transient changes in the P700 photooxidation kinetics under anaerobic conditions (in the presence of DCMU) were due to involvement of NADP+ generated during the reducing phase of the carbon cycle.  相似文献   

18.
The low-wave phenomenon, i.e., the transient drop of yield of modulated chlorophyll fluorescence shortly after application of a pulse of saturating light, was investigated in intact leaves of tobacco and Camellia by measuring fluorescence, CO(2) assimilation and absorption at 830 nm simultaneously. Limitations on linear electron flow, due to low electron acceptor levels that were induced by low CO(2), induced the low waves of chlorophyll fluorescence. Low-wave amplitudes obtained under different CO(2) concentrations and photon-flux densities yielded single-peak curves when plotted as functions of fluorescence parameters such as PhiPS II (quantum yield of Photosystem II) and qN (coefficient of non-photochemical quenching), suggesting that low-wave formation depends on the redox state of the electron transport chain. Low waves paralleled redox changes of P700, the reaction center of Photosystem I (PS I), and an additional electron flow through PS I was detected during the application of saturating pulses that induced low-waves. It is suggested that low waves of chlorophyll fluorescence are induced by increased non-photochemical quenching, as a result of the formation of a trans-thylakoid proton gradient due to cyclic electron flow around PS I.  相似文献   

19.
《BBA》2020,1861(9):148235
Photosynthetic electron flux from water via photosystem II (PSII) and PSI to oxygen (water-water cycle) may act as an alternative electron sink under fluctuating light in angiosperms. We measured the P700 redox kinetics and electrochromic shift signal under fluctuating light in 11 Camellia species and tobacco leaves. Upon dark-to-light transition, these Camellia species showed rapid re-oxidation of P700. However, this rapid re-oxidation of P700 was not observed when measured under anaerobic conditions, as was in experiment with tobacco performed under aerobic conditions. Therefore, photo-reduction of O2 mediated by water-water cycle was functional in these Camellia species but not in tobacco. Within the first 10 s after transition from low to high light, PSI was highly oxidized in these Camellia species but was over-reduced in tobacco leaves. Furthermore, such rapid oxidation of PSI in these Camellia species was independent of the formation of trans-thylakoid proton gradient (ΔpH). These results indicated that in addition to ΔpH-dependent photosynthetic control, the water-water cycle can protect PSI against photoinhibition under fluctuating light in these Camellia species. We here propose that the water-water cycle is an overlooked strategy for photosynthetic regulation under fluctuating light in angiosperms.  相似文献   

20.
采用开顶式气室盆栽培养小麦,设计2个大气CO2浓度(正常:400 μmol·mol-1;高:760 μmol·mol-1)、2个氮素水平(0和200 mg·kg-1土)的组合处理,通过测定小麦抽穗期旗叶氮素和叶绿素浓度、光合速率(Pn)-胞间CO2浓度(Ci)响应曲线及荧光动力学参数,来测算小麦叶片光合电子传递速率等,研究了高大气CO2浓度下施氮对小麦旗叶光合能量分配的影响.结果表明:与正常大气CO2浓度相比,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,高氮处理的小麦叶片叶绿素a/b升高.施氮后小麦叶片PSⅡ最大光化学效率(Fv/Fm)、PSⅡ反应中心最大量子产额(Fv′/Fm′)、PSⅡ反应中心的开放比例(qp)和PSⅡ反应中心实际光化学效率(ΦPSⅡ)在大气CO2浓度升高后无明显变化,虽然叶片非光化学猝灭系数(NPQ)显著降低,但PSⅡ总电子传递速率(JF)无明显增加;不施氮处理的Fv′/Fm′、ΦPSⅡ和NPQ在高大气CO2浓度下显著降低,尽管Fv/Fm和qP无明显变化,JF仍显著下降.施氮后小麦叶片JF增加,参与光化学反应的非环式电子流传递速率(JC)明显升高.大气CO2浓度升高使参与光呼吸的非环式电子流传递速率(J0)、Rubisco氧化速率(V0)、光合电子的光呼吸/光化学传递速率比(J0/JC)和Rubisco氧化/羧化比(V0/VC)降低,但使JC和Rubisco羧化速率(VC)增加.因此,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,而增施氮素使通过PSⅡ反应中心的电子流速率显著增加,促进了光合电子流向光化学方向的传递,使更多的电子进入Rubisco羧化过程,Pn显著升高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号