首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of a facultative sexual strategy that simultaneously produced sexual and asexual individuals was studied theoretically, under negative frequency-dependence of fitness. The organism was considered to be diploid, characterized by two loci concerning fitness and determining sexual strategy, between which a certain degree of linkage existed. The locus concerning fitness was assumed to involve two alleles, resulting in three genotypes, the relative fitness of an individual being defined by a decreasing function of frequency of its own genotype on this locus in the population. The sexual reproductive strategy was considered to be determined by three alleles; asexual, obligate sexual and facultative sexual. Simulations under various linkages between loci and level of frequency dependence of fitness showed that a facultative sexual strategy was generally able to invade and increase in the population. In particular, when the level of frequency dependence was high to some degree, the facultative strain producing many sexual individuals tended to exclusively occupy the population. Namely, the frequency-dependent selection resulted in a predominance of obligate sexual strategy over asexual strategy, simultaneously causing a subordination of the former to the facultative sexual strategy. This indicated that the evolution of sex should be considered carefully with respect to the possibility of invasion of facultative sex.  相似文献   

2.
I studied the effects of introducing phenotypic variation into a well-known single species model for a population with discrete, non-overlapping generations. The phenotypes differed in their dynamic behaviour. The analysis was made under the assumption that the population was in an evolutionary stable state. Differences in the timing of the competitive impacts of the phenotypes on each other had a strong simplifying effect on the dynamics. This result could also be applied to competition between species. The effect of sexual reproduction on the dynamics of the population was analysed by assuming the simplest genetic model of one locus with two alleles. Sexual reproduction made the system much more stable in the (mathematical) sense that the number of attractors was reduced and their basins of attraction enlarged. In a dominant system sex tended to increase the frequency of the recessive allele, and in an overdominant system it induced gene frequencies of 1/2. Whether the attractors in the dominant system tended to be simpler or more complex than the attractors in the asexual system depended on the phenotype of the recessive homozygote. The overdominant sexual system tended to have simpler dynamics than the corresponding asexual population. A 2-locus model was used to study whether sexuals can invade an asexual population and vice versa. One locus coded for sexual and asexual reproduction, while the other coded for the dynamics. Enhanced stability through sexual reproduction seemed to be the reason why there was a clear asymmetry favouring sex in this evolutionary context.  相似文献   

3.
Dolgin ES  Otto SP 《Genetics》2003,164(3):1119-1128
The segregation of alleles disrupts genetic associations at overdominant loci, causing a sexual population to experience a lower mean fitness compared to an asexual population. To investigate whether circumstances promoting increased sex exist within a population with heterozygote advantage, a model is constructed that monitors the frequency of alleles at a modifier locus that changes the relative allocation to sexual and asexual reproduction. The frequency of these modifier alleles changes over time as a correlated response to the dynamics at a fitness locus under overdominant selection. Increased sex can be favored in partially sexual populations that inbreed to some extent. This surprising finding results from the fact that inbred populations have an excess of homozygous individuals, for whom sex is always favorable. The conditions promoting increased levels of sex depend on the selection pressure against the homozygotes, the extent of sex and inbreeding in the population, and the dominance of the invading modifier allele.  相似文献   

4.
1. The fitness impacts of two levels of superparasitism were compared in a sexual and an asexual strain of Lysiphlebus fabarum (Marshall) developing in black bean aphids. 2. Asexual females were larger than sexuals, had higher eggs loads, and better adult emergence in two of three treatments, but parasitised fewer available aphids in 24 h (80% fewer when foraging alone). 3. Superparasitism resulted in wasps that were larger than those emerging from singly parasitised aphids, and asexual females had larger ovaries, without delayed development. In contrast, sexual wasps took about 2 days longer to develop in superparasitised hosts, and females had smaller ovaries with lower egg loads. 4. The growth of host aphids bearing asexual larvae was not reduced relative to healthy aphids, except when heavily superparasitised, whereas sexual larvae reduced aphid growth in all treatments. 5. Elimination of supernumerary larvae was virtually complete at 4.5 days after parasitism by sexual females, but no elimination occurred among asexual larvae. The evolution of diminished aggression in asexual larvae may be facilitated by greater genetic similarity, without necessarily leading to gregarious development, assuming the extended life of supernumeraries somehow improves survivor fitness. 6. Sons of virgin sexual females developed faster than sons of mated females, implicating parental effects that slowed development of the latter. 7. It is concluded that asexual females of this strain use superparasitism to improve host quality, and thus the fitness of their daughters, whereas females of the sexual strain prioritise offspring number.  相似文献   

5.
Certain types of asexual reproduction lead to loss of complementation, that is unmasking of recessive deleterious alleles. A theoretical measure of this loss is calculated for apomixis, automixis and endomitosis in the cases of diploidy and polyploidy. The effect of the consequent unmasking of deleterious recessive mutations on fitness is also calculated. Results show that, depending on the number of lethal equivalents and on the frequency of recombination, the cost produced by loss of complementation after few generations of asexual reproduction may be greater than the two-fold cost of meiosis. Maintaining complementation may, therefore, provide a general short-term advantage for sexual reproduction. Apomixis can replace sexual reproduction under a wide range of parameters only if it is associated with triploidy or tetraploidy, which is consistent with our knowledge of the distribution of apomixis.  相似文献   

6.
The maintenance of sex is an unresolved paradox in evolutionary biology, given the inherent twofold fitness advantage for asexuals. Parasitic helminths offer a unique opportunity to address this enigma. Parasites that can create novel antigenic strains are able to escape pre-existing host immunity. Viruses produce diversity through mutation with rapid clonal proliferation. The long generation times of helminth parasites prevent them from adopting this strategy. Instead, we argue that sexual reproduction enables parasitic helminths to rapidly generate strain diversity. We use both a stochastic, individual-based model and a simple analytical model to assess the selective value of sexual versus asexual reproduction in helminth parasites. We demonstrate that sexual reproduction can more easily produce and maintain strain diversity than asexual reproduction for long-lived parasites. We also show that sexual parasite populations are resistant to invasion by rare asexual mutants. These results are robust to high levels of cross-immunity between strains. We suggest that the enhancement of strain diversity, despite stochastic extinction of strains, may be critical to the evolutionary success of sex in long-lived parasites.  相似文献   

7.
Damgaard C 《Genetics》2000,154(2):813-821
The expected fixation probability of an advantageous allele was examined in a partially self-fertilizing hermaphroditic plant species using the diffusion approximation. The selective advantage of the advantageous allele was assumed to be increased viability, increased fecundity, or an increase in male fitness. The mode of selection, as well as the selfing rate, the population size, and the dominance of the advantageous allele, affect the fixation probability of the allele. In general it was found that increases in selfing rate decrease the fixation probability under male sexual selection, increase fixation probability under fecundity selection, and increase when recessive and decrease when dominant under viability selection. In some cases the highest fixation probability of advantageous alleles under fecundity or under male sexual selection occurred at an intermediary selfing rate. The expected mean fixation times of the advantageous allele were also examined using the diffusion approximation.  相似文献   

8.
The harmful effects of inbreeding can be reduced if deleterious recessive alleles were removed (purged) by selection against homozygotes in earlier generations. If only a few generations are involved, purging is due almost entirely to recessive alleles that reduce fitness to near zero. In this case the amount of purging and allele frequency change can be inferred approximately from pedigree data alone and are independent of the allele frequency. We examined pedigrees of 59,778 U.S. Jersey cows. Most of the pedigrees were for six generations, but a few went back slightly farther. Assuming recessive homozygotes have fitness 0, the reduction of total genetic load due to purging is estimated at 17%, but most of this is not expressed, being concealed by dominant alleles. Considering those alleles that are currently expressed due to inbreeding, the estimated amount of purging is such as to reduce the expressed load (inbreeding depression) in the current generation by 12.6%. That the reduction is not greater is due mainly to (1) generally low inbreeding levels because breeders in the past have tended to avoid consanguineous matings, and (2) there is essentially no information more than six generations back. The methods used here should be applicable to other populations for which there is pedigree information.  相似文献   

9.
C. Trent  W. B. Wood    H. R. Horvitz 《Genetics》1988,120(1):145-157
We have characterized a novel dominant allele of the sex-determining gene her-1 of Caenorhabditis elegans. This allele, called n695, results in the incomplete transformation of XX animals into phenotypic males. Previously characterized recessive her-1 alleles transform XO animals into phenotypic hermaphrodites. We have identified five new recessive her-1 mutations as intragenic suppressors of n695. Three of these suppressors are weak, temperature-sensitive alleles. We show that the recessive her-1 mutations are loss-of-function alleles, and that the her-1(n695) mutation results in a gain-of-function at the her-1 locus. The existence of dominant and recessive alleles that cause opposite phenotypic transformations demonstrates that the her-1 gene acts to control sexual identity in C. elegans.  相似文献   

10.
The effects of mutation, migration, random drift, and selection on the change in frequency of the alleles associated with Huntington disease, porphyria variegata, and lipoid proteinosis have been assessed in the Afrikaner population of South Africa. Although admixture cannot be completely discounted, it was possible to exclude migration and new mutation as major sources of changes in the frequency of these alleles by limiting analyses to pedigrees descendant from founding families. Calculations which overestimated the possible effect of random drift demonstrated that drift did not account for the observed changes in gene frequencies. Therefore these changes must have been caused by natural selection, and a coefficient of selection was estimated for each trait. For the rare, dominant, deleterious allele associated with Huntington disease, the coefficient of selection was estimated to be .34, indicating that this allele has a selective disadvantage, contrary to some recent studies. For the presumed dominant and probably deleterious allele associated with porphyria variegata, the coefficient of selection lies between .07 and .02. The coefficient of selection for the rare, clinically recessive allele associated with lipoid proteinosis was estimated to be .07. Calculations based on a model system indicate that the observed decrease in allele frequency cannot be explained solely on the basis of selection against the homozygote. Thus, this may be an example of a pleiotropic gene which has a dominant effect in terms of selection even though its known clinical effect is recessive.  相似文献   

11.
Somatic Mutation Favors the Evolution of Diploidy   总被引:1,自引:1,他引:0       下载免费PDF全文
H. A. Orr 《Genetics》1995,139(3):1441-1447
Explanations of diploidy have focused on advantages gained from masking deleterious mutations that are inherited. Recent theory has shown that these explanations are flawed. Indeed, we still lack any satisfactory explanation of diploidy in species that are asexual or that recombine only rarely. Here I consider a possibility first suggested by EFROIMSON in 1932, by MULLER in 1964 and by CROW and KIMURA in 1965: diploidy may provide protection against somatic, not inherited, mutations. I both compare the mean fitness of haploid and diploid populations that are asexual and investigate the invasion of ``diploidy' alleles in sexual populations. When deleterious mutations are partially recessive and somatic mutation is sufficiently common, somatic mutation provides a clear advantage to diploidy in both asexual and sexual species.  相似文献   

12.
The advantages of segregation and the evolution of sex   总被引:4,自引:0,他引:4  
Otto SP 《Genetics》2003,164(3):1099-1118
In diploids, sexual reproduction promotes both the segregation of alleles at the same locus and the recombination of alleles at different loci. This article is the first to investigate the possibility that sex might have evolved and been maintained to promote segregation, using a model that incorporates both a general selection regime and modifier alleles that alter an individual's allocation to sexual vs. asexual reproduction. The fate of different modifier alleles was found to depend strongly on the strength of selection at fitness loci and on the presence of inbreeding among individuals undergoing sexual reproduction. When selection is weak and mating occurs randomly among sexually produced gametes, reductions in the occurrence of sex are favored, but the genome-wide strength of selection is extremely small. In contrast, when selection is weak and some inbreeding occurs among gametes, increased allocation to sexual reproduction is expected as long as deleterious mutations are partially recessive and/or beneficial mutations are partially dominant. Under strong selection, the conditions under which increased allocation to sex evolves are reversed. Because deleterious mutations are typically considered to be partially recessive and weakly selected and because most populations exhibit some degree of inbreeding, this model predicts that higher frequencies of sex would evolve and be maintained as a consequence of the effects of segregation. Even with low levels of inbreeding, selection is stronger on a modifier that promotes segregation than on a modifier that promotes recombination, suggesting that the benefits of segregation are more likely than the benefits of recombination to have driven the evolution of sexual reproduction in diploids.  相似文献   

13.
C. Zeyl  G. Bell    D. M. Green 《Genetics》1996,143(4):1567-1577
Mobile genetic elements may be molecular parasites that reduce the fitness of individuals that bear them by causing predominantly deleterious mutations, but increase in frequency when rare because transposition increases their rates of transmission to the progeny of crosses between infected and uninfected individuals. If this is true, then the initial spread of a mobile element requires sex. We tested this prediction using the yeast retrotransposon Ty3 and a strain of Saccharomyces cerevisiae lacking Ty3. We infected replicate isogenic sexual and asexual populations with a galactose-inducible Ty3 element at an initial frequency of 1%. In two of six asexual populations, active Ty3 elements increased in frequency to 38 and 86%, due to the spread in each population of a competitively superior mutant carrying a new Ty3 insertion. Ty3 frequencies increased above 80% in all sexual populations in which transposition was induced in haplophase or in diplophase. Ty3 did not increase in frequency when active during both haplophase and diplophase, apparently because of selective sweeps during adaptation to galactose. Repressed Ty3 elements spread in sexual populations, by increasing sexual fitness. These results indicate that active Ty3 elements are more likely to become established in sexual populations than in asexual populations.  相似文献   

14.
Trade-offs between life-history components are a central concept of evolution and ecology. Sexual and natural selection seem particularly apt to impose antagonistic selective pressures. When sex is not integrated into reproduction, as in Saccharomyces cerevisiae, natural selection can impair or even eliminate it. In this study, a genetic trade-off between the sexual and asexual phases of the yeast life cycle was suggested by sharp declines in the mating and sporulation abilities of unrelated genotypes that were propagated asexually in minimal growth medium and in mice. When sexual selection was applied to populations that had previously evolved asexually, sexual fitness increased but asexual fitness declined. No such negative correlation was observed when sexual selection was applied to an ancestral strain: sexual and asexual fitness both increased. Thus, evolutionary history affected the evolution of genetic correlations, as fitness increases in a population already well adapted to the environment were more likely to come at the expense of sexual functions.  相似文献   

15.
The evolutionary maintenance of sex is one of the big unresolved puzzles in biology. All else being equal, all-female asexual populations should enjoy a two-fold reproductive advantage over sexual relatives consisting of male and female individuals. However, the "all else being equal" assumption rarely holds in real organisms because asexuality tends to be confounded with altered genomic constitutions such as hybridization and polyploidization or to be associated with parthenogenesis-inducing microbes. This limits the ability to draw general conclusions from any particular system. Here we describe a new system that permits unbiased comparisons of sexual and asexual reproduction: the parasitic wasp Lysiphlebus fabarum. Crossing experiments demonstrated that asexual reproduction has a simple genetic basis in this species and is consistently inherited as a single-locus recessive trait. We further show that the asexuality-inducing allele exhibits complete linkage to a specific allele at a microsatellite marker: all asexual lines in the field were homozygous for this allele, and the allele cosegregated perfectly with asexual reproduction in our experimental crossings. This novel system of contagious asexuality allows the production of closely related individuals with different reproductive modes, as well as the monitoring of the asexuality-inducing allele in natural and experimental populations.  相似文献   

16.
The objective of this study was to calculate cumulative discounted expressions (CDE) for Japanese Black sires carrying a single defective allele in a herd by applying the gene-flow method to investigate the expression pattern of homozygous recessive genotype and to evaluate the monetary loss of using these sires. A single biallelic locus was considered with A representing the dominant allele and a representing the recessive allele. The gene-flow method was modified to consider the fitness of homozygous recessive genotype. Input parameters representing a typical situation in a Japanese Black cattle herd were used to calculate the CDE and the loss of using carrier sires. The effects of initial allele frequency and fitness on the CDE were determined for Aa and AA sires. The CDE of Aa sires were larger than those of AA sires under all initial allele frequencies and fitness. The difference in the CDE between using Aa and AA sires was largest when fitness was 0 (lethal recessive condition). The differences in the loss between Aa and AA sires were larger with increasing initial allele frequencies in lethal recessive condition. Applying the method used in this study to defects reported in Japanese Black cattle and with a population size of 628 000, the difference in the loss between using Aa and AA sires was US$48 575 800 and US$74 418 000 in the case of Band-3 and Claudin-16 deficiencies, respectively. The approach used in this study could be applied to other genetic defects in different breeds and species.  相似文献   

17.
The balance between sexual and asexual propagule production is studied in an evolutionary model where plants produce the two kinds of propagules in genetically determined proportions. The male function of plants producing asexual propagules can be varied, and the sexual and asexual propagules carry different probabilities to turn into new reproductive individuals. These fitnesses may vary over years. The evolution of the population’s reproductive system is studied assuming modifier alleles with small effects. In this setting a balanced, mixed reproductive system can evolve, but only if the difference in fitness between the sexual and asexual propagules varies over years. When the two kinds of propagules are very similar to each other, as is often the case with sexual and asexual seed formation, evolution will tend towards a state dominated by the one or the other reproductive system.  相似文献   

18.
For a plant selection model with frequency-independent viabilities, fertilities and selfing rates, it is shown that apart from global fixation, for certain parameter combinations a protected polymorphism and facultative fixation (either allele may become fixed according to initial frequencies) may both occur. Facultative fixation requires different selling rates for the dominant and recessive type. Protection of the polymorphism requires resource allocation for male and female function. In this connection the problem of purely genetically caused population extinction is discussed.
For general frequency dependence and regular segregation, the chances for establishment of a completely recessive gene are compared to those of a completely dominant gene. It is proven that the process of establishment of the recessive gene, despite a fitness advantage, may be considerably endangered by drift effects if random mating prevails. The recessive gene may reach the same effectivity in establishment as a dominant gene, only if the recessive homozygote mates exclusively with its own type during the period of establishment.  相似文献   

19.
We use population genetic models to investigate the cooperative and conflicting synergistic fitness effects between genes from the nucleus and the mitochondrion. By varying fitness parameters, we examine the scope for conflict relative to cooperation among genomes and the utility of the “gene's eye view” analytical approach, which is based on the marginal average fitness of specific alleles. Because sexual conflict can maintain polymorphism of mitochondrial haplotypes, we can explore two types of evolutionary conflict (genomic and sexual) with one epistatic model. We find that the nuclear genetic architecture (autosomal, X‐linked, or Z‐linked) and the mating system change the regions of parameter space corresponding to the evolution by sexual and genomic conflict. For all models, regardless of conflict or cooperation, we find that population mean fitness increases monotonically as evolution proceeds. Moreover, we find that the process of gene frequency change with positive, synergistic fitnesses is self‐accelerating, as the success of an allele in one genome or in one sex increases the frequency of the interacting allele upon which its success depends. This results in runaway evolutionary dynamics caused by the positive intergenomic associations generated by selection. An inbreeding mating system tends to further accelerate these runaway dynamics because it maintains favorable host–symbiont or male–female gene combinations. In contrast, where conflict predominates, the success of an allele in one genome or in one sex diminishes the frequency of the corresponding allele in the other, resulting in considerably slower evolutionary dynamics. The rate of change of mean fitness is also much faster with positive, synergistic fitnesses and much slower where conflict is predominant. Consequently, selection rapidly fixes cooperative gene combinations, while leaving behind a slowing evolving residue of conflicting gene combinations at mutation–selection balance. We discuss how an emphasis on marginal fitness averages may obscure the interdependence of allelic fitness across genomes, making the evolutionary trajectories appear independent of one another when they are not.  相似文献   

20.
We have used the sexual Penna ageing model to show that the relation between dominance and recessiveness could be a force which optimizes the genome size. While the possibility of complementation of the damaged allele by its functional counterparts (recessiveness) leads to the redundancy of genetic information, the dominant effect of defective genes tends to diminish the number of alleles fulfilling the same function. Playing with the fraction of dominant loci in the genome it is possible to obtain the condition where the diploid state of the genome is optimal. If the status of each bit position as dominant or recessive mutations is changed for each individual randomly and rarely, then after a long time a stationary equilibrium of many recessive and few dominant loci is established in the sexual Penna model. This effect vanishes if the same changing distribution of dominant loci applies to all individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号