首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effect of 2,450-MHz CW microwaves on natural killer (NK) cell activity and lymphocyte responsiveness to mitogen stimulation was studied in mice. Groups of mice were irradiated at power densities of 5, 15, or 30 mW/cm2 (SAR = 3.5, 10.5, and 21 W/kg respectively) for 1.5 h on 2 or 9 consecutive days. NK cell activity was determined using an in vitro 51Cr release cytotoxicity assay and an in vivo tumor-cell clearance assay. No consistent change was observed in the mitogen response of spleen cells from sham compared with irradiated mice. A significant suppression of NK cell activity measured in vitro was observed for mice irradiated at 30 mW/cm2, but not at 15 or 5 mW/cm2. A significant suppression of NK cell activity, as determined using the in vivo tumor clearance assay, was also observed at 30 mW/cm2. NK cell activity, as determined using the in vitro assay, returned to normal within 24 h following the last irradiation. Treatment of mice with hydrocortisone caused suppression of NK cell activity measured in vitro and in vivo. Paradoxically, peritoneal macrophage phagocytosis was enhanced following irradiation at 30 mW/cm2, the power density at which NK activity was suppressed. The possible role that microwave heating plays in producing these effects is discussed.  相似文献   

2.
Effects of 2.45-GHz microwaves on primate corneal endothelium   总被引:3,自引:0,他引:3  
Both eyes of anesthetized cynomolgus monkeys (Macaca fascicularis) were irradiated with 2.45-GHz microwaves, either pulsed or continuous wave. In vivo corneal endothelial abnormalities were observed by specular microscopy and confirmed through histologic techniques after a 16- to 48-hour postexposure period. Pulsed microwaves with an average power density of 10 mW/cm2 (equivalent to a specific absorption rate (SAR) = 2.6 W/kg) produced these effects, while levels of 20-30 mW/cm2 (equivalent to a SAR = 5.3 to 7.8 W/kg) with continuous wave irradiation were required to produce similar changes.  相似文献   

3.
The influence of microwave irradiation on the activity of gamma-glutamyl transpeptidase (GGT) induced by hydrocortisone (HC) in the liver of rats was investigated. Animals were subjected to microwave irradiation (frequency 53.57 GHz, power density 10 mW/cm2 and 1 mW/cm2) during and after hydrocortisone (HC) treatment (20 mg/kg for 60 days). The results indicate that microwave radiation may block an inducible effect of HC on GGT activity in the liver of rats. This effect depends on the power density of millimetre microwaves.  相似文献   

4.
1. Coturnix coturnix japonica eggs were exposed to 2.45-GHz continuous wave microwave radiation at an incident power density of 5 mW/cm2 (SAR = 4 mW/g) during the first 12 days of embryogeny. After hatching, leukocyte differential changes were measured in response to an injection with Alectoris graeca chukar red blood cells (CRBC) and in response to a phytohemagglutinin (PHA) injection in irradiated and nonirradiated (sham) quail of both sexes. 2. Microwave irradiation did not affect anti-CRBC hemagglutinin titers, PHA-evoked dermal swelling or leukocyte numbers and percentages. 3. In both the irradiated and sham irradiated males, lymphocyte percentages decreased while heterophil percentages increased after CRBC or PHA injection. 4. In ovo irradiation with microwaves did not alter the time course of either a humoral immune response or a cell-mediated immune response in Japanese quail.  相似文献   

5.
Human marrow cells were irradiated with 2450-MHz CW microwaves in a fluid-filled waveguide irradiation system. Cell exposure was conducted by placing a marrow cell suspension in 20-μl glass microcapillary tubes that were positioned in the exposure chamber, and irradiated at power densities from 31 to 1,000 mW/cm2 (with corresponding specific absorption rates of 62 to 2,000 mW/g) for 15 minutes. The temperature of the sample was maintained at a fixed point. Sham-irradiated (SI) and microwave-irradiated (MWI) cells were cultured in a methylcellulose culture system for neutrophil colony proliferation. There was no reduction in neutrophil colony number on days 6–7 or 12–14 in cells exposed at 31 or 62 mW/cm2, but as the power density was increased to 1,000 mW/cm2, there was a reduction in colony number of MWI cells compared with SI cells. The microwave interaction with the human neutrophil colony-forming cells was apparently not related to temperature rise, or to the state of cell cycle, and was irreversible.  相似文献   

6.
The formation of zygotes between two haploid strains of yeast (Saccharomyces cerevisiae) was determined under treatment with microwaves of 9.4 and 17 GHz at power levels up to 50 and 60 mW/cm2 and a specific absorption rate below 24 mW/g, or with conventional heating. Microwave treatments at 9.4 GHz or 17 GHz at a power density of 10 mW/cm2 produced an increase in zygote formation equivalent to that produced by conventional heating in an incubator, i.e. equivalent to a rise in temperature of 0.5 or 1 degrees C. At higher power densities zygote formation was slightly increased by microwaves at 17 GHz as compared to microwaves at 9.4 GHz probably due to the higher absorption of microwaves at 17 GHz by intracellular water molecules. Under these conditions, microwaves had no effect on cell survival or the induction of cytoplasmic 'petite' mutations.  相似文献   

7.
To further understand the function of the nucleolus organizer (NO), especially as it relates to the mitotic cycle, we extended our previous irradiation studies to prophase chromosomes and nucleoli. The juxtanucleolar region of nucleolar chromosomes was irradiated with the argon laser microbeam, and cells were observed for several days. Nuclei with two nucleoli were generally chosen for irradiation because of their two clear secondary constrictions. Summarized results are as follows: (1) When either one or several juxtanucleolar sites of both or all nucleoli are irradiated, the mitotic process is blocked and the cells return to interphase. (2) When only the chromosomes associated with the largest nucleolus are irradiated, mitosis is also blocked. (3) When the juxtanucleolar regions of the smallest nucleolus are irradiated, the cells generally go into metaphase and complete division, but with a reduction in the number of resulting nucleoli. (4) When the nucleoli themselves are irradiated, mitosis proceeds and daughter nuclei show no reduction in nucleolar number. (5) When chromosomes are randomly irradiated at non-juxtanucleolar regions, the nucleus divides and produces the same number of nucleoli in each daughter nucleus as were present in the mother cell.  相似文献   

8.
Increasing applications of electromagnetic fields are of great concern with regard to public health. Several in vitro studies have been conducted to detect effects of microwave exposure on the genetic material leading to negative or questionable results. The micronucleus (MN) assay which is proved to be a useful tool for the detection of radiation exposure-induced cytogenetic damage was used in the present study to investigate the genotoxic effect of microwaves in human peripheral blood lymphocytes in vitro exposed in G(0) to electromagnetic fields with different frequencies (2.45 and 7.7GHz) and power density (10, 20 and 30mW/cm(2)) for three times (15, 30 and 60min). The results showed for both radiation frequencies an induction of micronuclei as compared to the control cultures at a power density of 30mW/cm(2) and after an exposure of 30 and 60min. Our study would indicate that microwaves are able to cause cytogenetic damage in human lymphocytes mainly for both high power density and long exposure time.  相似文献   

9.
The effects of 2.45-GHz continuous-wave microwaves (SAR = 130 mW/g) on the expression of the interferon-regulated enzymes 2'-5'-oligoadenylate (2-5A) synthetase(s) and 2-5A-dependent endoribonuclease (RNase L) were studied in murine L929 cells. Cells growing as monolayers were removed from the substratum and placed in suspension culture for a 4-h sham or microwave exposure. The cells were returned to monolayer growth for 18 h, and then harvested and assayed to determine the amount of RNase L protein (via [32P]2-5A binding) and the specific activities of RNase L and 2-5A synthetase. Binding of radioactive 2-5A to RNase L for sham- and microwave-exposed samples was 14.5 and 36.4% above control, respectively (the microwave-exposed bound 19.0% more probe than the sham-exposed). The increases in 2-5A binding were accompanied by corresponding elevations of RNase L specific activity. In contrast, sham or microwave irradiation produced no alterations in 2-5A synthetase specific activity. No detectable differences were noted in the postexposure cell viability, plating efficiency, or proliferation rate. Also, there were no detectable differences in cell viability or plating efficiency between controls and cultures irradiated for 2 h when the temperature was simultaneously increased to above normal physiological limits (39 to 45 degrees C). The SAR (130 mW/g) and the power density (95 mW/cm2) used for the greater part of this study were nearly 20 times higher than the ANSI limit of 8 mW/g and 5 mW/cm2 for any 1 g of exposed human tissue.  相似文献   

10.
Adult male squirrel monkeys (Saimiri sciureus) were individually chair-restrained in an air-conditioned Styrofoam box in the far field of a horn antenna. Each monkey first received extensive training to regulate the temperature of the air circulating through the box by selecting between 10 and 50 degrees C air source temperatures. Then, to investigate the ability of the animals to utilize microwaves as a source of thermalizing energy, 2450-MHz continuous wave microwaves accompanied by thermoneutral (30 degrees C) air were substituted for the 50 degrees C air. Irradiation at each of three power densities was made available, ie, at 20, 25, and 30 mW/cm2 [SAR = 0.15 (W/kg)/(mW/cm2)]. The percentage of time that the monkeys selected microwave irradiation paired with thermoneutral air averaged 90% at 20 and at 25 mW/cm2. The mean percentage declined reliably (p less than 0.001) to 81% at 30 mW/cm2, confirming the monkey's ability to utilize microwave irradiation as a source of thermal energy during the course of behavioral thermoregulation. All animals readily made the warm-air to microwave-field transition, regulating rectal temperature with precision by sequentially selecting 10 degrees C air, then microwave irradiation accompanied by 30 degrees C air. Although the selection of cooler air resulted in a slight reduction of skin temperatures, normal rectal temperature was maintained. The results indicate that the squirrel monkey can utilize a microwave source in conjunction with convective cooling to regulate body temperature behaviorally.  相似文献   

11.
The present study was undertaken to investigate the thermal adjustments of squirrel monkeys exposed in a cold environment to relatively high energy levels of microwave fields. The animals (Saimiri sciureus) were equilibrated for 90 min to a cool environment (Ta = 20 degrees C) to elevate metabolic heat production (M). They were then exposed for brief (10-min) or long (30-min) periods to 2,450-MHz continuous-wave microwaves. Power densities (MPD) were 10, 14, 19, and 25 mW/cm2 during brief exposures and 30, 35, 40, and 45 mW/cm2 during long exposures (rate of energy absorption: SAR = 0.15 [W/kg]/[mW/cm2]). Individual exposures were separated by enough time to allow physiological variables to return to baseline levels. The results confirm that each microwave exposure induced a rapid decrease in M. In a 20 degree C environment, the power density of a 10-min exposure required to lower M to approximate the resting level was 35 mW/cm2 (SAR = 5.3 W/kg). During the long exposures, 20 min was needed to decrease M to its lowest level. Cessation of irradiation was associated with persistence of low levels of M for periods that depended on the power density of the preceding microwave exposure. Vasodilation, as indexed by changes in local skin temperature, occurred at a high rate of energy absorption (SAR = 4.5 W/kg) and was sufficient to prevent a dramatic increase in storage of thermal energy by the body; vasoconstriction was reinstated after termination of irradiation. Patterns of thermophysiological responses confirm the influence both of peripheral and of internal inputs to thermoregulation in squirrel monkeys exposed to microwaves in a cool environment.  相似文献   

12.
This study was designed to examine the effects of microwaves on the electric activity of hearts as a means of elucidating interactive mechanisms of nonionizing radiation with cardiac tissue. Experiments were performed on isolated hearts of 9-12-day-old chick embryos placed in small petri dishes. Oxygenated isotonic Ringer's solution at 37 degrees C permitted heart survival. Samples were irradiated at 2.45 GHz with a power density of 3 mW/cm2. The heart signal was detected with a glass micropipet inserted into the sinoatrial node and examined by means of a Berg-Fourier analyzer. Pulsed microwaves caused the locking of the heartbeat to the modulation frequency, whereas continuous wave irradiation might have induced slight bradycardia. Pulsed fields induced stimulation or regularization of the heartbeat in arrhythmia, fibrillation, or arrest of the heart.  相似文献   

13.
In this paper, we report the effects of laser microirradiation of prophase nucleoli and mitotic chromosomes in cells of female rat kangaroo kidney epithelial cell line PTK1. When the laser power delivered to sample surface was 90-190 mW, irradiation of one of the two nucleoli in the prophase cell did not inhibit the mitotic progress, but resulted in the loss of the irradiated nucleolus in daughter cells. When the laser power was increased to 360-420 mW, either irradiation of the nucleolus or chromosome in midprophase caused a blockage of mitosis at terminal midprophase. The irradiated cells returned morphologically to early prophase. No mitotic reversion occurred in the case of irradiation of chromosomes at late prophase, prometaphase, metaphase, and anaphase. Irradiation of the cytoplasm in prophase cells caused a 50-70 min mitotic delay at prophase. However, the irradiated cells underwent successive mitotic divisions. The mechanism of laser-induced mitotic prophase reversion is discussed.  相似文献   

14.
15.
16.
The possible existence of thermal effects specific to microwaves at 2.45 GHz and not found with classical heating in a waterbath was studied by measuring cell survival (colony-forming ability) and cell viability (the ability to exclude trypan blue) in Chinese hamster V79 cells. The microwaves were employed at high power densities (125 to 175 mW/cm2) corresponding to specific absorption rates ranging between 62 and 87 mW/g. When matching the rises in temperature, the effects of microwave-induced hyperthermia at 125 mW/cm2 on cell survival were comparable to those of classical heating. However, they were statistically significantly different when using power densities of 150 and 175 mW/cm2. The response obtained in terms of cell viability appeared to be comparable. The conclusions are also valid when taking into account a correction factor for energy losses during microwave treatment. The apparent specific effect of microwaves appears to be associated with exposures at high power densities involving short treatment times and rapid rises in temperature.  相似文献   

17.
Pregnant squirrel monkeys were exposed to 2450-MHz (CW) microwaves at an equivalent power density of 10 mW/cm2 (SAR 3.4 mW/g) for three hours daily in a cavity-cage module. The exposure began when pregnancy was determined by a hormonal method, and continued through the offspring's first 9.5 months. After irradiation, the brains of the offspring were fixed with formaldehyde, and the inferior vermis of each cerebella was removed and processed for histologic observations. Purkinje cell density in the uvula was determined in sagittal serial sections. There was no significant difference between control and experimental animals in the number of Purkinje cells per mm of Purkinje cell line (linear density), as well as in the density of Purkinje cells in the Purkinje cell layer.  相似文献   

18.
Sodium-dependent high-affinity choline uptake was measured in various regions of the brains of rats irradiated for 45 min with either pulsed or continuous-wave low-level microwaves (2,450 MHz; power density, 1 mW/cm2; average whole-body specific absorption rate, 0.6 W/kg). Pulsed microwave irradiation (2-microseconds pulses, 500 pulses/s) decreased choline uptake in the hippocampus and frontal cortex but had no significant effect on the hypothalamus, striatum, and inferior colliculus. Pretreatment with a narcotic antagonist (naloxone or naltrexone; 1 mg/kg i.p.) blocked the effect of pulsed microwaves on hippocampal choline uptake but did not significantly alter the effect on the frontal cortex. Irradiation with continuous-wave microwaves did not significantly affect choline uptake in the hippocampus, striatum, and hypothalamus but decreased the uptake in the frontal cortex. The effect on the frontal cortex was not altered by pretreatment with narcotic antagonist. These data suggest that exposure to low-level pulsed or continuous-wave microwaves leads to changes in cholinergic functions in the brain.  相似文献   

19.
Both thermal and athermal effects of millimeter-wave radiation on BHK-21/C13 cells were sought using scanning and transmission electron microscopy in conjunction with an in vitro technique that allows direct exposure of monolayer cultures to high average power densities. Culture dishes were irradiated by placing them on the open end of an E- or U-band wave guide. This technique exposes different regions of the cell monolayer lying along the longer axis of the wave guide aperture to varying power densities ranging from zero at each edge to twice the average power density at the center. Cell ultrastructure was unaffected by microwave radiation for 1 hour (41.8 or 74.0 GHz, average power densitites = 320 or 450 mW/cm2, respectively) with or without cooling by rapid recirculation of the culture medium. Temperature in recirculated cultures was held at 37.2 °C, and that in noncooled cultures never exceeded 42 °C during irradiation at either power density. In contrast, cell morphology was affected by microwave exposure whenever irradiation conditions were altered so that the temperature of the monolayer reached or exceeded 44.5 °C. Ultrastructural alterations included breakage of cell processes, progressive detachment of cells from the substrate, increased clumping of heterochromatin in the nuclei, and the appearance of large empty vesicles in the cytoplasm. Such morphological changes resulted from either application of higher average power densities or irradiation at the power densities described above at a higher ambient temperature (>38.5°C).  相似文献   

20.
In this paper, we report the effects of laser microirradiation of prophase nucleoli and mitotic chromosomes in cells of female rat kangaroo kidney epithelial cell line PTK1. When the laser power delivered to sample surface was 90–190 mW, irradiation of one of the two nucleoli in the prophase cell did not inhibit the mitotic progress, but resulted in the loss of the irradiated nucleolus in daughter cells. When the laser power was increased to 360–420 mW, either irradiation of the nucleolus or chromosome in midprophase caused a blockage of mitosis at terminal midprophase. The irradiated cells returned morphologically to early prophase. No mitotic reversion occurred in the case of irradiation of chromosomes at late prophase, prometaphase, metaphase, and anaphase. Irradiation of the cytoplasm in prophase cells caused a 50–70 min mitotic delay at prophase. However, the irradiated cells underwent successive mitotic divisions. The mechanism of laser-induced mitotic prophase reversion is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号