首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holmes KL 《Cytometry. Part A》2011,79(12):1000-1008
Despite the recognition of potential aerosol hazards associated with cell sorting by the flow cytometry community, there has been no previous study that has thoroughly characterized the aerosols that can be produced by cell sorters. In this study, an aerodynamic particle sizer was used to determine the concentration and aerodynamic diameter (AD) of aerosols produced by a FACS Aria II cell sorter under various conditions. Aerosol containment and evacuation were also evaluated using this novel methodology. The results showed that high concentrations of aerosols in the range of 1-3 μm can be produced in fail mode and that with decreased sheath pressure, aerosol concentration decreased and AD increased. Although the engineering controls of the FACS Aria II for containment were effective, sort chamber evacuation of aerosols following a simulated nozzle obstruction was ineffective. However, simple modifications to the FACS Aria II are described that greatly improved sort chamber aerosol evacuation. The results of this study will facilitate the risk assessment of cell sorting potentially biohazardous samples by providing much needed data regarding aerosol production and containment.  相似文献   

2.
BACKGROUND: The jet-in-air cell sorters currently available are not very suitable for sorting potentially biohazardous material under optimal conditions because they do not protect operators and samples as recommended in the guidelines for safe biotechnology. To solve this problem we have adapted a cell sorting system to a special biosafety cabinet that satisfies the requirements for class II cabinets. With aid of this unit, sorting can be performed in conformance with the recommendations for biosafety level 2. METHODS: After integrating a modified fluorescence-activated cell sorter (FACS) Vantage into a special biosafety cabinet, we investigated the influence of the laminar air flow (LAF) inside the cabinet on side stream stability and the analytical precision of the cell sorter. In addition to the routine electronic counting of microparticles, we carried out tests on the containment of aerosols, using T4 bacteriophage as indicators, to demonstrate the efficiency of the biosafety cabinet for sorting experiments performed under biosafety level 2 conditions. RESULTS: The experiments showed that LAF, which is necessary to build up sterile conditions in a biosafety cabinet, does not influence the conditions for side stream stability or the analytical precision of the FACS Vantage cell sorting system. In addition, tests performed to assess aerosol containment during operation of the special biosafety cabinet demonstrated that the cabinet-integrated FACS Vantage unit (CIF) satisfies the conditions for class II cabinets. In the context of gene transfer experiments, the CIF facility was used to sort hematopoietic progenitor cells under biosafety level 2 conditions. CONCLUSIONS: The newly designed biosafety cabinet offers a practical modality for improving biosafety for operators and samples during cell sorting procedures. It can thus also be used for sorting experiments with genetically modified organisms in conformance with current biosafety regulations and guidelines.  相似文献   

3.
This paper reports a series of experiments in which two methods of collecting airborne bacteriophage particles were compared. A standard aerosol sampler, the AGI-30, was evaluated for its competence in measuring the content of bacteriophage aerosols. It was used alone or with a prewetting or humidification device (humidifier bulb) to recover T(3) coliphage and Pasteurella pestis bacteriophage particles from aerosols maintained at 21 C and varied relative humidity. Collection of bacteriophage particles via the humidifier bulb altered both the initial recovery level and the apparent biological decay. Sampling airborne bacteriophage particles by the AGI-30 alone yielded data that apparently underestimated the maximal number of potentially viable particles within the aerosol, sometimes by as much as 3 logs.  相似文献   

4.
The uncontrolled transmission of hog cholera in a large animal isolation facility, designed to control the movement of aerosols within and between individual wings of a multiunit building, indicated the need for a critical study of aerosol behavior under existing conditions of operation. Studies with aerosols of Escherichia coli B T3 bacteriophage (T3 coliphage) conclusively demonstrated the impossibility of obtaining the desired control by means of a "static" air balance relationship between adjacent areas within the facility. Modifications needed to provide the desired control of the air-handling system are outlined and discussed.  相似文献   

5.
BACKGROUND: A stream-in-air cell sorter enables rapid sorting to a high purity, but it is not well suited for sorting of infectious material due to the risk of airborne spread to the surroundings. METHODS: A FACS Vantage cell sorter was modified for safe use with potentially HIV infected cells. Safety tests with bacteriophages were performed to evaluate the potential spread of biologically active material during cell sorting. Cells transduced with a retroviral vector carrying the gene for GFP were sorted on the basis of their GFP fluorescence, and GFP expression was followed during subsequent culture. RESULTS: The bacteriophage sorting showed that the biologically active material was confined to the sorting chamber. A failure mode simulating a nozzle blockage resulted in detectable droplets inside the sorting chamber, but no droplets could be detected when an additional air suction from the sorting chamber had been put on. The GFP transduced cells were sorted to 99% purity. Cells not expressing GFP at the time of sorting did not turn on the gene during subsequent culture. Un-sorted cells and cells sorted to be positive for GFP showed a decrease in the fraction of GFP positive cells during culture. CONCLUSIONS: Sorting of live infected cells can be performed safely and with no deleterious effects on vector expression using the modified FACS Vantage instrument.  相似文献   

6.
A system for studying the effects of relative humidity (RH) and temperature on biological aerosols, utilizing a modified toroid for a static aerosol chamber, is described. Studies were conducted at 23 C and at three RH levels (10, 35, and 90%) with four viruses (Newcastle disease virus, infectious bovine rhinotracheitis virus, vesicular stomatitis virus, and Escherichia coli B T3 bacteriophage). Virus loss on aerosol generation was consistently lower at 90% than at 10 or 35% RH. When stored at 23 C, Newcastle disease virus and vesicular stomatitis virus survived best at 10% RH. Infectious bovine rhinotracheitis virus and E. coli B T3 bacteriophage survived storage at 23 C best at 90% RH.  相似文献   

7.
The mechanisms involving inactivation of bacteriophage MS2 in aerosols and the effect of protective substances in the spray-medium were studied after spraying from various NaCl solutions. Results with aerosols generated from the salt solutions showed that with higher salt concentration in the spray-medium higher concentrations of protective substances were needed to protect phage MS2 against aerosol inactivation. Phenylalanine, which has a protective action at low concentration, produced less protection in aerosol droplets that were supersaturated solutions of this substance or in which crystals of phenylalanine can be expected to form. Our results suggested that protection by peptone and phenylalanine was related to the concentration in the aerosol droplet after evaporation to equilibrium, whereas protection by the surface active agent OED (a commercial mixture of oxyethylene docosylether and oxyethelene octadecylether) was related to the concentration at which a monolayer is formed around the aerosol particle. Inactivation of phage MS2 was maximal in the aerosol particle in fluid phase and became less at lower relative humidity where aerosol particles are expected to be in the solid state. It is suggested that inactivation of bacteriophage MS2 in aerosols could be explained by surface inactivation at the air-water interface.  相似文献   

8.
BACKGROUND: Cell sorting has a history dating back approximately 40 years. The main limitation has been that, although flow cytometry is a science, cell sorting has been an art during most of this time. Recent advances in assisting technologies have helped to decrease the amount of expertise necessary to perform sorting. METHODS: Droplet-based sorting is based on a controlled disturbance of a jet stream dependent on surface tension. Sorting yield and purity are highly dependent on stable jet break-off position. System pressures and orifice diameters dictate the number of droplets per second, which is the sort rate limiting step because modern electronics can more than handle the higher cell signal processing rates. RESULTS: Cell sorting still requires considerable expertise. Complex multicolor sorting also requires new and more sophisticated sort decisions, especially when cell subpopulations are rare and need to be extracted from background. High-speed sorting continues to pose major problems in terms of biosafety due to the aerosols generated. CONCLUSIONS: Cell sorting has become more stable and predictable and requires less expertise to operate. However, the problems of aerosol containment continue to make droplet-based cell sorting problematical. Fluid physics and cell viability restraints pose practical limits for high-speed sorting that have almost been reached. Over the next 5 years there may be advances in fluidic switching sorting in lab-on-a-chip microfluidic systems that could not only solve the aerosol and viability problems but also make ultra high-speed sorting possible and practical through massively parallel and exponential staging microfluidic architectures.  相似文献   

9.
Aims:  Influenza is commonly spread by infectious aerosols; however, detection of viruses in aerosols is not sensitive enough to confirm the characteristics of virus aerosols. The aim of this study was to develop an assay for respiratory viruses sufficiently sensitive to be used in epidemiological studies.
Method:  A two-step, nested real-time PCR assay was developed for MS2 bacteriophage, and for influenza A and B, parainfluenza 1 and human respiratory syncytial virus. Outer primer pairs were designed to nest each existing real-time PCR assay. The sensitivities of the nested real-time PCR assays were compared to those of existing real-time PCR assays. Both assays were applied in an aerosol study to compare their detection limits in air samples.
Conclusions:  The nested real-time PCR assays were found to be several logs more sensitive than the real-time PCR assays, with lower levels of virus detected at lower Ct values. The nested real-time PCR assay successfully detected MS2 in air samples, whereas the real-time assay did not.
Significance and Impact of the Study:  The sensitive assays for respiratory viruses will permit further research using air samples from naturally generated virus aerosols. This will inform current knowledge regarding the risks associated with the spread of viruses through aerosol transmission.  相似文献   

10.
以钝齿棒状杆菌噬菌体B271血清型为病毒等小颗粒生物粒子的模拟剂,建立了一种适合这类小颗粒生物粒子气溶胶存活研究的方法。本文从该噬菌体耐气溶胶化特性、气溶胶粒谱、用气溶胶示踪剂求算物理衰亡的方法和气溶胶采样回收技术等方面探讨了病毒气溶胶存活研究中的几个关键技术问题,为病毒气溶胶存活研究提供了参考。  相似文献   

11.
A novel approach which enables direct assessment of the differential expression of cellular antigens in noncycling (G0) and cycling cell subpopulations is presented. The method involves flow cytometric analysis and sorting of cells stained by use of indirect immunofluorescence, followed by restaining using acid acridine orange, to relate the immunofluorescence of sorted lymphoid subpopulation(s) to cell proliferation status (i.e., G0 vs. G1 vs. S vs. G2 and M). In the present study, this technique successfully identifies the proliferation-associated modulation of a heterochromatin-associated antigen in pokeweed mitogen-stimulated human lymphoid cultures. The potential utility of this method for documenting early antigenic changes associated with the G0-G1 transition is discussed.  相似文献   

12.
AIM: To quantify microbial aerosols generated by a series of laboratory accidents and to use these data in risk assessment. METHODS AND RESULTS: A series of laboratory accident scenarios have been devised and the microbial aerosol generated by them has been measured using a range of microbial air samplers. The accident scenarios generating the highest aerosol concentrations were, dropping a fungal plate, dropping a large bottle, centrifuge rotor leaks and a blocked syringe filter. Many of these accidents generated low particle size aerosols, which would be inhaled into the lungs of any exposed laboratory staff. Spray factors (SFs) have been calculated using the results of these experiments as an indicator of the potential for accidents to generate microbial aerosols. Model risk assessments have been described using the SF data. CONCLUSIONS: Quantitative risk assessment of laboratory accidents can provide data that can aid the design of containment laboratories and the response to laboratory accidents. SIGNIFICANCE AND IMPACT OF THE STUDY: A methodology has been described and supporting data provided to allow microbiological safety officers to carry out quantitative risk assessment of laboratory accidents.  相似文献   

13.
BACKGROUND: Cell sorting of viable biological specimens has become very prevalent in laboratories involved in basic and clinical research. As these samples can contain infectious agents, precautions to protect instrument operators and the environment from hazards arising from the use of sorters are paramount. To this end the International Society of Analytical Cytology (ISAC) took a lead in establishing biosafety guidelines for sorting of unfixed cells (Schmid et al., Cytometry 1997;28:99-117). During the time period these recommendations have been available, they have become recognized worldwide as the standard practices and safety precautions for laboratories performing viable cell sorting experiments. However, the field of cytometry has progressed since 1997, and the document requires an update. METHODS: Initially, suggestions about the document format and content were discussed among members of the ISAC Biosafety Committee and were incorporated into a draft version that was sent to all committee members for review. Comments were collected, carefully considered, and incorporated as appropriate into a draft document that was posted on the ISAC web site to invite comments from the flow cytometry community at large. The revised document was then submitted to ISAC Council for review. Simultaneously, further comments were sought from newly-appointed ISAC Biosafety committee members. RESULTS: This safety standard for performing viable cell sorting experiments was recently generated. The document contains background information on the biohazard potential of sorting and the hazard classification of infectious agents as well as recommendations on (1) sample handling, (2) operator training and personal protection, (3) laboratory design, (4) cell sorter set-up, maintenance, and decontamination, and (5) testing the instrument for the efficiency of aerosol containment. CONCLUSIONS: This standard constitutes an updated and expanded revision of the 1997 biosafety guideline document. It is intended to provide laboratories involved in cell sorting with safety practices that take into account the enhanced hazard potential of high-speed sorting. Most importantly, it states that droplet-based sorting of infectious or hazardous biological material requires a higher level of containment than the one recommended for the risk group classification of the pathogen. The document also provides information on safety features of novel instrumentation, new options for personal protective equipment, and recently developed methods for testing the efficiency of aerosol containment.  相似文献   

14.
The deposition patterns of large-particle microbiological aerosols within the respiratory tract are not well characterized. A novel system (the flow-focusing aerosol generator [FFAG]) which enables the generation of large (>10-μm) aerosol particles containing microorganisms under laboratory conditions was characterized to permit determination of deposition profiles within the murine respiratory tract. Unlike other systems for generating large aerosol particles, the FFAG is compatible with microbiological containment and the inhalational challenge of animals. By use of entrapped Escherichia coli cells, Bacillus atrophaeus spores, or FluoSphere beads, the properties of aerosols generated by the FFAG were compared with the properties of aerosols generated using the commonly available Collison nebulizer, which preferentially generates small (1- to 3-μm) aerosol particles. More entrapped particulates (15.9- to 19.2-fold) were incorporated into 9- to 17-μm particles generated by the FFAG than by the Collison nebulizer. The 1- to 3-μm particles generated by the Collison nebulizer were more likely to contain a particulate than those generated by the FFAG. E. coli cells aerosolized using the FFAG survived better than those aerosolized using the Collison nebulizer. Aerosols generated by the Collison nebulizer and the FFAG preferentially deposited in the lungs and nasal passages of the murine respiratory tract, respectively. However, significant deposition of material also occurred in the gastrointestinal tract after inhalation of both the small (89.7%)- and large (61.5%)-particle aerosols. The aerosols generated by the Collison nebulizer and the FFAG differ with respect to mass distribution, distribution of the entrapped particulates, bacterial survival, and deposition within the murine respiratory tract.  相似文献   

15.
C3H10T1/2 fibroblasts when transformed with Kirsten murine sarcoma virus lose the ability to be induced to express class II major histocompatibility complex antigens when induced with interferon-gamma (IFN-gamma). Sublines were derived from transformed lines by cell sorting after treatment with IFN-gamma, sorting for low or high expression of H-2Ak. These sublines remained stably noninducible or inducible for class II antigen for several passages after sorting. In all other respects tested, viz, sensitivity to IFN-gamma for the generation of an antiviral state or the induction of class I antigen, content of ras gene products, the sorted sublines were very similar. We conclude that ras oncogene expression in these cells can influence the induction of class II antigen but that because ras expression in the sorted lines is similar the effect of ras expression is indirect and presumably involves interaction with other cellular factors.  相似文献   

16.
Sampling Submicron T1 Bacteriophage Aerosols   总被引:7,自引:5,他引:2       下载免费PDF全文
Liquid impingers, filter papers, and fritted bubblers were partial viable collectors of radioactive submicron T1 bacteriophage aerosols at 30, 55, and 85% relative humidity. Sampler differences for viable collection were due to incomplete physical collection (slippage) and killing of phage by the samplers. Dynamic aerosols of a mass median diameter of 0.2 mu were produced with a Dautrebande generator from concentrated aqueous purified phage suspensions containing extracellular soluble radioactive phosphate as a physical tracer. There was considerable destruction of phage by the Dautrebande generator; phage titers of the Dautrebande suspension decreased exponentially, but there was a progressive (linear) increase in tracer titers. Liquid impingers recovered the most viable phage but allowed considerable (30 to 48%) slippage, which varies inversely with the aerosol relative humidity. Filter papers were virtually complete physical collectors of submicron particles but were the most destructive. Fritted bubbler slippage was more than 80%. With all samplers, phage kill was highest at 85% relative humidity and lowest at 55% relative humidity. An electrostatic precipitator was used to collect aerosol samples for particle sizing with an electron microscope. The particle size was slightly larger at 85% relative humidity than at 30 or 55% relative humidity.  相似文献   

17.
The evaluation of bacteriophage (phage) host range is a significant issue in understanding phage and prokaryotic community interactions. However, in conventional methods, such as plaque assay, target host strains must be isolated, although almost all environmental prokaryotes are recalcitrant to cultivation. Here, we introduce a novel phage host range evaluation method using fluorescently labeled phages (the FLP method), which consists of the following four steps: (i) Fluorescently labeled phages are added to a microbial consortium, and host cells are infected and fluorescently labeled. (ii) Fluorescent cells are sorted by fluorescence-activated cell sorting. (iii) 16S rRNA gene sequences retrieved from sorted cells are analyzed, and specific oligonucleotide probes for fluorescence in situ hybridization (FISH) are designed. (iv) Cells labeled with both fluorescently labeled phage and FISH probe are identified as host cells. To verify the feasibility of this method, we used T4 phage and Escherichia coli as a model. We first used nucleic acid stain reagents for phage labeling; however, the reagents also stained non-host cells. Next, we employed the Click-iT EdU (5-ethynyl-2'-deoxyuridine) assay kit from Invitrogen for phage labeling. Using EdU-labeled T4 phage, we could specifically detect E. coli cells in a complex microbial consortium from municipal sewage. We also confirmed that FISH could be applied to the infected E. coli cells. These results suggest that this FLP method using the EdU assay kit is a useful method for evaluating phage host range and may have a potential application for various types of phages, even if their prokaryotic hosts are currently unculturable.  相似文献   

18.
改良的高纯度人早孕绒毛膜滋养层细胞培养方法   总被引:1,自引:0,他引:1  
目的培养纯度较高的人早孕绒毛膜滋养层细胞,为研究胎盘绒毛在妊娠期间的作用及其机制提供细胞学基础。方法胰蛋白酶-DNA酶消化法分离培养绒毛膜滋养层细胞,再运用流式细胞仪细胞分选获得高表达HLA-G的人早孕绒毛膜滋养层细胞。流式细胞术检测分选前后原代培养细胞HLA-G的表达率,相差显微镜观察滋养层细胞形态学特点,免疫荧光显微镜鉴定细胞来源,台盼蓝染色检测细胞活力。结果通过流式细胞检测,分选前的原代培养细胞体系中HLA-G的表达率为86.5%,经过分选带有PE荧光/HLA-G阳性表达的原代培养细胞后,其纯度可达98.0%。倒置相差显微镜下,可见细胞为上皮样细胞形态,呈片状铺展生长。细胞角蛋白染色阳性,波形蛋白染色阴性,表明细胞性质为上皮来源的绒毛膜滋养层细胞。台盼兰排斥试验检测细胞活力,细胞活力良好,存活率超过92%。结论该方法可以有效获得高纯度的,具有生物学活性的人早孕绒毛膜层细胞,为在体外研究生理妊娠及病理妊娠中滋养细胞的作用提供了一种改良的技术手段。  相似文献   

19.
对产L-天冬氨酸酶大肠埃希菌噬菌体进行分离和生理特性研究,有助于为生产过程中噬菌体污染的防治提供指导。采用双层平板法对噬菌体进行分离纯化。利用透射电镜观察噬菌体形态。进行噬菌体全基因组测序和比对。通过测定不同处理条件下噬菌体活性,研究温度、pH、有机溶剂氯仿、去垢剂SDS对噬菌体的影响。从噬菌体污染的L 天冬氨酸酶生产菌种大肠埃希菌HY-05C发酵培养液中分离出1株噬菌体。电镜结果表明,该噬菌体由呈多面体对称的头部和极短的尾部构成。基因组测序和比对结果表明,噬菌体与T7样噬菌体的相似性最高。生理特性研究表明,噬菌体对高温和去垢剂SDS敏感,对有机溶剂氯仿不敏感;最适pH为7.0,碱性条件下活力较为稳定,酸性条件容易失活。噬菌体保藏编号为CICC 80001。  相似文献   

20.
Microbiological aerosols were measured on a spray irrigation site at Fort Huachuca, Ariz. Indigenous bacteria and tracer bacteriophage were sampled from sprays of chlorinated and unchlorinated secondary-treatment wastewaters during day and night periods. Aerosol dispersal and downwind migration were determined. Bacterial and coliphage f2 aerosols were sampled by using Andersen viable type stacked-sieve and high-volume electrostatic precipitator samplers. Bacterial standard plate counts averaged 2.4 x 10(5) colony-forming units per ml in unchlorinated effluents. Bacterial aerosols reached 500 bacteria per m3 at 152 m downwind and 10,500 bacteria per m3 at 46m. Seeded coliphage f2 averaged 4.0 x 10(5) plaque-forming units per ml in the effluent and were detected 563 m downwind. Downwind microbial aerosol levels were somewhat enhanced by nighttime conditions. The median aerodynamic particle size of the microbial aerosols was approximately 5.0 micrometer. Chlorination reduced wastewater bacterial levels 99.97% and reduced aerosol concentrations to near background levels; coliphage f2 was reduced only 95.4% in the chlorinated effluent and was readily measured 137 m downwind. Microbiological source strength an meteorological data were used in conjunction with a dispersion model to generate mathematical predictions of aerosol strength at various sampler locations. The mean calculated survival of aerosolized bacteria (standard plate count) in the range 46 to 76 m downwind was 5.2%, and that of coliphage f2 was 4.3 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号