首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipokinetic hormone gene sequence from Manduca sexta   总被引:4,自引:0,他引:4  
  相似文献   

2.
Cockroaches have long been used as insect models to investigate the actions of biologically active neuropeptides. Here, we describe the cloning and functional expression in Chinese hamster ovary cells of an adipokinetic hormone (AKH) G protein-coupled receptor from the cockroach Periplaneta americana. This receptor is only activated by various insect AKHs (we tested eight) and not by a library of 29 other insect or invertebrate neuropeptides and nine biogenic amines. Periplaneta has two intrinsic AKHs, Pea-AKH-1, and Pea-AKH-2. The Periplaneta AKH receptor is activated by low concentrations of both Pea-AKH-1 (EC50, 5 x 10(-9)M), and Pea-AKH-2 (EC50, 2 x 10(-9)M). Insects can be subdivided into two evolutionary lineages, holometabola (insects with a complete metamorphosis during development) and hemimetabola (incomplete metamorphosis). This paper describes the first AKH receptor from a hemimetabolous insect.  相似文献   

3.
Amino acid sequences have been assigned to two cockroach neuropeptides (Glu-Val-Asn-Phe-Ser-Pro-Asn-Trp-NH2, M I, and Glu-Leu-Thr-Phe-Thr-Pro-Asn-Trp-NH2, M II) by application of fast atom bombardment mass spectrometry, including high resolution and linked scan (metastable) studies. The peptides show considerable homology with two other invertebrate neuropeptides, adipokinetic hormone (AKH, from a locust) and red pigment concentrating hormone (RPCH, from a prawn), whose fast atom bombardment spectra were also studied. M I and M II are thus members of a family of structurally-related invertebrate neuropeptides.  相似文献   

4.
Genetic manipulation and purification techniques are facilitating research into the biology of arthropod neuropeptides. The red pigment concentrating hormone (RPCH)/ adipokinetic hormone (AKH) family are a conserved group of peptides which were first recognized for their hormonal activities. Biosynthesis of AKH in the grasshopper seems to proceed via a large protein precursor (12 kDa) in the cell body of the neuron, which implies precise coordination of synthesis and neural activity. Beginning with a 10 amino acid stretch of known precursor protein sequence, an oligonucleotide primer approach is being used to clone a recombinant AKH gene. Once achieved, this will allow fundamental questions on the biochemistry and physiology of neuropeptides to be addressed. Such work in an arthropod system raises the intriguing possibility of studying neuropeptide level and synthetic activity in single, defined neurons.  相似文献   

5.
Abstract.  Adipokinetic neuropeptides, from the corpora cardiaca of various species of the suborder Ensifera, encompassing members of all superfamilies (except the Gryllacridoidea), were isolated by liquid chromatography, and identified structurally by comparison of retention times and mass spectrometry data with respect to information from known members of this peptide family. Ensiferan species always contain only one adipokinetic hormone (AKH) peptide, as assessed for a few species by monitoring typical AKH mass peaks from a crude corpora cardiaca extract. This AKH is an octapeptide, and is either Scg-AKH-II (pGlu-Leu-Asn-Phe-Ser-Thr-Gly-Trp amide) which occurs in all Tettigoniidea (except Schizodactyloidea) and in Gryllotalpoidea, or Grb-AKH (pGlu-Val-Asn-Phe-Ser-Thr-Gly-Trp amide) which occurs in Grylloidea (except Gryllotalpoidea) and Schizodactyloidea. Using the structural information of these neuropeptides in conjunction with morpho-anatomical characters, these data are interpreted in a phylogenetic framework. The lack of a decapeptide and the presence of the octapeptide Scg-AKH-II are ancestral in Ensifera. The ancestral Scg-AKH-II twice underwent an independent and convergent modification to Grb-AKH.  相似文献   

6.
Neuropeptides of the adipokinetic hormone (AKH) family are among the best studied hormone peptides, but its signaling pathways remain to be elucidated. In this study, we molecularly characterized the signaling of Bombyx AKH receptor (AKHR) and its peptide ligands in HEK293 cells. In HEK293 cells stably expressing AKHR, AKH1 stimulation not only led to a ligand concentration dependent mobilization of intracellular Ca2+ and cAMP accumulation, but also elicited transient activation of extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. We observed that AKH receptor was rapidly internalized after AKH1 stimulation. We further demonstrated that AKH2 exhibited high activities in cAMP accumulation and ERK1/2 activation on AKHR comparable to AKH1, whereas AKH3 was much less effective.  相似文献   

7.
The grasshopper neuropeptides adipokinetic hormone (AKH) I and II were among the first of an extensive family of structurally similar arthropod hormones and neuroregulators to be isolated and sequenced. This paper reports the cloning of cDNAs derived from the unusually small mRNAs (550 bases) which code for the precursors of AKH I and II from Schistocerca nitans. Sequence analysis of the cDNAs indicates that AKH I and II are derived from small precursor proteins (63 and 61 amino acids) which are 55% identical in amino acid sequence. Each contains a 22-amino acid hydrophobic leader sequence followed by the AKH I or II sequence and an additional 28-amino acid carboxyl-terminal peptide of unknown function. Significant homology at the nucleic acid level (64% identity) is confined to the coding region of the mRNA sequences. Preliminary DNA blot analyses suggest that a single gene codes for each, and that the genes for AKH I and II may be linked. Genomic blots from various tissues fail to suggest that the high level of expression of AKH in the corpora cardiaca is due to tissue specific gene amplification.  相似文献   

8.
Small neuropeptides of the adipokinetic/red pigment-concentrating hormone (AKH/RPCH) family regulate energy metabolism in insects. Within lepidopterans, the nonapeptide Manduca sexta AKH (Manse-AKH) represents a widely occurring AKH, whereas the decapeptide Helze-HrTH (at first isolated from Helicoverpa zea) seems to be restricted to moths. Here we report the identification of the Manse-AKH-like Spofr-AKH 1 and the Helze-HrTH-like Spofr-AKH 2 prohormone precursors from the fall armyworm, Spodoptera frugiperda. Moreover, by PCR screening of a random primer cDNA library and by RACE, three 668, 835 and 1008 bp cDNA sequences were obtained, which encode putative translation products of 67-74 amino acids, each containing one copy of a peptide sequence that in its processed form has the sequence of QLTFSSGW-amide (Spofr-AKH 3). Another cDNA sequence of 634 bp encodes a putative translation product of 40 amino acids, potentially leading to one copy of an elongated, non-amidated Helze-HrTH (pQLTFSSGWGNCTS-OH; Spofr-AKH 4). Q-RT-PCR analysis showed that the Spofr-AKH mRNAs are expressed in 2d-old female brain/corpora cardiaca complexes, but also in ovaries, midgut, fat body, accessory glands and muscle tissues. Expression was also found in the ovaries of 4d-old females. Whole-mount in situ RT-PCR analysis with ovaries from 2d-old females showed that the Spofr-AKH 2 and Spofr-AKH 4 were mainly localized in the germarium (phase 3), whereas the Spofr-AKH 1, and the three mRNA isoforms of Spofr-AKH 3 were localized at the end of the vitellarium and in the fully developed oocytes (phase 1 and 2). The results suggest that Spofr-AKH genes play a role in the regulation of oocyte maturation in S. frugiperda.  相似文献   

9.
The occurrence of neuropeptides in the retrocerebral complexes of adult male and females of the tobacco hawkmoth, Manduca sexta, was investigated using matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectrometry (MS), post source decay (PSD) and collision-induced dissociation (CID) MS/MS. From fractions of methanol extracts of corpora cardiaca (CC)/corpora allata (CA), separated by reversed-phase high performance liquid chromatography (RP-HPLC), a total of 11 mass ions were assigned to known peptides from M. sexta. These peptides were adipokinetic hormone (AKH), FLRFamides I, II and III, crustacean cardioactive peptide (CCAP), cardioactive peptide 2b (CAP(2b)), three myoinhibitory peptides, corazonin, and M. sexta allatostatin (Manse-AS). A further six masses were in agreement with Y/FXFGLamide allatostatins identified from other Lepidoptera. The sequence identities of FLRFamide I and AKH were confirmed using post source decay analysis. Fragmentation by collision-induced dissociation MS/MS identified an extended AKH peptide. The apparent differences in the peptides present in male and female retrocerebral complexes are most likely quantitative rather than sex specific.  相似文献   

10.
11.
Adipokinetic hormones (AKHs) are the best studied insect neuropeptides with the function of mobilizing lipids and carbohydrates during energy-expensive activities and modulating fundamental physiological processes, such as sugar homeostasis, lipid metabolism, and reproduction. Three distinct cDNAs encoding the prepro-Bombyx AKH1-3 have been cloned and confirmed by mass spectrometric methods. Our previous research suggested the Bombyx AKH receptor is activated by AKH1 and AKH2 with high affinity but by AKH3 with quite low affinity. In this study, using stable functional expression of the receptors in HEK293 cells, we have now identified AKH3 as a specific ligand for two orphan G-protein-coupled receptors, and we therefore named them AKHR2a and AKHR2b, respectively. We demonstrated that both AKHR2a and AKHR2b were activated by AKH3 at high affinity and by AKH1 and AKH2 at low affinity, leading to an increase of intracellular cAMP levels and activation of ERK1/2 and receptor internalization, but they were not activated by Bombyx corazonin. Conversely, the Bombyx corazonin receptor was activated by corazonin but not by AKH1-3. Quantitative RT-PCR revealed that AKHR2a and AKHR2b were both highly expressed in the testis but were also detected at low levels in other tissues. These results will lead to a better understanding of the AKH/AKHR system in the regulation of fundamental physiological processes.  相似文献   

12.
Structures of the second adipokinetic hormones (AKH II's) from three locust species have been assigned by fast atom bombardment mass spectrometry. The AKH II hormone is identical in two Schistocerca species, S. nitans and S. gregaria, but is different in Locusta migratoria. Both AKH II's are related to red pigment-concentrating hormone (RPCH) from prawns, Schistocerca AKH II being [Thr6]-RPCH and Locusta AKH II being [Ala6]-RPCH. Schistocerca AKH II is also bioactive in Locusta individuals.  相似文献   

13.
An octapeptide of the adipokinetic hormone (AKH) peptide family is identified in the corpora cardiaca of the stink bug, Nezara viridula, by ESI-MSN (electrospray ionization multistage MS). This is the second AKH in N. viridula and it has a hydroxyproline residue at position 6, whereas the major AKH (known as Panbo-RPCH) has Pro as the sixth amino acid residue. The correct sequence assignment of [Hyp6]-Panbo-RPCH is confirmed by retention time and MS spectra of the synthetic peptide. Various extraction procedures were followed to ascertain whether the hydroxylation is an artefact of extraction, or whether it is due to a true post-translational modification at the prohormone level. The proline hydroxylation is unique for invertebrate neuropeptides, while it has been described in the vertebrate gonadotropin-releasing hormone (GnRH). The current finding is another piece of evidence that AKH and GnRH form a peptide superfamily and are closely related evolutionarily. Biologically, [Hyp6]-Panbo-RPCH is active in vivo as an AKH, causing hyperlipaemia in the stink bug at low doses, indicating again that it is an endogenous, mature and functional hormone in this insect species.  相似文献   

14.
The genome of the spider mite was prospected for the presence of genes coding neuropeptides, neurohormones and their putative G-protein coupled receptors. Fifty one candidate genes were found to encode neuropeptides or neurohormones. These include all known insect neuropeptides and neurohormones, with the exception of sulfakinin, corazonin, neuroparsin and PTTH. True orthologs of adipokinetic hormone (AKH) were neither found, but there are three genes encoding peptides similar in structure to both AKH and the AKH-corazonin-related peptide. We were also unable to identify the precursors for pigment dispersing factor (PDF) or the recently discovered trissin. However, the spider mite probably does have such genes, as we found their putative receptors. A novel arthropod neuropeptide gene was identified that shows similarity to previously described molluscan neuropeptide genes and was called EFLamide. A total of 65 putative neuropeptide GPCR genes were also identified, of these 58 belong to the A-family and 7 to the B-family. Phylogenetic analysis showed that 50 of them are closely related to insect GPCRs, which allowed the identification of their putative ligand in 39 cases with varying degrees of certainty. Other spider mite GPCRs however have no identifiable orthologs in the genomes of the four holometabolous insect species best analyzed. Whereas some of the latter have orthologs in hemimetabolous insect species, crustaceans or ticks, for others such arthropod homologs are currently unknown.  相似文献   

15.
A method, based on a combination of mass spectrometry and liquid chromatography, was developed to investigate the release of neuropeptides from isolated locust corpora cardiaca. Melatonin, octopamine, trehalose and forskolin were administered to the perifused glands. The neuropeptides present in the releasates (spontaneous versus induced) were visualized by either conventional or capillary HPLC. Identification was achieved by means of MALDI-TOF MS and/or nanoflow-LC-Q-TOF MS. The observed effects of these chemicals regarding AKH release were in line with previous studies and validate the method. The most important finding of this study was that administration of melatonin stimulated the release of adipokinetic hormone precursor related peptides (APRP 1 and APRP 2), neuroparsins (NP A1, NP A2 and NP B) and diuretic peptide.  相似文献   

16.
Lee G  Park JH 《Genetics》2004,167(1):311-323
Adipokinetic hormones (AKHs) are metabolic neuropeptides, mediating mobilization of energy substrates from the fat body in many insects. In delving into the roles of the Drosophila Akh (dAkh) gene, its developmental expression patterns were examined and the physiological functions of the AKH-producing neurons were investigated using animals devoid of AKH neurons and ones with ectopically expressing dAkh. The dAkh gene is expressed exclusively in the corpora cardiaca from late embryos to adult stages. Projections emanating from the AKH neurons indicated that AKH has multiple target tissues as follows: the prothoracic gland and aorta in the larva and the crop and brain in the adult. Studies using transgenic manipulations of the dAkh gene demonstrated that AKH induced both hypertrehalosemia and hyperlipemia. Starved wild-type flies displayed prolonged hyperactivity prior to death; this novel behavioral pattern could be associated with food-searching activities in response to starvation. In contrast, flies devoid of AKH neurons not only lacked this type of hyperactivity, but also displayed strong resistance to starvation-induced death. From these findings, we propose another role for AKH in the regulation of starvation-induced foraging behavior.  相似文献   

17.
Gäde G  Marco HG 《ZooKeys》2011,(157):81-94
The presented work is a hybrid of an overview and an original research paper on peptides belonging to the adipokinetic hormone (AKH) family that are present in the corpora cardiaca of Chrysomeloidea. First, we introduce the AKH/red pigment-concentrating hormone (RPCH) peptide family. Second, we collate the available primary sequence data on AKH peptides in Cerambycidae and Chrysomelidae, and we present new sequencing data (from previously unstudied species) obtained by liquid-chromatography coupled with ion trap electrospray ionisation mass spectrometry. Our expanded data set encompasses the primary structure of AKHs from seven species of Cerambycidae and three species of Chrysomelidae. All of these species synthesise the octapeptide code-named Peram-CAH-I (pGlu-Val-Asn-Phe-Ser-Pro-Asn-Trp amide). Whereas this is the sole AKH peptide in Cerambycidae, Chrysomelidae demonstrate a probable event of AKH gene duplication, thereby giving rise to an additional AKH. This second AKH peptide may be either Emppe-AKH (pGlu-Val-Asn-Phe-Thr-Pro-Asn-Trp amide) or Peram-CAH-II (pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp amide). The peptide distribution and structural data suggest that both families are closely related and that Peram-CAH-I is the ancestral peptide. We hypothesise on the molecular evolution of Emppe-AKH and Peram-CAH-II from the ancestral peptide due to nonsynonymous missense single nucleotide polymorphism in the nucleotide coding sequence of prepro-AKH. Finally, we review the biological significance of the AKH peptides as hyperprolinaemic hormones in Chrysomeloidea, i.e. they cause an increase in the circulating concentration of proline. The mobilisation of proline has been demonstrated during flight in both cerambycid and chrysomelid beetles.  相似文献   

18.
An antiserum was raised to adipokinetic hormone (AKH), a 10-amino-acid-residue peptide found in the arthropod Locusta migratoria. The antiserum demonstrated not only immunocytochemical reaction with some other arthropod species, but also stained many areas of the rat CNS, certain islet cells of the pancreas, and some anterior pituitary cells. The pattern of staining was unlike that for any known rat neuropeptide or hormone. With the antiserum used as the detection system, HPLC and high-voltage electrophoresis yielded two peptides that were purified to homogeneity from rat hypothalamic median eminence. These peptides have unique amino acid compositions, indicating they may be heretofore unknown rat neuropeptides.  相似文献   

19.
ABSTRACT. An attempt was made to separate glycogen phosphorylase activating hormone (GPAH) and adipokinetic hormone (AKH) from the corpora cardiaca (CC) of the moth Manduca sexta (Lepidoptera: Sphingidae) by separating extracts of CC on various chromotographic media, but it was not possible to conclude whether GPAH and AKH are activities of one or of two different peptides. Both activities elute together from glass beads, from Sephadex G-25 and from Sephadex LH-20 columns. In the separation experiments with glass beads and G-25 the activities eluted as a single peak, but using LH-20 we found two peaks exhibiting both activities. The major peak eluted at 1.25 × Vt, which is very similar to locust AKH, while the smaller second peak eluted at O.74 × V t. Cross injections of CC extracts from M. sexta into Locusta migratoria and CC extracts from L. migratoria into M. sexta suggest that GPAH and the AKH from M. sexta are not identical with the decapeptide AKH from locusts.  相似文献   

20.
After translation, the AKH I and AKH II precursors form three dimeric constructs prior to further processing into the respective AKHs and three dimeric Adipokinetic Hormone Precursor Related Peptides or APRPs (two homodimers and one heterodimer).By capillary liquid chromatography-tandem mass spectrometry we demonstrate that the APRPs in Locusta migratoria are further processed to form two smaller neuropeptides: DAADFADPYSFL (residue 36 to 47 of the AKH I precursor) and YADPNADPMAFL (residue 34 to 45 of the AKH II precursor). The peptides are designated as Adipokinetic Hormone Joining Peptide 1 (AKH-JP I) and 2 (AKH-JP II) respectively. Within the AKH I and AKH II precursor molecules, the classic KK and RR processing sites separate the AKH-JPs from the AKH I and II respectively. At the carboxyterminus, both AKH-JP I and II are flanked by Tyr-Arg, a cleaving site not described before. Such an unusual cleavage site suggests the presence, in the corpora cardiaca, of specific convertases. The AKH-JP-II does not stimulate lipid release from the fat body nor does it stimulate glycogen phosphorylase activity, both key functions of AKH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号