首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of Ca2+ wave propagation in mouse pancreatic acinar cells   总被引:1,自引:0,他引:1  
We haveinvestigated control mechanisms involved in the propagation ofagonist-induced Ca2+ waves inisolated mouse pancreatic acinar cells. Using a confocal laser-scanningmicroscope, we were able to show that maximal stimulation of cells withacetylcholine (ACh, 500 nM) or bombesin (1 nM) caused an initialCa2+ release of comparable amountswith both agonists at the luminal cell pole. SubsequentCa2+ spreading to the basolateralmembrane was faster with ACh (17.3 ± 5.4 µm/s) than with bombesin(8.0 ± 2.2 µm/s). The speed of bombesin-inducedCa2+ waves could be increased upto the speed of ACh-induced Ca2+waves by inhibition of protein kinase C (PKC). Activation of PKCsignificantly decreased the speed of ACh-inducedCa2+ waves but had only littleeffect on bombesin-evoked Ca2+waves. Within 3 s after stimulation, production of inositol1,4,5-trisphosphate [Ins(1,4,5)P3]was higher in the presence of ACh compared with bombesin, whereasbombesin induced higher levels of diacylglycerol (DAG) than ACh. Thesedata suggest that the slower propagation speed of bombesin-inducedCa2+ waves is due to higheractivation of PKC in the presence of bombesin compared with ACh. Thehigher increase in bombesin- compared with ACh-induced DAG productionis probably due to activation of phospholipase D (PLD). Inhibition ofthe PLD-dependent DAG production by preincubation with 0.3% butanolled to an acceleration of the bombesin-induced Ca2+ wave. In further experiments,we could show that ruthenium red (100 µM), an inhibitor ofCa2+-inducedCa2+ release in skeletal muscle,also decreased the speed of ACh-induced Ca2+ waves. The effect ofruthenium red was not additive to the effect of PKC activation. Fromthe data, we conclude that, following Ins(1,4,5)P3-inducedCa2+ release in the luminal cellpole, secondary Ca2+ release fromstores, which are located in series between the luminal and the basalplasma membrane, modifies Ca2+spreading toward the basolateral cell side byCa2+-inducedCa2+ release. Activation of PKCleads to a reduction in Ca2+release from these stores and therefore could explain the slower propagation of Ca2+ waves in thepresence of bombesin compared with ACh.

  相似文献   

2.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

3.
We examined protein kinase C (PKC)-dependentregulation ofNa+-K+-ATPasein frog mucociliary cells. Activation of PKC by12-O-tetradecanoylphorbol-13-acetate (TPA) or 1,2-dioctanoyl-sn-glycerol(diC8) either in intact cells or isolated membranes resulted in aspecific inhibition ofNa+-K+-ATPaseactivity by ~25-45%. The inhibitory effects in membranes exhibited time dependence and dose dependence [half-maximalinhibition concentration (IC50) = 0.5 ± 0.1 nM and 2.4 ± 0.2 µM, respectively, for TPA anddiC8] and were not influenced byCa2+. Analysis of the ouabaininhibition pattern revealed the presence of twoNa+-K+-ATPaseisoforms with IC50 values forcardiac glycoside of 2.6 ± 0.8 nM and 409 ± 65 nM,respectively. Most importantly, the isoform possessing a higheraffinity for ouabain was almost completely inhibited by TPA, whereasits counterpart was hardly sensitive to the PKC activator. The resultssuggest that, in frog mucociliary cells, PKC regulatesNa+-K+-ATPaseand that this action is related to the specificNa+-K+-ATPaseisoform.

  相似文献   

4.
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3.

  相似文献   

5.
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 µM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 µM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 µM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG. voltage-gated potassium channels; ether-à-go-go-related gene potassium channels; slow-inactivating outward currents; fast-inactivating outward currents  相似文献   

6.
Mucin secretion by airway goblet cells is under the control ofapical P2Y2, phospholipaseC-coupled purinergic receptors. In SPOC1 cells, the mobilization ofintracellular Ca2+ by ionomycin orthe activation of protein kinase C (PKC) by phorbol 12-myristate13-acetate (PMA) stimulates mucin secretion in a fully additive fashion[L. H. Abdullah, J. D. Conway, J. A. Cohn, and C. W. Davis.Am. J. Physiol. 273 (Lung Cell. Mol. Physiol. 17):L201-L210, 1997]. This apparent independence between PKC andCa2+ in the stimulation of mucinsecretion was tested in streptolysin O-permeabilized SPOC1 cells. Thesecells were fully competent to secrete mucin whenCa2+ was elevated from 100 nM to3.1 µM for 2 min following permeabilization; theCa2+EC50 was 2.29 ± 0.07 µM.Permeabilized SPOC1 cells were exposed to PMA or 4-phorbol atCa2+ activities ranging from 10 nMto 10 µM. PMA, but not 4-phorbol, increased mucin release at allCa2+ activities tested: at 10 nMCa2+ mucin release was 2.1-foldgreater than control and at 4.7 µM Ca2+ mucin release was maximal(3.6-fold increase). PMA stimulated 27% more mucin release at 4.7 µMthan at 10 nM Ca2+. Hence, SPOC1cells possess Ca2+-insensitive,PKC-dependent, and Ca2+-dependentPKC-potentiated pathways for mucin granule exocytosis.

  相似文献   

7.
We have used fluo3-loaded mouse pancreatic acinar cells to investigate the relationshipbetween Ca2+ mobilization andintracellular pH (pHi). TheCa2+-mobilizing agonist ACh (500 nM) induced a Ca2+ release in theluminal cell pole followed by spreading of the Ca2+ signal toward the basolateralside with a mean speed of 16.1 ± 0.3 µm/s. In the presence of anacidic pHi, achieved by blockade of theNa+/H+exchanger or by incubation of the cells in aNa+-free buffer, a slowerspreading of ACh-evoked Ca2+ waveswas observed (7.2 ± 0.6 µm/s and 7.5 ± 0.3 µm/s,respectively). The effects of cytosolic acidification on thepropagation rate of ACh-evokedCa2+ waves were largely reversibleand were not dependent on the presence of extracellularCa2+. A reduction in the spreadingspeed of Ca2+ waves could also beobserved by inhibition of the vacuolarH+-ATPase with bafilomycinA1 (11.1 ± 0.6 µm/s), whichdid not lead to cytosolic acidification. In contrast, inhibition of theendoplasmic reticulum Ca2+-ATPaseby 2,5-di-tert-butylhydroquinone ledto faster spreading of the ACh-evokedCa2+ signals (25.6 ± 1.8 µm/s), which was also reduced by cytosolic acidification or treatmentof the cells with bafilomycin A1.Cytosolic alkalinization had no effect on the spreading speed of theCa2+ signals. The data suggestthat the propagation rate of ACh-induced Ca2+ waves is decreased byinhibition of Ca2+ release fromintracellular stores due to cytosolic acidification or toCa2+ pool alkalinizationand/or to a decrease in the proton gradient directed from theinositol 1,4,5-trisphosphate-sensitiveCa2+ pool to the cytosol.

  相似文献   

8.
We havepreviously shown that Ca2+-dependent Clsecretion across intestinal epithelial cells is limited by a signalingpathway involving transactivation of the epidermal growth factorreceptor (EGFR) and activation of ERK mitogen-activated protein kinase (MAPK). Here, we have investigated a possible role for p38 MAPK inregulation of Ca2+-dependent Cl secretion.Western blot analysis of T84 colonic epithelial cells revealed that the muscarinic agonist carbachol (CCh; 100 µM)stimulated phosphorylation and activation of p38 MAPK. The p38inhibitor SB-203580 (10 µM) potentiated and prolonged short-circuitcurrent (Isc) responses to CCh acrossvoltage-clamped T84 cells to 157.4 ± 6.9% of thosein control cells (n = 21; P < 0.001).CCh-induced p38 phosphorylation was attenuated by the EGFR inhibitortyrphostin AG-1478 (0.1 nM-10 µM) and by the Src family kinaseinhibitor PP2 (20 nM-2 µM). The effects of CCh on p38phosphorylation were mimicked by thapsigargin (TG; 2 µM), whichspecifically elevates intracellular Ca2+, and wereabolished by the Ca2+ chelator BAPTA-AM (20 µM), implyinga role for intracellular Ca2+ in mediating p38 activation.SB-203580 (10 µM) potentiated Isc responses toTG to 172.4 ± 18.1% of those in control cells (n = 18; P < 0.001). When cells were pretreated withSB-203580 and PD-98059 to simultaneously inhibit p38 and ERK MAPKs,respectively, Isc responses to TG and CCh weresignificantly greater than those observed with either inhibitor alone.We conclude that Ca2+-dependent agonists stimulate p38 MAPKin T84 cells by a mechanism involving intracellularCa2+, Src family kinases, and the EGFR. CCh-stimulated p38activation constitutes a similar, but distinct and complementary,antisecretory signaling pathway to that of ERK MAPK.

  相似文献   

9.
In fura 2-loaded N1E-115 cells, regulationof intracellular Ca2+ concentration([Ca2+]i) following a Ca2+ loadinduced by 1 µM thapsigargin and 10 µM carbonylcyanidep-trifluoromethyoxyphenylhydrazone (FCCP) wasNa+ dependent and inhibited by 5 mM Ni2+. Incells with normal intracellular Na+ concentration([Na+]i), removal of bath Na+,which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unlesscell Ca2+ buffer capacity was reduced. When N1E-115 cellswere Na+ loaded using 100 µM veratridine and 4 µg/mlscorpion venom, the rate of the reverse mode of theNa+/Ca2+ exchanger was apparently enhanced,since an ~4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loadedcells, we were able to demonstrate forward operation of theNa+/Ca2+ exchanger (net efflux ofCa2+) by observing increases (~ 6 mM) in[Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could onlybe observed when a continuous ionomycin-induced influx ofCa2+ occurred. The voltage-sensitive dyebis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used tomeasure changes in membrane potential. Ionomycin (1 µM) depolarizedN1E-115 cells (~25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250-500 µMbenzamil. These data provide evidence for the presence of anelectrogenic Na+/Ca2+ exchanger that is capableof regulating [Ca2+]i after release ofCa2+ from cell stores.

  相似文献   

10.
The Ca2+ affinity andpermeation of the epithelial Ca2+ channel (ECaC1) wereinvestigated after expression in Xenopus oocytes. ECaC1displayed anomalous mole-fraction effects. Extracellular Ca2+ and Mg2+ reversibly inhibited ECaC1 wholecell Li+ currents: IC50 = 2.2 ± 0.4 µM (n = 9) and 235 ± 35 µM (n = 10), respectively. These values compare well with theCa2+ affinity of the L-type voltage-gated Ca2+(CaV1.2) channel measured under the same conditions,suggesting that high-affinity Ca2+ binding is awell-conserved feature of epithelial and voltage-gated Ca2+channels. Neutralization of D550 and E535 in the pore region had nosignificant effect on Ca2+ and Mg2+ affinities.In contrast, neutralization of D542 significantly decreasedCa2+ affinity (IC50 = 1.1 ± 0.2 mM,n = 6) and Mg2+ affinity(IC50 > 25 ± 3 mM, n = 4).Despite a 1,000-fold decrease in Ca2+ affinity in D542N,Ca2+ permeation properties and theCa2+-to-Ba2+ conductance ratio remainedcomparable to values for wild-type ECaC1. Together, our observationssuggest that D542 plays a critical role in Ca2+ affinitybut not in Ca2+ permeation in ECaC1.

  相似文献   

11.
Stimulation of cardiac L-typeCa2+ channels by cAMP-dependentprotein kinase (PKA) requires anchoring of PKA to a specificsubcellular environment by A-kinase anchoring proteins (AKAP). Thisstudy evaluated the possible requirement of AKAP in PKA-dependentregulation of L-type Ca2+ channelsin vascular smooth muscle cells using the conventional whole cellpatch-clamp technique. Peak Ba2+current in freshly isolated rabbit portal vein myocytes wassignificantly increased by superfusion with either 0.5 µM isoproterenol (131 ± 3% of the control value,n = 11) or 10 µM 8-bromoadenosine3',5'-cyclic monophosphate (8-BrcAMP; 114 ± 1%,n = 8). The PKA-induced stimulatory effects ofboth isoproterenol and 8-BrcAMP were completely abolished by a specificPKA inhibitor KT-5720 (0.2 µM) or by dialyzing cells with Ht 31 (100 µM), a peptide that inhibits the binding of PKA to AKAP. In contrast,Ht 31 did not block the excitatory effect of the catalytic subunit ofPKA when dialyzed into the cells. These data suggest that stimulationof Ca2+ channels in vascularmyocytes by endogenous PKA requires localization of PKA through bindingto AKAP.

  相似文献   

12.
Localized Ca2+ transients resulting from inositoltrisphosphate (IP3)-dependent Ca2+ releasecouple to spontaneous transient outward currents (STOCs) in murinecolonic myocytes. Confocal microscopy and whole cell patch-clamptechniques were used to investigate coupling between localizedCa2+ transients and STOCs. Colonic myocytes were loadedwith fluo 3. Reduction in external Ca2+([Ca2+]o) reduced localized Ca2+transients but increased STOC amplitude and frequency. Simultaneous recordings of Ca2+ transients and STOCs showed increasedcoupling strength between Ca2+ transients and STOCs when[Ca2+]o was reduced. Gd3+ (10 µM) did not affect Ca2+ transients but increased STOCamplitude and frequency. Similarly, an inhibitor of Ca2+influx,1-2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole (SKF-96365), increased STOC amplitude and frequency. A protein kinase C(PKC) inhibitor, GF-109203X, also increased the amplitude and frequencyof STOCs but had no effect on Ca2+ transients. Phorbol12-myristate 13-acetate (1 µM) reduced STOC amplitude and frequencybut did not affect Ca2+ transients. 4-Phorbol (1 µM)had no effect on STOCs or Ca2+ transients. Single channelstudies indicated that large-conductance Ca2+-activatedK+ (BK) channels were inhibited by aCa2+-dependent PKC. In summary 1)Ca2+ release from IP3 receptor-operated storesactivates Ca2+-activated K+ channels;2) Ca2+ influx through nonselective cationchannels facilitates activation of PKC; and 3) PKC reducesthe Ca2+ sensitivity of BK channels, reducing the couplingstrength between localized Ca2+ transients and BK channels.

  相似文献   

13.
In epithelial cells, several intracellular signals regulate the secretion of large molecules such as mucin via exocytosis and the transport of ions through channels and transporters. Using carbon fiber amperometry, we previously reported that exocytosis of secretory granules in dog pancreatic duct epithelial cells (PDEC) can be stimulated by pharmacological activation of cAMP-dependent protein kinase (PKA) or protein kinase C (PKC), as well as by an increase of intracellular free Ca2+ concentration ([Ca2+]i). In this study, we examined whether exocytosis in these cells is modulated by activation of endogenous P2Y receptors, which increase cAMP and [Ca2+]i. Low concentrations of ATP (<10 µM) induced intracellular Ca2+ oscillation but no significant exocytosis. In contrast, 100 µM ATP induced a sustained [Ca2+]i rise and increased the exocytosis rate sevenfold. The contribution of Ca2+ or cAMP pathways to exocytosis was tested by using the Ca2+ chelator BAPTA or the PKA inhibitors H-89 or Rp-8-bromoadenosine 3',5'-cyclic monophosphorothioate. Removal of [Ca2+]i rise or inhibition of PKA each partially reduced exocytosis; when combined, they abolished exocytosis. In conclusion, ATP at concentrations >10 µM stimulates exocytosis from PDEC through both Ca2+ and cAMP pathways. secretion; amperometry; photometry; calcium, adenosine 3',5'-cyclic monophosphate  相似文献   

14.
We investigatedthe relationship between voltage-operatedCa2+ channel current and thecorresponding intracellular Ca2+concentration([Ca2+]i)change (Ca2+ transient) in guineapig gastric myocytes. Fluorescence microspectroscopy was combined withconventional whole cell patch-clamp technique, and fura 2 (80 µM) wasadded to CsCl-rich pipette solution. Step depolarization to 0 mVinduced inward Ca2+ current(ICa) andconcomitantly raised[Ca2+]i.Both responses were suppressed by nicardipine, an L-typeCa2+ channel blocker, and thevoltage dependence of Ca2+transient was similar to the current-voltage relation ofICa. When pulseduration was increased by up to 900 ms, peakCa2+ transient increased andreached a steady state when stimulation was for longer. The calculatedfast Ca2+ buffering capacity(B value), determined as the ratio ofthe time integral ofICa divided bythe amplitude of Ca2+ transient,was not significantly increased after depletion of Ca2+ stores by the cyclicapplication of caffeine (10 mM) in the presence of ryanodine (4 µM).The addition of cyclopiazonic acid (CPA, 10 µM), a sarco(endo)plasmicreticulum Ca2+-ATPase inhibitor,decreased B value by ~20% in areversible manner. When KCl pipette solution was used,Ca2+-activatedK+ current[IK(Ca)]was also recorded during step depolarization. CPA sensitivelysuppressed the initial peak and oscillations of IK(Ca) withirregular effects on Ca2+transients. The above results suggest that, in guinea pig gastric myocyte, Ca2+ transient is tightlycoupled to ICaduring depolarization, and global[Ca2+]iis not significantly affected byCa2+-inducedCa2+ release from sarcoplasmicreticulum during depolarization.

  相似文献   

15.
Inisolated rat pancreatic -cells, the nitric oxide (NO) donor NOC-7 at1 µM reduced the amplitude of the oscillations of cytosolicCa2+ concentration ([Ca2+]c)induced by 11.1 mM glucose, and at 10 µM terminated them. In thepresence of NG-nitro-L-arginine(L-NNA), however, NOC-7 at 0.5 and 1 µM increased theamplitude of the [Ca2+]c oscillations,although the NO donor at 10 µM still suppressed them. Aqueous NOsolution also had a dual effect on the[Ca2+]c oscillations. The soluble guanylatecyclase inhibitor LY-83583 and the cGMP-dependent protein kinaseinhibitor KT5823 inhibited the stimulatory effect of NO, and8-bromo-cGMP increased the amplitude of the[Ca2+]c oscillations. Patch-clamp analyses inthe perforated configuration showed that 8-bromo-cGMP inhibited wholecell ATP-sensitive K+ currents in the isolated ratpancreatic -cells, suggesting that the inhibition by cGMP ofATP-sensitive K+ channels is, at least in part, responsiblefor the stimulatory effect of NO on the[Ca2+]c oscillations. In the presence ofL-NNA, the glucose-induced insulin secretion from isolatedislets was facilitated by 0.5 µM NOC-7, whereas it was suppressed by10 µM NOC-7. These results suggest that NO facilitatesglucose-induced [Ca2+]c oscillations of-cells and insulin secretion at low concentrations, which effectsare mediated by cGMP, whereas NO inhibits them in a cGMP-independentmanner at high concentrations.

  相似文献   

16.
The regulationof intracellular Ca2+ signals in smooth muscle cells andarterial diameter by intravascular pressure was investigated in ratcerebral arteries (~150 µm) using a laser scanning confocal microscope and the fluorescent Ca2+ indicator fluo 3. Elevation of pressure from 10 to 60 mmHg increased Ca2+spark frequency 2.6-fold, Ca2+ wave frequency 1.9-fold, andglobal intracellular Ca2+ concentration([Ca2+]i) 1.4-fold in smooth muscle cells,and constricted arteries. Ryanodine (10 µM), an inhibitor ofryanodine-sensitive Ca2+ release channels, or thapsigargin(100 nM), an inhibitor of the sarcoplasmic reticulumCa2+-ATPase, abolished sparks and waves, elevated global[Ca2+]i, and constricted pressurized (60 mmHg) arteries. Diltiazem (25 µM), a voltage-dependentCa2+ channel (VDCC) blocker, significantly reduced sparks,waves, and global [Ca2+]i, and dilatedpressurized (60 mmHg) arteries. Steady membrane depolarization elevatedCa2+ signaling similar to pressure and increased transientCa2+-sensitive K+ channel current frequencye-fold for ~7 mV, and these effects were prevented by VDCCblockers. Data are consistent with the hypothesis that pressure inducesa steady membrane depolarization that activates VDCCs, leading to anelevation of spark frequency, wave frequency, and global[Ca2+]i. In addition, pressure inducescontraction via an elevation of global[Ca2+]i, whereas the net effect of sparks andwaves, which do not significantly contribute to global[Ca2+]i in arteries pressurized to between 10 and 60 mmHg, is to oppose contraction.

  相似文献   

17.
Thenotion that intracellular Ca2+ (Cai2+)stores play a significant role in the chemoreception process inchemoreceptor cells of the carotid body (CB) appears in the literaturein a recurrent manner. However, the structural identity of theCa2+ stores and their real significance in the function ofchemoreceptor cells are unknown. To assess the functional significanceof Cai2+ stores in chemoreceptor cells, we havemonitored 1) the release of catecholamines (CA) from thecells using an in vitro preparation of intact rabbit CB and2) the intracellular Ca2+ concentration([Ca2+]i) using isolated chemoreceptor cells;both parameters were measured in the absence or the presence of agentsinterfering with the storage of Ca2+. We found thatthreshold [Ca2+]i for high extracellularK+ (Ke+) to elicit a release response is250 nM. Caffeine (10-40 mM), ryanodine (0.5 µM), thapsigargin(0.05-1 µM), and cyclopiazonic acid (10 µM) did not alter thebasal or the stimulus (hypoxia, high Ke+)-inducedrelease of CA. The same agents produced Cai2+transients of amplitude below secretory threshold; ryanodine (0.5 µM), thapsigargin (1 µM), and cyclopiazonic acid (10 µM) did notalter the magnitude or time course of the Cai2+responses elicited by high Ke+. Several potentialactivators of the phospholipase C system (bethanechol, ATP, andbradykinin), and thereby of inositol 1,4,5-trisphosphate receptors,produced minimal or no changes in [Ca2+]i anddid not affect the basal release of CA. It is concluded that, in therabbit CB chemoreceptor cells, Cai2+ stores do not playa significant role in the instant-to-instant chemoreception process.

  相似文献   

18.
Pacemaker potentials were recorded in situ from myenteric interstitial cells of Cajal (ICC-MY) in the murine small intestine. The nature of the two components of pacemaker potentials (upstroke and plateau) were investigated and compared with slow waves recorded from circular muscle cells. Pacemaker potentials and slow waves were not blocked by nifedipine (3 µM). In the presence of nifedipine, mibefradil, a voltage-dependent Ca2+ channel blocker, reduced the amplitude, frequency, and rate of rise of upstroke depolarization (dV/dtmax) of pacemaker potentials and slow waves in a dose-dependent manner (1–30 µM). Mibefradil (30 µM) changed the pattern of pacemaker potentials from rapidly rising, high-frequency events to slowly depolarizing, low-frequency events with considerable membrane noise (unitary potentials) between pacemaker potentials. Caffeine (3 mM) abolished pacemaker potentials in the presence of mibefradil. Pinacidil (10 µM), an ATP-sensitive K+ channel opener, hyperpolarized ICC-MY and increased the amplitude and dV/dtmax without affecting frequency. Pinacidil hyperpolarized smooth muscle cells and attenuated the amplitude and dV/dtmax of slow waves without affecting frequency. The effects of pinacidil were blocked by glibenclamide (10 µM). These data suggest that slow waves are electrotonic potentials driven by pacemaker potentials. The upstroke component of pacemaker potentials is due to activation of dihydropyridine-resistant Ca2+ channels, and this depolarization entrains pacemaker activity to create the plateau potential. The plateau potential may be due to summation of unitary potentials generated by individual or small groups of pacemaker units in ICC-MY. Entrainment of unitary potentials appears to depend on Ca2+ entry during upstroke depolarization. pacemaker activity; slow waves; gastrointestinal motility; calcium channel  相似文献   

19.
TheNa+/Ca2+ exchanger participates inCa2+ homeostasis in a variety of cells and has a key rolein cardiac muscle physiology. We studied in this work the exchanger ofamphibian skeletal muscle, using both isolated inside-out transversetubule vesicles and single muscle fibers. In vesicles, increasingextravesicular (intracellular) Na+ concentrationcooperatively stimulated Ca2+ efflux (reverse mode), withthe Hill number equal to 2.8. In contrast to the stimulation of thecardiac exchanger, increasing extravesicular (cytoplasmic)Ca2+ concentration ([Ca2+]) inhibited thisreverse activity with an IC50 of 91 nM. Exchanger-mediated currents were measured at 15°C in single fibers voltage clamped at90 mV. Photolysis of a cytoplasmic caged Ca2+ compoundactivated an inward current (forward mode) of 23 ± 10 nA(n = 3), with an average current density of 0.6 µA/µF. External Na+ withdrawal generated an outwardcurrent (reverse mode) with an average current density of 0.36 ± 0.17 µA/µF (n = 6) but produced a minimal increasein cytosolic [Ca2+]. These results suggest that, inskeletal muscle, the main function of the exchanger is to removeCa2+ from the cells after stimulation.

  相似文献   

20.
The goal of the present study was to testthe hypothesis that local Ca2+ release events(Ca2+ sparks) deliver high local Ca2+concentration to activate nearby Ca2+-sensitiveK+ (BK) channels in the cell membrane of arterial smoothmuscle cells. Ca2+ sparks and BK channels were examined inisolated myocytes from rat cerebral arteries with laser scanningconfocal microscopy and patch-clamp techniques. BK channels had anapparent dissociation constant for Ca2+ of 19 µM and aHill coefficient of 2.9 at 40 mV. At near-physiological intracellularCa2+ concentration ([Ca2+]i; 100 nM) and membrane potential (40 mV), the open probability of a singleBK channel was low (1.2 × 106). A Ca2+spark increased BK channel activity to 18. Assuming that 1-100% of the BK channels are activated by a single Ca2+ spark, BKchannel activity increases 6 × 105-fold to 6 × 103-fold, which corresponds to ~30 µM to 4 µM sparkCa2+ concentration.1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester caused the disappearance of all Ca2+sparks while leaving the transient BK currents unchanged. Our resultssupport the idea that Ca2+ spark sites are in closeproximity to the BK channels and that local[Ca2+]i reaches micromolar levels to activateBK channels.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号