共查询到20条相似文献,搜索用时 8 毫秒
1.
The effects of systemically introduced neurotoxic solvents 2,5-hexanedione (2,5-HD) and 3,4-dimethyl-2,5-hexanedione (DMHD) on retrograde axonal transport (RT) of 125I-labeled tetanus toxin (TT) was studied in rat and mouse sciatic nerves. The rate of retrograde transport of TT in control rat sciatic nerves was slightly higher (6.8±0.4 mm/h) than in mouse sciatic nerves (5.4±0.5 mm/h). A single high dose of 2,5-HD (1,000 mg/kg, i.p.) produced a time-dependent effect on RT in mouse sciatic nerves. 2,5-HD caused a gradual decrease in the velocity of RT (approximately 65% inhibition between 2.0–2.5 h) with a reversal to normal rate 3–5 h after the toxin administration. The effect of DMHD on RT was examined following semi-chronic treatment in rats. DMHD caused a significant decrease (approximately 50%) in the rate of TT transport, in addition, it produced weight loss and hind-limb paralysis.I had the good opportunity of being a member of Professor Alan N. Davison' research team during 1971–1977. This research paper is dedicated to his retirement. 相似文献
2.
The regional changes in quantities of the glial S-100 protein and the neuron specific enolase in the rat nervous system have been studied after long-term exposure to 2,5-hexanedione. The wet weights of most of the examined nervous tissues were found to be reduced, with an extensive effect seen in the brain stem. Using dot immunobinding assays, the concentrations of S-100 were found to be increased in most of the examined tissues, but unaffected in the brain stem. The total amount of S-100 per tissue was markedly reduced in the brain stem. The content of neuron specific enolase was reduced only in the brain stem. Thus the effects of 2,5-hexanedione on the nervous system varied regionally. The brain stem was severely atrophied with a reduction of neuronal as well as of glial marker proteins. Other brain regions contained increased glial cell marker proteins as signs of progressive astroglial reactions. 相似文献
3.
2,5-Hexanedione is a neurotoxic metabolite of hexane. The mechanisms of its neurotoxicity remain unclear. We assessed whether chronic exposure to 2,5-hexanedione affects the glutamate-nitric oxide-cGMP pathway in primary cultures of cerebellar neurons and/or in the cerebellum of rats. Chronic exposure of cultured cerebellar neurons to 2,5-hexanedione (200 μM) reduced by ≈50% NMDA-induced formation of cGMP. Activation of soluble guanylate cyclase by nitric oxide was reduced by 46%. This treatment reduced the content of neuronal nitric oxide synthase and soluble guanylate cyclase in neurons by 23 and 20%, respectively. In the cerebellum of rats chronically exposed to 2,5-hexanedione (in the drinking water) NMDA-induced formation of cGMP was reduced by 55% as determined by in vivo brain microdialysis. Activation of soluble guanylate cyclase by nitric oxide was reduced by 65%. The content of neuronal nitric oxide synthase and of soluble guanylate cyclase was reduced by 25 and 21%, respectively, in the cerebellum of these rats. The effects are the same in both systems, indicating that cultured neurons are a good model to study the mechanisms of neurotoxicity of 2,5-hexanedione. These results indicate that chronic exposure to 2,5-hexanedione affects the glutamate-nitric oxide-cGMP pathway at different steps both in cultured neurons and in cerebellum of the animal in vivo. The alteration of this pathway may contribute to the neurotoxic effects of 2,5-hexanedione. 相似文献
4.
BackgroundZinc (Zn)is an essential trace element for spermatogenesis and its deficiency causes abnormal spermatogenesis. ObjectiveThe present study was conducted to examine the mechanisms by which Zn-deficient diet impairs sperm morphology and its reversibility. Methods30 SPF grade male Kunming (KM) mice were randomly divided into three groups, 10 mice per group. Zn-normal diet group (ZN group) was given Zn-normal diet(Zn content= 30 mg/kg)for 8 weeks. Zn-deficienct diet group (ZD group) was given Zn-deficienct diet(Zn content< 1 mg/kg)for 8 weeks. Zn-deficient and Zn-normal diet group(ZDN group)was given 4 weeks Zn-deficienct diet followed by 4 weeks Zn-normal diet. After 8 weeks, the overnight fasted mice were sacrificed, and blood and organs were collected for further analysis. ResultsThe experimental results showed that Zn-deficienct diet leads to increased abnormal morphology sperm and testicular oxidative stress.The rate of abnormal morphology sperm, chromomycin A3(CMA3), DNA fragmentation index (DFI), malondialdehyde (MDA) were significantly increased, and a-kinase anchor protein 4(AKAP4), dynein axonemal heavy chain 1(DNAH1), sperm associated antigen 6(SPAG6), cilia and flagella associated protein 44(CFAP44), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), nuclear factor erythroid 2-related factor (NRF2), NAD(P)H:quinone oxidoreductase 1(NQO1)and heme oxygenase 1(HO1) were significantly decreased in the ZD group mice. While the changes in above indicators caused by Zn-deficient diet were significantly alleviated in the ZDN group. ConclusionIt was concluded that Zn-deficient diet causes abnormal morphology sperm and testicular oxidative stress in male mice. Abnormal morphology sperm caused by Zn-deficient diet are reversible, and Zn-normal diet can alleviate them. 相似文献
5.
This study was aimed to determine the effects of boric acid on oxidative stress, testicular tissue and spermatozoon DNA. Experiments were performed with Swiss Albino mice divided equally into two groups based on the tratment period: one for 4 and the other for 6-week duration. These groups were further divided into subgroups as Control and those administered daily at oral doses of 115 mg/kg, 250 mg/kg and 450 mg/kg of boric acid. Then, testicular tissue were examined postmortem and analyzed using ex-vivo biochemical tools for oxidative stress, spermatozoon membrane integrity, sperm motility and live cell rate (%). In both 4 and 6-week groups, v. seminalis weight, membrane integrity, motility, live cells and GSH levels exhibited a decreasing trent compared to the controls. In addition, 6-week group had a decrease in SOD level. MDA level was higher in controls in both 4 and 6-week groups. Spermatozoon DNA was intact in the 4-week group, but damaged in the 6-week group, and the degree of the damage dependent on the administered dose. Boric acid induces oxidative stress in testicular tissue, and its long-term application (only 6 weeks) caused damage in spermatozoon DNA. 相似文献
6.
This study aimed to evaluate the protective efficacy of some antioxidants against sodium tungstate induced oxidative stress in male wistar rats. Animals were sub-chronically exposed to sodium tungstate (100 ppm in drinking water) for three months except for control group. In the same time, many rats were supplemented orally with different antioxidants (alpha-lipoic acid (ALA), n-acetylcysteine (NAC), quercetin or naringenin (0.30 mM)) for five consecutive days a week for the same mentioned period before. Exposure to sodium tungstate significantly ( P < 0.05) inhibit blood δ-aminolevulinic acid dehydratase (ALAD) activity, liver and blood reduced glutathione (GSH) levels and an increase in oxidized glutathione (GSSG) and thiobarbituric acid reactive species (TBARS) levels in tissues. ALA acid and NAC supplementation post sodium tungstate exposure increased GSH and also, was beneficial in the recovery of altered superoxide dismutase and catalase activity, besides, significantly reducing blood and tissue reactive oxygen species and TBARS levels. The results suggest a more pronounced efficacy of ALA acid and NAC supplementation than quercetin or naringenin supplementation post sodium tungstate exposure in preventing induced oxidative stress in rats. 相似文献
7.
The objective of this study was to evaluate effects of long term (90-day) administration of meldonium [3-(2,2,2-trimethylhydrazinium) propionate] (mildronate, quaterin, MET-88) on sexual performance, sperm motility, testes morphology and biochemical blood markers in boars. Boars were treated with 2.0 g of meldonium daily for 90 days. Administration of meldonium improved sexual performance and sperm motility. Thus, the reaction time (time from exposure to the dummy to the start of ejaculation) was reduced and the progressive motility of spermatozoa was significantly increased in the meldonium-treated boars compared to that of the boars of control group. In addition, the spermatogenic epithelium was thicker and proliferation of interstitial endocrine cells (Leydig cells) was observed in meldonium-treated boars. The concentration of blood serum testosterone was higher in the meldonium-treatment group than in the control group. Meldonium did not affect the concentration of creatinine, total bilirubin, total cholesterol, glucose and aspartate aminotransferase/AST, alanine aminotransferase/ALT activity in blood plasma. In conclusion, 90-day administration of meldonium improved sexual performance and sperm motility of boars and it also increased concentration of testosterone in blood serum. Further studies are necessary to substantiate the potential use of meldonium as a sperm motility and/or sperm quality-enhancing agent in livestock. 相似文献
8.
Zinc (Zn) is one of the most important trace elements in the body and is required for insulin secretion and release. Zn is also required for the growth and development of the reproductive system. Alteration in the Zn levels can cause moderate to severe damage to various organs, including the reproductive system. Most of type 2 diabetic patients have altered Zn levels/signaling. So, here we investigated the role of Zn-deficient diet (ZDD) in type 2 diabetes. Type 2 diabetes in the rat was induced by the combination of high-fat diet (HFD) and a single low dose of streptozotocin (STZ, 35 mg/kg, i.p.). Control animals were fed normal pellet diet throughout the study, while ZDD was given for four consecutive weeks to the diabetic rats, which were earlier kept on HFD for 16 weeks. The present findings showed that ZDD further decreased the serum Zn, plasma insulin and serum testosterone levels, whereas it increased cholesterol, triglycerides, BUN, %HbA1c in diabetic rats. Oxidative stress in testes was increased by ZDD as evidenced by decreased glutathione, catalase and SOD1 levels. ZDD-induced several abnormalities in sperm head morphology, altered sperm decondensation, sperm chromatin and protamine content, along with significant histopathological alterations in testes and epididymis. Further, ZDD altered protein levels of MT, MTF-1, Keap1, Nrf2, Nf-κB, GPX4 and GPX5 levels in the testes and epididymis of diabetic rat. The present results demonstrated that dietary Zn deficiency could exacerbate type 2 diabetes-induced germ cell damage. 相似文献
9.
The same total dose (1.2 g/kg/week) of 2,5-hexanedione (2,5-HD) was administered subcutaneously at 100 mg/kg/12 hr, 200 mg/kg/24 hr, and 400 mg/kg/48 hr to three groups of Donryu rats. The peripheral neuropathy induced by 2,5-HD was confirmed by clinical observation every day, and neurophysiological measurements every 4 weeks. During the 15th week of this experiment, 2,5-HD concentrations in plasma 0.5 to 24 hours after injection were determined. It was found that the greater the dose of 2,5-HD per treatment injected, the earlier peripheral neuropathy developed. Toxicokinetic analysis showed that both the values of the area under the plasma concentration versus time curve and the half life of 2,5-HD were increased, but the excretion parameters (Ke) were decreased, in animals treated with 200 mg/kg/24 hr and 400 mg/kg/48 hr 2,5-HD. 相似文献
10.
Oxytocin (OXY) plays a crucial role in reproduction. The aim of this study is to investigate the therapeutic and protective effects of oxytocin treatment on streptozotocin (STZ) induced diabetes in testicular tissue. The rats were randomly divided into four experimental groups: (I) Control Group, (II) STZ induced Diabetic Group (STZ Group), (III) STZ induced Diabetic Group with Pre-Oxytocin treatment (Pre-OXY Group) and (IV) STZ induced Diabetic Group with Post-Oxytocin treatment (Post-OXY Group); each group contains six animals. The rats whose blood glucose levels were more than 200 mg/dl were included to the experiment. At the end of the 4th week, testes tissue samples were taken to be processed for light microscopy and transmission electron microscopy. Malondialdehyde (MDA), Glutathione (GSH) and Advanced Oxidation Protein Products (AOPP) levels were determined biochemically in blood samples. Testicular tissue samples stained with Hematoxylin and Eosin (H&E) and Periodic acid-Schiff (PAS) reaction were evaluated under light microscope. The histopathological damage score of testicular tissue, which was significantly increased in STZ group, was decreased by oxytocin treatment. According to biochemical data, MDA and AOPP levels have been increased in the blood of STZ Group compared to the Control Group whereas they decreased significantly in Oxytocin-treated Groups compared to STZ Group. GSH levels were significantly decreased in the blood of STZ Group and increased in the blood of Oxytocin-treated Groups compared to STZ Group. In conclusion, oxytocin has a potential protective effect on the testes tissue of STZ-induced diabetic rats. 相似文献
11.
Oxidative stress is an important component of the cytopathology of equine spermatozoa undergoing storage as liquid or frozen semen. Damage to chromatin, membranes and proteins of sperm are important components of oxidative damage to sperm. Similarly, sperm are exposed to a variety of osmotic stresses during storage that result from exposure to hypertonic media or result as a consequence of osmotic changes induced during freezing. A number of changes induced during processing and storage of equine sperm also appear to induce apoptotic-like changes which may adversely affect sperm survival and function. These processes appear in many cases to be interrelated, and this review will examine current understanding of these processes on the equine sperm function. 相似文献
12.
The protective action of vitamins C and E against lead acetate-induced reduced sperm count and sperm abnormalities in Swiss mice has been studied. Intraperitoneal injection of lead acetate (10mg/kg body weight) in the present study stimulates lipid peroxidation in the testicular tissue, indicated by a significant increase in malondialdehyde content in the experimental mice group. This is associated with an increased generation of noxious reactive oxygen species (ROS). Significantly reduced sperm count associated with increased sperm abnormality percentage in the lead-injected mice group compared to controls substantially proves the ongoing damaging effects of lead-induced ROS on developing germ cells. However, intraperitoneal administration of vitamin C (Vit C) at a concentration equivalent to the human therapeutic dose (10 mg/kg body weight) was able to minimize significantly the testicular malondialdehyde content with a concomitant increase in sperm count and significant decrease in the percentage of abnormal sperm population. Vitamin E (Vit E) (100 mg/kg body weight) treatment of a batch of lead-injected mice had a similar effect as Vit C but with a comparatively lower efficacy. On the other hand, coadministration of both vitamins (Vit C + Vit E) at the above mentioned doses to lead-treated mice led to the most significant decline in malondialdehyde content along with elevated sperm count and reduction in the percentage of abnormal sperm population. The protective action and the synergistic action of both vitamins (C and E) against lead-induced genotoxicity are discussed. 相似文献
13.
2,5-Hexanedione (2,5-HD) induces central-peripheral axonpathy characterized by the accumulation of 10-nm neurofilaments proximal to the nodes of Ranvier and a Wallerian-type degeneration. It has been postulated that neurofilament crosslinking may be involved in the production of this axonopathy. A potential initiating event in this neurotoxic process may be the direct binding of 2,5-HD to neurofilament and microtubule proteins. In this study, the in vitro binding of [ 14C]2,5-HD to neurofilament and microtubule proteins was examined. Neurofilament proteins isolated from rat spinal cord or microtubule proteins isolated from rat brain were incubated in the presence of 2,5-HD at concentrations ranging 25 to 500 mM. Quantitative analysis of sodium dodecyl sulfate (SDS) polyacrylamide gels revealed a dose- and time-dependent binding of 2,5-HD to both neurofilament proteins and microtubule proteins. Expressed as pmol 2,5-HD bound per g protein, the observed relative binding was MAP2>NF160>NF200>NF68>tubulin. These data demonstrate the direct binding of 2,5-HD to cytoskeletal proteins including both neurofilaments and microtubules. 相似文献
14.
The aim of this study was to examine whether malathion, a commonly used organophosphate (OP), might induce oxidative stress and cholinesterase (ChE) depression in saliva and plasma in rats following subchronic exposure mimicking human exposure. Malathion was administered orally at doses of 100, 500 and 1500 ppm for 4 weeks. Oxidative stress was determined by measuring the malondialdehyde concentration, the end product of lipid peroxidation, and assessing total antioxidant power. Four weeks oral administration of malathion at doses of 100 ppm, 500 ppm and 1500 ppm depressed plasma ChE activity to 45% (P<0.01), 48% (P<0.01) and 41% (P<0.01) of control, respectively. Malathion at doses of 100 ppm, 500 ppm and 1500 ppm depressed saliva ChE activity to 73% (P<0.01), 75% (P<0.01) and 78% (P<0.01) of control, respectively. Malathion at doses of 100 ppm, 500 ppm and 1500 ppm increased plasma antioxidant power by 33% (P<0.01), 59% (P<0.01) and 118% (P<0.01) of control, respectively. Malathion did not change saliva antioxidant power. Malathion at doses of 100 ppm, 500 ppm and 1500 ppm increased plasma thiobarbituric acid reactive substances (TBARS) by 61% (P<0.01), 69% (P<0.01) and 63% (P<0.01) of control, respectively. Malathion at doses of 500 ppm and 1500 ppm increased saliva TBARS by 19% (P<0.01) and 22% (P<0.01) of control, respectively. Malathion (100 ppm) did not change saliva TBARS level. We concluded that in OP subchronic exposure, depression of ChE is accompanied by induction of oxidative stress that might be beneficial in monitoring OP toxicity. 相似文献
15.
Ozone exposure effect on free radical-catalyzed oxidation products of lipids, proteins, and DNA in the plasma and urine of rats was studied as a continuation of the international Biomarker of Oxidative Stress Study (BOSS) sponsored by NIEHS/NIH. The goal was to identify a biomarker for ozone-induced oxidative stress and to assess whether inconsistent results often reported in the literature might be due to the limitations of the available methods for measuring the various types of oxidative products. The time- and dose-dependent effects of ozone exposure on rat plasma lipid hydroperoxides, malondialdehyde, F 2-isoprostanes, protein carbonyls, methionine oxidation, and tyrosine- and phenylalanine oxidation products, as well as urinary malondialdehyde and F 2-isoprostanes were investigated with various techniques. The criterion used to recognize a marker in the model of ozone exposure was that a significant effect could be identified and measured in a biological fluid seen at both doses at more than one time point. No statistically significant differences between the experimental and the control groups at either ozone dose and time point studied could be identified in this study. Tissue samples were not included. Despite all the work accomplished in the BOSS study of ozone, no available product of oxidation in biological fluid has yet met the required criteria of being a biomarker. The current negative findings as a consequence of ozone exposure are of great importance, because they document that in complex systems, as the present in vivo experiment, the assays used may not provide meaningful data of ozone oxidation, especially in human studies. 相似文献
16.
Increasing evidence suggests that n-hexane induces nerve injury via neuronal apoptosis induced by its active metabolite 2,5-hexanedione (HD). However, the underlying mechanism remains unknown. Studies have confirmed that pro-nerve growth factor (proNGF), a precursor of mature nerve growth factor (mNGF), might activate apoptotic signaling by binding to p75 neurotrophin receptor (p75NTR) in neurons. Therefore, we studied the mechanism of the proNGF/p75NTR pathway in HD-induced neuronal apoptosis. Sprague–Dawley (SD) rats were injected with 400 mg/kg HD once a day for 5 weeks, and VSC4.1 cells were treated with 10, 20, and 40 mM HD in vitro. Results showed that HD effectively induced neuronal apoptosis. Moreover, it up-regulated proNGF and p75NTR levels, activated c-Jun N-terminal kinase (JNK) and c-Jun, and disrupted the balance between B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Our findings revealed that the proNGF/p75NTR signaling pathway was involved in HD-induced neuronal apoptosis; it can serve as a theoretical basis for further exploration of the neurotoxic mechanisms of HD. 相似文献
17.
In this study, total glutathione content was determined in human spermatozoa before and after cryopreservation. Total GSH in fresh semen was 4.47 ± 0.46 nmol/10 8 cells. Following semen cryopreservation, GSH decreased to 1.62 ± 0.13 nmol/10 8 cells, a 64% reduction ( p < 0.01). This decrease in GSH content was associated with a decrease in sperm progressive motility (68% of reduction, p < 0.01). Addition of 1 mM GSH to the freezing extender increased the percentage of total motility and sperm viability. It also modified the motility pattern measured by CASA with changes in the straight-line and average path velocities and wobble of the curvilinear trajectory. Addition of GSH to the freezing media reduced spermatozoa ROS levels and increased the level of sulfhydryl groups on membrane proteins. Nevertheless, no effect of GSH addition on lipid membrane disorder or chromatin condensation was detected. Addition of 1 or 5 mM GSH to the thawing media increased the percentage of motile and progressively motile spermatozoa, but no effect on viability was detected. In conclusion, the antioxidant defensive capacity of the GSH is severely altered by the freeze–thawing process. The addition of GSH to the freezing and thawing extender could be of partial and limited benefit in improving the function of frozen human spermatozoa. 相似文献
18.
AimsThe aim of this study was to investigate the effect of iron or/and zinc supplementation and termination of this treatment on the antioxidant defence of the male reproductive system and sperm viability in rats. MethodsThe study consisted of 3 stages: I) 4-week adaptation to the diets (C-control or D-iron deficient); II) 4-week iron and/or zinc supplementation (10-times more than in the C diet of iron: CSFe, DSFe; zinc: CSZn, DSZn; or iron and zinc: CSFeZn, DSFeZn; and III) 2-week post-supplementation period (the same diets as during stage I). Parameters of antioxidant status (total antioxidant capacity and SOD, GPx, and CAT activiy), oxidative damage (lipid and protein peroxidation), and sperm viability were measured. ResultsSimultaneous iron and zinc supplementation compared to iron supplementation (CSFeZn vs CSFe) increased SOD activity in the testes and decreased the level of malondialdehyde in the epididymis after stage II, and increased the percentage of live sperm after stage III. After discontinuation of the iron and zinc supplementation and a return to the control diet, the following was observed a decrease of SOD activity in the testes and GPx activity in the epididymis, and a increase malondialdehyde concentration in prostates. After stage III, in DSFeZn vs DSFe rats, an increase of SOD and CAT activity in the epididymis was found. ConclusionZinc supplementation simultaneous with iron may protect the male reproductive system against oxidative damage induced by high doses of iron and may have a beneficial effect on sperm viability. The effect of this supplementation was observed even two weeks after the termination of the intervention. 相似文献
19.
In this study, we evaluated the effects of the thawing methodology on sperm function after cryopreservation in pellets. We compared the use of two thawing procedures: method (1) maintaining pellet for 10 min in air at room temperature, then another 10-min period in air at 37 °C followed by dilution in a thawing medium; and method (2) immersing the pellets directly in thawing medium at 37 °C for 20 min. This procedure leads to a higher rate of temperature increase and a dilution of the glycerol present in the freezing medium. We analyzed the effect of the thawing procedure on sperm motility, viability, membrane lipid packing disorder, acrosome status, reactive oxygen species (ROS) level and sperm chromatin condensation. This study revealed a positive effect of the M2 thawing methodology on sperm parameters. The percentage of spermatozoa with fast-linear movement is increased (M1: 17.26% vs. M2: 28.05%, p < 0.01), with higher viability (M1: 37.81% vs. M2: 40.15%, p < 0.01) and less acrosome damage (M1: 40.44% vs. M2: 35.45%, p = 0.02). We also detected an increase in the percentage of viable spermatozoa with low membrane lipid disorder (M1: 31.36% vs. M2: 33.17%, p = 0.03) and a reduction in chromatin condensation (44.62 vs. 46.62 arbitrary units, p = 0.02). Further studies will be necessary to evaluate the possible clinical applications. 相似文献
20.
The aim of this study was to evaluate the possible beneficial effects of diet supplementation with a highly concentrated and purified docosahexaenoic acid (DHA) formula on human sperm function. We performed a prospective, randomized, double blind, placebo-controlled intervention study. One-hundred eighty human semen samples from sixty infertile patients recruited in a private assisted reproduction center were included. All samples were examined according to World Health Organization guidelines. We analyzed macroscopic and microscopic sperm parameters, oxidative stress, apoptosis, lipid peroxidation, mitochondrial membrane potential and DNA fragmentation before and after supplementation with different DHA daily doses (0.5, 1 and 2?g) or placebo for 1 and 3 months. No differences were found in traditional sperm parameters except for progressive sperm motility, with a significant increase after DHA ingestion after the first month with 1 or 2?g doses and after 3 months with 0.5?g of DHA. This effect was more evident in asthenozoospermic patients. No differences were found in any molecular semen parameter except oxidative stress, in which a slight benefit was observed after DHA treatment. In conclusion, this study support previous indications that highlight the importance of DHA supplementation as a means of improving sperm quality in asthenozoospermic men. 相似文献
|