首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histochemical methods for microscopic visualization of nummary myoepithelial cells all yielded considerable variation in completeness of myoepithelial cell staining. Although extremely variable, silver impregnation occasionally gave tissue sections containing myoepithelia having excellent microanatomical detail and contrast with other tissue elements. Consequently, sources of variation in the silver technique were considered. Composition of the tissue fixative and pH of the silver impregnating solution were most critical. A final method is presented which gives consistent, complete silver impregnation of myoepithelia, where both the cell body and cell processes are clearly evident. The staining procedure is not light sensitive, nor is acid cleaning of glassware necessary. Tissue sections from lactating mouse, rat, hamster and goat are presented; tissue from other species should stain as well. The procedure should greatly facilitate the study of the function of myoepithelial cells and the visualization of these cells in mammary pathology.  相似文献   

2.
Histochemical methods for microscopic visualization of mammary myoepithelial cells all yielded considerable variation in completeness of myoepithelial cell staining. Although extremely variable, silver impregnation occasionally gave tissue sections containing myoepithelia having excellent microanatomical detail and contrast with other tissue elements. Consequently, sources of variation in the silver technique were considered. Composition of the tissue fixative and pH of the silver impregnating solution were most critical. A final method is presented which gives consistent, complete silver impregnation of myoepithelia, where both the cell body and cell processes are clearly evident. The staining procedure is not light sensitive, nor is acid cleaning of glassware necessary. Tissue sections from lactating mouse, rat, hamster and goat are presented; tissue from other species should stain as well. The procedure should greatly facilitate the study of the function of myoepithelial cells and the visualization of these cells in mammary pathology.  相似文献   

3.
In order to, avoid disadvantages attendant upon the use of fresh frozen sections, or of block impregnation with silver, in staining climbing or mossy fibers of the cerebellum, Rio Hortega's double impregnation method for nerve fibers is useful. This consists of prolonged formalin fixation prior to cutting frozen sections (which thereafter are easier to cut) and preliminary treatment with ammoniacal aqueous and alcoholic washes, mordanting in pyridine silver, and treatment with pyridine-silver-carbonate. Following this, sections are handled individually through one of several reduction methods after which they may be directly mounted or gold toned.  相似文献   

4.
Abstract. In a previous article (1948) the author introduced a rapid method for silver staining nerve fibres in ordinary, mounted paraffin sections (5–25 microns in thickness). By the modification of this method described below, being adjusted to very thick sections (100–300 microns), much more extensive connections of nerve fibres and their ramifications can be demonstrated. The modification can also be used for staining suitable, not sectioned preparations in toto. Some results are shown in photomicrographs.  相似文献   

5.
The application of protion yellow allowed to reveal nerve cells of different size, and their dendrites and axons, bundles of nerve fibres for a considerable length. Staining with protional yellow resembles to impregnation of the nervous tissue with silver salts. Combination of protion yellow with dyes of other groups and silver nitrate impregnation improves the stability of staining.  相似文献   

6.
The original method combining Karnovsky's cholinesterase stain and Bodian silver impregnation has been modified to stain both myelinated and unmyelinated axons and to reduce background staining. The improvements were obtained by adding nitric acid to a paraformaldehyde-acetone fixative and by carrying out the silver impregnation of axons in an alcoholic solution. The method is especially suitable for quantitative estimation of the different kinds of nerve sprouting as well as for study of the remodeling of neuromuscular junctions in normal and experimental frog muscles.  相似文献   

7.
Fresh frozen sections of liver and duck salt gland, 20 μ thick were attached to slides and immersed for 20 min in Carnoy's 6:3:1 fixative; washed 3 times with 0.9% NaCl; placed in M/15 phosphate buffer, pH 7.0 for 20 min; then incubated for 5 hr at 37 C in a 0.1% solution of collagenase (Koch-Light Laboratories) in the phosphate buffer. After washing in 0.9% NaCl the slides were immersed for at least 24 hr in 4% formaldehyde (10% formol-saline). Slides were examined for morphological detail after haematoxylin and eosin staining, for nerve fibres after silver impregnation, and for connective tissue fibres. Attempts to use papain and pepsin digestion on sections after similar fixation were not successful, as much of the tissue was destroyed.  相似文献   

8.
The different types of fibres of the collagenous and elastic systems can be demonstrated specifically in tissue sections by comparing the typical ultrastructural picture of each of the fibre types with studies using selective staining techniques for light microscopy. A practicalmodus operandi, which includes the recommended staining procedures and interpretation of the results, is presented. Micrographs and tables are provided to summarize the differential procedures. Reticulin fibres display a distinct argyrophilia when studied by means of silver impregnation techniques, and show up as a thin meshwork of weakly birefringent, greenish fibres when examined with the aid of the Picrosirius-polarization method. In addition, electron-microscopic studies showed that reticulin fibres are composed of a small number of thin collagen fibrils, contrasting with the very many thicker fibrils that could be localized ultrastructurally to the sites where non-argyrophilic, coarse collagen fibres had been characterized by the histochemical methods used. The three different fibre types of the elastic system belong to a continuous series: oxytalan—elaunin—elastic (all of the fibre types comprising collections of microfibrils with, in the given sequence, increasing amounts of elastin). The three distinct types of elastic system fibres have different staining characteristics and ultrastructural patterns. Ultrastructurally, a characteristic elastic fibre consists of two morphologically different components: a centrally located solid cylinder of amorphous and homogeneous elastin surrounded by tubular microfibrils. An oxytalan fibre is composed of a bundle of microfibrils, identical to the elastic fibre microfibrils, without amorphous material. In elaunin fibres, dispersed amorphous material (elastin) is intermingled among the microfibrils.  相似文献   

9.
Satisfactory Bodian silver staining of paraffin wax sections of both locust (Schistocerca gregaria) and cockroach (Periplaneta americana) central nerve tissue can be obtained with only one impregnation, instead of the usual two, by the following modified procedure. Freshly dissected ganglia are fixed in an improved synthetic alcoholic Bouin (40% formaldehyde 0-15:ethanol 25:acetic acid 5: picric acid 0.5:either ethyl acetate 5 and diethoxymethane 15, or ethyl acetate 25:distilled water to 100). Formaldehyde content governs intensity of glial staining (little or none without formaldehyde) and the mixture with more ethyl acetate substituted for diethoxymethane gives more intense staining overall. Sections are impregnated once only, overnight, in 2% Protargol solution brought to about pH 8.4 with ammonium hydroxide and containing 1.3 g of copper per 65 ml. Depending on fixative composition, species, section thickness and contrast desired between nerve fibers and background, the subsequent distilled water rinse is shortened or omitted and sections are developed in 1% hydroquinone with sodium sulfite content reduced (to 2.5-4% Na2SO3·7H2O) for thinner (10 μm) sections but normal (10%) for thicker (20 μm) ones. Sections are finally washed, gold intensified, treated with sodium thiosulfate and dehydrated, cleared and mounted as usual. Results are slightly lighter than with normal double impregnation but entirely suitable for studies of neuroanatomy.  相似文献   

10.
A tissue pretreatment is introduced which effectively suppresses the silver impregnation of connective tissue and nonspecific background elements in peripheral nerve. The result is a selective impregnation of nerve fibers. The procedure utilizes fresh frozen sections and can be used with the Holmes (1947) or Bodian (1936) techniques. Fresh frozen sections are cut at 10 microns, mounted on slides and air dried for 5 minutes. They are fixed for 30 minutes in formol-sublimate (10% formalin saturated with mercuric chloride) and then placed into 0.5% iodine in 70% alcohol for 5 minutes followed by bleaching in 2.5% sodium thiosulfate for 2 minutes. After washing in running tap water for 10 minutes and a brief rinse in distilled water, impregnation is accomplished by the Holmes (1947) or Bodian (1936) procedure beginning with the step containing the aqueous silver solution. The results show an absence of impregnation of connective tissue and nonspecific background. The technique is simple, rapid, and, by utilizing fresh frozen sections, can be used for other histological and histochemical purposes. Several experiments were done to determine the causes of the connective tissue and background suppression. The air drying step was omitted; the sections were fixed in formalin without mercuric chloride; and the formol-sublimate fixation time was increased. The results suggest that connective tissue impregnation is suppressed by the use of mercuric chloride in the fixative and that the background suppression is related to the short fixation time with formolsublimate.  相似文献   

11.
A tissue pretreatment technique is introduced which effectively suppresses the silver impregnation of connective tissue and nompecific background elements in peripheral nerve. The result is a selective impregnation of nerve fibers. The procedure utilizes fresh frozen sections and can be used with the Holmes (1947) or Bodian (1936) techniques. Fresh frozen sections are cut at 10 microns, mounted on slides and air dried for 5 minutes. They are fixed for 30 minutes in formol-sublimate (10% formalin saturated with mercuric chloride) and then placed into 0.5% iodine in 70% alcobol for 5 minutes followed by bleaching in 2.5% sodium thiosulfate for 2 minutes. After washing in running tap water for 10 minutes and a brief rinse in distilled water, impregnation is accomplished by the Holmes (1947) or Bodian (1936) procedure beginnins with the step containing the aqueous silver solution. The results show an absence of impregnation of connective tissue and nonspecific background. The technique is simple, rapid, and, by utilidng fresh hrozen sections, can be used for other histological and histochemical purposes. Several experiments were done to determine the causes of the connective tissue and background suppression. The air drying step was omitted; the sections were fixed in formalin without mercuric chloride; and the formol-sublimate fixation time was increased. The results suggest that connective tissue impregnation H suppressed by the use of mercuric chloride in the fixative and that the background supprgsion is related to the short fixation time with formol-sublimate.  相似文献   

12.
Satisfactory Bodian silver staining of paraffin wax sections of both locust (Schistocerca gregaria) and cockroach (Periplaneta americana) central nerve tissue can be obtained with only one impregnation, instead of the usual two, by the following modified procedure. Freshly dissected ganglia are fixed in an improved synthetic alcoholic Bouin (40% formaldehyde 0-15: ethanol 25: acetic acid 5: picric acid 0.5: either ethyl acetate 5 and diethoxymethane 15, or ethyl acetate 25: distilled water to 100). Formaldehyde content governs intensity of glial staining (little or none without formaldehyde) and the mixture with more ethyl acetate substituted for diethoxymethane gives more intense staining overall. Sections are impregnated once only, overnight, in 2% Protargol solution brought to about pH 8.4 with ammonium hydroxide and containing 1.3 g of copper per 65 ml. Depending on fixative composition, species, section thickness and contrast desired between nerve fibers and background, the subsequent distilled water rinse is shortened or omitted and sections are developed in 1% hydroquinone with sodium sulfite content reduced (to 2.5-4% Na2SO3.7H2O) for thinner (10 micrometer) sections but normal (10%) for thicker (20 micrometer) ones. Sections are finally washed, gold intensified, treated with sodium thiosulfate and dehydrated, cleared and mounted as usual. Results are slightly lighter than with normal double impregnation but entirely suitable for studies of neuroanatomy.  相似文献   

13.
Summary The selective fluorescence staining of two fungi,Candida albicans andBlastomyces dermatitides, with Uvitex 2B and Calcofluor White M2R was studied in deparaffinized and frozen sections of mouse kidney and lung. Both fluorochromes emitted maximally at about 430nm, independent of the mounting media (Kaiser's gelatin or Entellan). In addition to fungi, both fluorochromes also stained elastic fibres. The fluorescence intensity remained unchanged after storage of sections for more than 6 months in conventional slide boxes. the two fluorochromes showed the following differences: Calcofluor faded 1.25 times faster than Uvitex when illuminated with ultraviolet light. Calcofluor showed a greater affinity for tissues in general, and red cells and renal tubular casts in particular. Counterstaining of deparaffinized sections with Hemalum and Eosin reduced the fungi fluorescence and suppressed the general background fluorescence. However, it led to an intensification of Eosin staining and the fluorescence of red cells in Calcofluorstained sections but not in Uvitex-stained ones. Similarly, the background fluorescence in frozen sections was reduced by Evans Blue, although elastic fibres still fluoresced after staining with Calcofluor. The degree of staining selectivity, and thus the contrast produced within a histological specimen, was greater with Uvitex 2B than with Calcofluor White M2R.  相似文献   

14.
Our studies on the effects of temperature on the demonstration of neurosecretory granules using argyrophil stains indicate an inverse relationship between the time needed for staining and temperature of the silver and reducing solutions. Careful monitoring of the temperature of silver solutions during the Grimelius procedure and its modifications show long incubation times serve in large part only to bring the solutions to reaction temperature. Tissue sections added when this temperature has been reached will stain with the same intensity as sections impregnated for the entire incubation period. We have modified the argyrophil procedure so that double-impregnation with solutions preheated to 60-70 C and development in Bodian's reducer prepared with preheated water rapidly demonstrates secretory granules. Our method does not require a microwave oven and much shorter incubation periods are required than with usual procedures. It is not necessary to incubate sections in hot solutions for extended periods of time, which can lead to detachment of sections, nonspecific staining and decomposition of the silver solution. Rinsing after impregnation and before development greatly increases contrast of argyrophil cells by reducing background staining. Our procedure results in more reliable staining of argyrophil and argentaffin cells and takes only ten minutes.  相似文献   

15.
Out studies on the effects of temperature on the demonstration of neurosecretory granules using argyrophil stains indicate an inverse relationship between the time needed for staining and temperature of the silver and reducing solutions. Careful monitoring of the temperature of silver solutions during the Grimelius procedure and its modifications show long incubation times serve in large part only to bring the solutions to reaction temperature. Tissue sections added when this temperature has been reached will stain with the same intensity as sections impregnated for the entire incubation period. We have modified the argyrophil procedure so that double-impregnation with solutions preheated to 60-70 C and development in Bodian's reducer prepared with preheated water rapidly demonstrates secretory granules. Our method does not require a microwave oven and much shorter incubation periods are required than with usual procedures. It is not necessary to incubate sections in hot solutions for extended periods of time, which can lead to detachment of sections, nonspecific staining and decomposition of the silver solution. Rinsing after impregnation and before development greatly increases contrast of argyrophil cells by reducing background staining. Our procedure results in more reliable staining of argyrophil and argentaffin cells and takes only ten minutes.  相似文献   

16.
A modification of the silver-staining techniques for nucleolar organizing regions (NORs) was used to stain selectively the macronuclear replication bands (RBs) and nucleoli in hypotrichous ciliated protozoa (Euplotes, Stylonychia, and Oxytricha). Silver staining of both types of structures was trypsin-sensitive and DNase I-insensitive, suggesting the involvement of proteins. Silver-staining proteins in the RB were differentially extracted with acid, without any decrease in nucleolar staining. Triton-acid-urea gel electrophoresis of an acid extract of Euplotes macronuclei revealed enhanced silver reaction with a single protein upon selective silver staining. An abundance of thiol groups was also demonstrated in the RBs and nucleoli by the fluorochrome 3-(4-maleimidylphenyl)-7-diethylamino-4-methyl coumarin (coumarin maleimide). Histochemical studies, including blocking thiols with N-ethyl maleimide (NEM), indicated that thiols were not necessary for silver staining, and that proteins in the RBs and nucleoli reacting with coumarin maleimide were not acid extractable.  相似文献   

17.
Summary A simultaneous light and electron microscopic study of mouse gastric mucosa was made to determine whether the silver nitrate methenamine stain of Duk-Ho Lee could be used to stain gastric endocrine-like cells in plastic embedded tissue. Examination of consecutive thick and thin sections showed that this stain blackened the granules of the predominant type of endocrine-like cell present. Blackening of the granules with silver occured in tissue fixed in osmium tetroxide solution with or without dichromate salt or in tissue fixed in glutaraldehyde then treated with osmium. The intensity of staining was deepest in the osmium-dichromate fixed tissue, but the glutaraldehyde-osmium procedure gave less interference from diffuse silver impregnation and better preservation of detail for electron microscopy.  相似文献   

18.
An improved thioflavin-S stain, Gallyas silver stain, and two immunostainings were quantitatively compared for demonstration of neurofibrillary tangles (NFTs) on the same sections. Sections of hippocampal formation from seven cases of Alzheimer's disease (AD) were immunofluorescently stained with a commercially available polyclonal NFT antibody or a PHF-1 monoclonal antibody, followed by an improved thioflavin-S stain, and finally by Gallyas silver staining. The thioflavin-S method was improved by using a combination quenching method that removes background autofluorescence without remarkable tissue damage and by post-treatment with concentrated phosphate buffer, which minimizes photobleaching. PHF-1 or NFT immunostaining is much less sensitive than the improved thioflavin-S staining and Gallyas silver staining, particularly in the transentorhinal region. Moreover PHF-1 immunoreactivity varied greatly among AD individuals. Thioflavin-S staining and Gallyas silver staining show almost the same sensitivity in NFT demonstration, but only the former depends on the secondary protein structure of NFTs. This study suggests that the improved thioflavin-S staining is a simple, sensitive, and consistent method for demonstration of neurofibrillary pathology.  相似文献   

19.
The silver techniques used to demonstrate nucleolar organizer regions and cores in chromosomes can also differentially stain chromatin within chromosomes. Direct silver staining of mouse and human chromosomes resulted in preferential staining of centromeric regions and non-nucleolar secondary constrictions, both of which are composed of constitutive heterochromatin. After C-banding, these regions were no longer silver-stainable, suggesting that the biochemical constituents (presumably non-histone proteins) which contain the reaction sites for silver are extracted during the banding treatment. Light and electron microscopy of chromosomes G-banded with trypsin and then silver-stained revealed heavier deposits of silver over the condensed aggregates of chromatin within the band regions than over the more dispersed interband chromatin. At the ultrastructural level, chromatin fibres were covered with silver grains, indicating that there are many reaction sites for this metal along the fibres. These results suggest that the degree of silver staining in any region of the chromosome may be contingent upon the concentration of chromatin in that region. This finding may have important implications concerning the nature of the silver-stained core-like structure in chromosomes. If a preferential dispersion of chromatin fibres occurs at the periphery of the chromosome during slide preparation, leaving the central region of each chromatid relatively undispersed, this difference in the concentration of chromatin may account for the differential silver staining of these regions and the consequent appearance of a core-like structure.  相似文献   

20.
After reconsidering the physico-chemical mechanisms involved in the so-called degeneration methods for the demonstration of axons and nerve terminals, the method of Eager was fundamentally modified in order to stabilize the staining process. This resulted in a simple and reliable method which stains degenerating terminals and lysosomes with a high degree of selectivity and sensitivity. Frozen sections 30 to 50μm thick are prepared from material fixed with formaldehyde by cardiac perfusion. The staining procedure consists of 5 steps: 1) alkaline pretreatment (pH 13), 2) silver impregnation, 3) washing, 4) development at pH 5.0-5.5 monitored by an indicator, and 5) washing in acetic acid. Possible faults can be easily detected by their specific effects on the staining results. Primary submicroscopic silver precipitates are localized selectively in the osmiophilic parts of lysosomes and those degenerating presynaptic elements that are surrounded by glial processes. In degenerating axons, precipitates originating from mitochondria can usually be distinguished from terminal degeneration by their different size, shape, or characteristic arrangement. Nonspecific staining is restricted to glial fibrils, erythrocytes, and single cell nuclei. Dark field illumination can be applied routinely and television image analysis can be used for quantitative evaluation because of low background staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号