首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropomyosin是一种分布广泛而且在进化上十分保守的蛋白,是肌肉形成和收缩过程中重要的调节蛋白质。通过RT-PCR和RACE技术得到文昌鱼tropomyosin基因全长,编码一个含284个氨基酸残基的蛋白质,将文昌鱼Tropomyosin和在其他物种中的同源物进行比对建树,发现其在功能域上高度保守并且只有一个拷贝,符合动物分类学中各物种的进化地位。胚胎整体原位杂交实验得知,tropomyosin在文昌鱼早期发育的表达,最早从原肠胚末期神经胚早期开始,定位于分化中的中内胚层。到神经胚期,tropomyosin的表达出现在发育中的体节和脊索中。随着发育的进行,tropomyosin的表达稳定地集中在体节、脊索处。到72h幼虫阶段,tropomyosin的表达仍然在肌节内。成体的切片原位杂交结果显示,tropomyosin在肌节中的表达大幅度下调,而在神经管细胞、脊索和腮区腮瓣处仍然可以检测到明显的表达,在外胚层和表皮内没有发现杂交信号。研究结果表明,tropomyosin的表达与文昌鱼肌节、肌肉以及神经索的发生相关,参与文昌鱼胚胎躯体模式的构建,而且在成体的生命活动中发挥重要作用。  相似文献   

2.
The developing sarcomeres in the lateral musculature of 60-somite trout embryos have been examined with special reference to the ultrastructure and sequence of events accompanying sarcomere formation. Myogenesis begins at the first somites in the head region and progresses towards the tail of the embryo. The tail somites are composed of undifferentiated presumptive myoblasts, myoblasts and mesenchyme cells. The very tip of the tail contains a mass of undifferentiated cells. Myofibrils with fully developed sarcomeres and well-organized sarcoplasmic reticulum are present in the midbody somites.
Microtubules are found in muscle cells throughout the period preceding the sarcomere assembly. They may represent a cytoskeletal network which contributes directly to the shape of myoblasts.
Thick and thin filaments appear mostly near the periphery of the cell. In successive stages of the sarcomere development "Z-bodies" appear, which then coalesce to form Z-bands. The assembly of the thick and thin filaments into sarcomeres seems to occur at that stage of myogenesis when the "Z-bodies" develop a certain amount of bonding sites for thin filaments, which interact with thick filaments to form A-bands and I-bands.  相似文献   

3.
The development of the embryonic vasculature is examined here using a monoclonal antibody, QH-1, capable of labelling the presumptive endothelial cells of Japanese quail embryos. Antibody labelling is first seen within the embryo proper at the 1-somite stage. Scattered labelling of single cells appears ventral to the somites and at the lateral edges of the anterior intestinal portal. The dorsal aorta soon forms a continuous cord at the ventrolateral edge of the somites and continues into the head to fuse with the ventral aorta forming the first aortic arch by the 6-somite stage. The rudiments of the endocardium fuse at the midline above the anterior intestinal portal by the 3-somite stage and the ventral aorta extends craniad. Intersomitic arteries begin to sprout off of the dorsal aorta at the 7-somite stage. The posterior cardinal vein forms from single cells which segregate from somatic mesoderm at the 7-somite stage to form a loose plexus which moves mediad and wraps around the developing Wolffian duct in later stages. These studies suggest two modes of origin of embryonic blood vessels. The dorsal aortae and cardinal veins apparently arise in situ by the local segregation of presumptive endothelial cells from the mesoderm. The intersomitic arteries, vertebral arteries and cephalic vasculature arise by sprouts from these early vessel rudiments. There also seems to be some cell migration in the morphogenesis of endocardium, ventral aorta and aortic arches. The extent of presumptive endothelial migration in these cases, however, needs to be clarified by microsurgical intervention.  相似文献   

4.
爪蟾肌细胞在什么时期决定尚未有过报道,本文采用体外培养的方法,取原肠晚期到神经褶中期等五个不同时期检测肌细胞的决定。结果表明,这段期间预定肌节在离体培养条件下分化程度有明显差异,直到神经胚中期几乎所有组织块都分化为肌细胞。因此认为爪蟾肌细胞的决定在神经胚中期达到稳定的状态。  相似文献   

5.
Using the swimbladder of the crusian carp ( Carrasius auratus ) as an inductor, the first appearance of mesodermal competence in the presumptive ectoderm of the newt ( Triturus pyrrhogaster ) blastula was investigated. The time course of embryonic development before the gastrula stage was determined by counting the number of surface cells on a 0.25 mm line at the animal pole. Pregastrula embryos with 2–3, 4–5, 6–7 and 7–8 cells roughly correspond to those at 14, 14–12, 8–6 and 4–0 hr before the beginning of gastrulation. Using presumptive ectoderm of the early gastrula stage, 15 min was found to be the minimum time of contact necessary for the realization of induction. The reactivity of the presumptive ectoderm from pregastrula embryos was tested by 30 min contact. Presumptive ectoderm up to the 4–5 cell stage did not react to the inductor. It may become competent within the next 4–8 hr, since the ectoderm from embryos in the 6–7 cell stage was reactive.  相似文献   

6.
The development of sympathetic paravertebral ganglia was studied in rat embryos by electron microscopy. The main attention was paid to the initial stages of ganglion formation. The first aggregations of presumptive ganglionic cells were observed in 12 day-old embryos. Single preganglionic terminals appeared in contact with cell bodies sometime later. The appearance of large granular vesicles in the cytoplasm is the first ultrastructural feature of the beginning of neural differentiation of cells. Small granulated cells observed from the 12th day of gestation and neuroblasts differentiate earlier than glial cells. In the ganglia of late fetuses nerve cells varied in the electron density of the cytoplasm, in the degree of distention of rough endoplasmic reticulum and in vacuolization of mitochondria.  相似文献   

7.
The sea urchin morphogenesis, especially formation of the coelom-esophagus complex, was observed correlating the distribution of tropomyosin-specific immunofluorescence. Coelomic cells arranged at both sides of the esophagus extended their pseudopods toward the esophagus to form the contractile bands, which surrounded the esophagus and brought about the contraction of the esophagus. The earliest stage at which the tropomyosin-specific immunofluorescence was recognized coincided with the appearance of the coelomic pseudopods. The tropomyosin-specific immunofluorescence located at the contractile bands and the cell bodies from which they derived, when the ectoderm-disrupted embryos were used to investigate the detailed distribution of tropomyosin. The tropomyosin-specific immunofluorescence remained in the same regions when the embryos were stained with the antiserum absorbed with egg tropomyosin, which detected only muscle tropomyosin. From these observations, the coelomic pseudopod-forming cells were conclusively shown to be muscle cells.  相似文献   

8.
9.
Fate maps of chick Hensen's node were generated using DiI and the lineage of individual cells studied by intracellular injection of lysine-rhodamine-dextran (LRD). The cell types contained within the node are organized both spatially and temporally. At the definitive primitive streak stage (Hamburger and Hamilton stage 4), Hensen's node contains presumptive notochord cells mainly in its anterior midline and presumptive somite cells in more lateral regions. Early in development it also contains presumptive endoderm cells. At all stages studied (stages 3-9), some individual cells contribute progeny to more than one of these tissues. The somitic precursors in Hensen's node only contribute to the medial halves of the somites. The lateral halves of the somites are derived from a separate region in the primitive streak, caudal to Hensen's node.  相似文献   

10.
Rat and mouse embryos at the stage of the first somites formation (1-5 pairs) cultivated in human blood serum demonstrated its embryolethal and teratogenic effect. The embryos taken at a later stage (11-18 pairs of somites) developed normally and could be compared with the development of the rat embryos in homologous blood serum. There was no difference in the development when the embryos were cultivated either in male or female blood serum. The stage of embryogenesis 11-18 pairs of somites is recommended for in vitro experimental revealing in the human serum of embryotoxic factors induced by certain external influences.  相似文献   

11.
In Xenopus laevis embryos, the 26 S polyadenylated mRNA, coding for the myosin heavy chain, shows a maximum relative concentration as measured by the 3H-poly(U)-hybridization technique, at the neural-plate stage (st. 12.5 of Nieuwkoop and Faber, [NF]) only in the dorsal (ectodermal and mesodermal) region, i.e. shortly before the morphological appearance of the somites. On the contrary, myosin-heavy-chain mRNA cannot be observed in the ventral region with the same technique. This 26 S mRNA begins to be hybridizable at the gastrula stage (st. 10 NF). Polyadenylated mRNAs from postgastrula stages were translated in a cell-free system of rabbit reticulocytes, and the translation products were analyzed by polyacrylamide-gel electrophoresis and immunoprecipitation. It was found that protein recognizable as the heavy chain of the muscle myosin had been translated. Its possible role on the induction of somites is discussed.  相似文献   

12.
Changes of tropomyosin isoforms during development of the sea urchin, Hemicentrotus pulcherrimus , were investigated using two-dimensional urea-shift gel electrophoresis. Tropomyosin isoforms included in the embryos were gradually increased after 2 cell stage and retained at a constant level after gastrula stage. To detect the tropomyosin isoforms derived from zygotic genomes, embryos cross-fertilized between H. pulcherrimus and Pseudocentrotus depressus gametes were prepared. Since tropomyosin isoforms from H. pulcherrimus eggs and from P. depressus eggs could be distinguished from each other on a two-dimensional electrophoretic gel, the paternal isoforms of tropomyosin in the cross-fertilized embryos, which were not included endogenously in the egg, could be regarded as products derived from zygotic genomes. The paternal isoforms of tropomyosin were detected first at around the gastrula stage in embryos cross-fertilized between H. pulcherrimus sperm and P. depressus eggs and also in the reverse combination of the gamete species. Muscle tropomyosins derived from H. pulcherrimus and P. depressus genomes were similarly detected in cross-fertilized embryos at the pluteic stage when the muscle tropomyosin appeared in sea urchin embryos.  相似文献   

13.
Summary We have quantitated the distribution of chick neural crest cells after they have completed early migration and are aggregating into ganglia. Variables tested for an influence on the distribution of cells include stage, level of somites, position in each of the primary body axes, and individual embryo. The 11th–15th cervical somites of embryos at stages 30, 35, and 40 somites (s) incubated for 2.5, 3.0, and 3.5 days were labeled with antibody to HNK-1 to detect neural crest cells, and doubly labeled with antibody to HNK-1 and to the 150 kD neurofilament subunit to detect neural crest-derived neurons. Significantly more neural crest cells appear at older stages, but cells are uniformly distributed among the 11th–15th somites at any given stage. Significant differences in the total number of neural crest cells among three embryos sampled at the same stage indicate that the number of cells is independent of the staging series used. As early as the 35 s stage about one-third of the neural crest cells throughout the somite exhibit NF staining. At the 40 s stage, doubly labeled NF cells, as well as HNK-1 labeled cells, aggregate in a circumscribed portion of the mediolateral axis to form presumptive sensory ganglia in the dorsal region of the somites. Also at 40 s a wave of cell aggregation into sympathetic ganglia proceeds anteroposteriorly along the ventral border of the somitic mesenchyme. The results show a sequence of phenotypic expression beginning with neurofilament antigen, then ganglionic aggregation, and finally, in the case of sympathetic neurons, catecholamine transmitter.  相似文献   

14.
15.
16.
17.
Acetylcholinesterase (AChE) activity, localized histochemically, appeared in the nuclei of presumptive somitic mesodermal cells prior to the onset of somitogenesis. AChE activity appeared in a rostro-caudal sequence, in cells located the equivalent of five somite lengths caudal to the last formed somite. To investigate whether AChE activity was required for somitogenesis, several inhibitors of AChE activity were tested for their ability to block somitogenesis. Diisopropylfluorophosphate (DFP), a broad spectrum inhibitor of serine proteases and related enzymes, was the only AChE inhibitor tested that disrupted somitogenesis. Gastrulae at 50% epiboly exposed continuously to DFP at concentrations between 40 microM and 90 microM completed epiboly, but exhibited a dose-dependent decrease in the number of somites formed, and a parallel decrease in the caudal extent of somite innervation, by 24 hours post-fertilization (h). Fifteen somite (15h) embryos exposed to DFP at the ED50 of 70 microM for 3 hours, followed by recovery to 24h, developed abnormal somites. Approximately five normal somites formed after drug treatment before the first abnormal somite formed. The abnormal somites corresponded in location to that area of the presumptive somitic mesoderm that would have initiated AChE activity while the DFP was present. While exposed to 70 microM DFP, presumptive somites formed and motoneurons extended processes that had initiated AChE activity at the time of treatment with DFP, although at a slower than normal rate. However, embryos exposed to 1 mM DFP for 30 minutes at both the 5 and 15 somite stages, followed by recovery to 24h, developed the normal number of somites but were reduced in the caudal extent of somite innervation, and occasionally developed abnormal primary motoneurons. As with the abnormal somites, the abnormal motoneurons would have initiated AChE activity while the DFP was present. Presumptive somitic mesoderm unable to initiate AChE activity due to inhibition by DFP developed abnormally. While the effects of DFP are not limited to inhibiting AChE, the data support the "clock and wavefront" model proposed for somite formation, and support the hypothesis that AChE activity has a role in somitogenesis in zebrafish.  相似文献   

18.
M Fujinaga  J M Baden 《Teratology》1992,45(6):661-670
Rat embryos at a single gestational time in the presomite period were studied for their variation in development and their fate after culture. They were explanted at 8 A.M. on day 9 of gestation from timed-pregnant Sprague-Dawley rats which were obtained by mating between 8 and 10 A.M. (plug day = day 0). In the first experiment, a total of 203 embryos from 20 litters were examined for their variation in development. Several dimensions of embryo/egg cylinder were measured and development of various embryonic/extraembryonic structures were assessed using a scoring system that we developed for the present study. Embryos were then divided into different stages of development based on their scores using the staging system that we developed previously. A large variation in developmental stage was demonstrated; the youngest embryo was at the early primitive streak stage with no signs of amniotic folds and the oldest one was at the late neural plate stage with a foregut pocket but without visible somites. No strong correlation was demonstrated between developmental stage and size of embryo/egg cylinder, nor between developmental stage and development of the proamniotic tube, ectoplacental cavity, or allantois. In the second experiment, embryos were explanted at the same time and those at different stages were cultured separately in rotating bottles and their outcomes were compared after 49 hours. The difference in mean somites number of embryos cultured from the mid primitive streak and late neural plate stages was 6.1. This difference corresponds to approximately 10 hours based on the known linear increase of somites number on day 11 of approximately 0.6 somites per hour. These results indicate a large variation in development of presomite period embryos supposedly of the same gestational age and suggest the importance of careful staging at the time of explantation if precision is needed for whole embryo culture experiments.  相似文献   

19.
Neural control of early myogenic differentiation in cultures of mouse somites   总被引:10,自引:0,他引:10  
Neural tubes, with flanking somite streaks, were isolated from mouse embryos ranging in age from 8 to 11 days post coitus (dpc). The somites were further dissected along the neural tube to obtain one somite streak associated with the neural tube and the other free of nerve cells. The two groups of somites (with and without neural tubes) were dissociated to single cell suspension by a brief incubation with EDTA. High-density micro-mass cultures were established from these two groups of cells and the extent of cell differentiation was assayed by staining the cultures with an anti-myosin antibody. The results obtained indicated that during early somitogenesis (8.5 dpc) the presence of cells from neural tube is necessary for the emergence of myosin-positive cells in culture. At later stages (10.5 dpc), however, the total number of myosin-positive cells appearing in culture is largely independent from the presence of nerve cells. At these later stages, the presence of nerve cells inhibited the occurrence of fusion in myogenic cells. Many multinucleated myotubes appeared in cultures of somitic cells in the absence of nerve cells, but very few in their presence. The possible relationship of these data with the appearance of mononucleated differentiated cells in myotomes in vivo and the possible neural control of this stage of myogenesis are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号