首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The ontogeny and ultrastructure of Tragia ramosa and T. saxicola are described. The stinging emergence of T. ramosa and T. saxicola consists of a central stinging cell and three lateral cells. The stinging cell possesses a compound crystal in the apical region which is held in place by cell wall extensions. The stinging cell cytoplasm is characterized by a large central vacuole which contains a proteinaceous substance as determined histochemically. Upon contact, the stinging cell wall is pushed back over the crystal, exposing it to penetrate an individual. This stinging mechanism is unique among stinging emergences. The stinging cell is subepidermal in origin whereas the three lateral cells are epidermal in origin. The morphology, ultrastructure and ontogeny of the stinging emergence of T. ramosa and T. saxicola appear to be identical.  相似文献   

3.
The cell wall of Cosmarium botrytis was studied through the use of the freeze-etch technique. The cell wall consists of many thin layers. Fracturing along one layer reveals the positioning of the wall sculpturing, wall pores, and wall microfibrils. The individual microfibrils are grouped together in bands of parallel oriented fibrils. The different bands of parallel microfibrils were apparently arranged at random angles with regard to each other. Small particles may also be present in the cell walls. The cell wall pore unit of Cosmarium botrytis was studied through the use of scanning, freeze-etching, and thin sectioning techniques. The pore sheaths, on the outside of the cell wall, form a collar around the mouth of each pore. The pore sheath is composed of needle-like fibrils radiating outward from the pore. A pore channel traverses the cell wall and leads to a complex pore bulb region between the cell wall and the plasmalemma. The pore bulb contains many small fibrils which radiate toward the plasmalemma from a number of net-like fibril layers which in turn merge into a very electron dense region near the base of the pore.  相似文献   

4.
At maturity the companion cell of the phloem of the sycamore Acer pseudoplatanus has a large nucleus, simple plastids closely sheathed with rough endoplasmic reticulum, and numerous mitochondria. The cytoplasm contains numerous ribosomes, resulting in a very electron-opaque cytoplasm after permanganate fixation. Bodies similar to the spherosomes of Frey-Wyssling et al. (4) are collected in clusters and these also contain bodies of an unidentified nature similar to those found by Buttrose (1) in the aleurone cells of the wheat grain. The pores through the wall between the companion cell and sieve tube are complex and develop from a single plasmodesma. Eight to fifteen plasmodesmata on the companion cell side communicate individually with a cavity in the centre of the wall which is linked to the sieve tube by a single pore about twice the diameter of an individual plasmodesma. This pore is lined with material of an electron opacity equivalent to that of material bounding the sieve plate pores. The development of the cell organelles, the possible role played in the phloem tissue by the companion cell, and the function of the complex pores contained in its wall are discussed.  相似文献   

5.
The leaf of Pyrossia longifolia (Burm.) Morton, an epiphytic fern known to exhibit CAM, was examined by light and electron microscopy. The relatively thick leaf contains a single-layered epidermis, “water-storage” tissue, and a reticulate vascular system embedded in mesophyll tissue not differentiated into palisade and spongy layers. Mesophyll is composed of large, slightly elongate cells each with a thin, parietal layer of cytoplasm and a large central vacuole. The chloroplast-microbody ratio in mesophyll cells indicates that Pyrossia may be a high photorespirer and thus similar in that sense to C3 plants. Mesophyll is separated from the vascular tissue by a tightly-arranged layer of endodermal cells with Casparian strips. The inner layer of mesophyll cells and the endodermal cells lack suberin lamellae. The collateral veins contain sieve elements, tracheary elements, pericycle and vascular parenchyma cells, the latter conspicuously larger than the sieve elements. The vascular parenchyma is the only cell type in the leaf which contains plastids with a peripheral reticulum. The parenchymatic elements of the leaf are connected by plasmodesmata, all of which lack neck constrictions and sphincters, or sphincter-like structures. The connections between sieve elements and adjacent parenchymatic elements are pore-plasmodesmata characterized by prominent wall thickenings on the parenchymatic-element side of the wall. The distribution and relative frequencies of plasmodesmata between the various cell types of the leaf indicate photoassimilates may move either symplastically or by a combination of symplast and apoplast from the mesophyll to the site of phloem loading in the veins.  相似文献   

6.
The pollen wall of Canna generalis Bailey is exceptionally thick, but only a minor part of it contains detectable amounts of sporopollenin. The sporopollenin is in isolated spinules at the exine surface and in the intine near the plasma membrane. There is no sporopollenin in the > 10 μ thick channeled region between spinules and intine. We suggest that the entire pollen wall of C. generalis is similar to the thick intine and thin exine typical for germinal apertures in many pollen grain types. Considered functionally, the Canna pollen wall may offer an infinite number of sites for pollen tube initiation and would differ significantly from grains that are inaperturate in the sense of an exine lacking definite germinal apertures.  相似文献   

7.
Trigger hairs of Dionaea muscipula fixed in glutaraldehyde and OsO4 were prepared for study in the electron microscope. Electron micrographs of the active zone of the trigger hair reveal three regions in which the cells differ in size, shape, and cytoplasmic content. Each region contains large numbers of protein bodies and mitochondria with densely packed tubular cristae. Vacuole-like structures containing protein bodies or an anastomosing system of cisternae, or occasionally both, are also present. Found only in the indentation cells is a complex, whorled endoplasmic reticulum. A concentric lamellar arrangement of the endoplasmic reticulum around the vacuolar structures is often observed. The lateral walls of the indentation cells are disproportionately thick while end walls are thin. The basal walls of these cells contain many plasmodesmata. Plasmodesmata in the anticlinal and podium cells pass through constricted zones in the cell wall and are particularly numerous in the peripheral podium cells. The possible functional significance of these structures is discussed.  相似文献   

8.
The epidermal salt glands of the grasses Cynodon and Distichlis consist of a small outer cap cell and a large, flask-shaped basal cell. The wall of the basal cell is contiguous with those of the adjacent epidermal cells and underlying mesophyll cells. The basal cell is connected symplastically with all adjoining cells via plasmodesmata. The outer, protruding portion of the glands is covered by a cuticle continuous with that of the adjoining epidermal cells. However, the lateral cell walls of the glands are not incrusted by this cuticle. The cap cell wall has a loose, mottled appearance quite different from the compact striated appearance of the basal cell wall. The cap cell is characterized by dense cytoplasm containing many organelles and a varying number of small vacuoles. The basal cell cytoplasm is distinguished by the presence of an intricate system of paired membranes that are closely associated with mitochondria and microtubules. These membranes are infoldings of the plasmalemma that originate adjacent to the wall separating the cap and basal cells. The space enclosed by the paired membranes, therefore, is an extracellular channel that is open only in the direction of secretory flow. The consistent orientation of this system of paired membranes suggests that it represents a structural specialization which is directly and functionally involved in the secretory process. The close association of mitochondria and microtubules with the paired membranes implies that these structures are also functionally related to the secretory process. Finally, the results of this study indicate that these glands are ultrastructurally similar to those of Spartina and that the glands of these three grasses are structurally distinct from those of dicotyledonous plants.  相似文献   

9.
Young gametophytes of Botrychium dissectum produce a mucopolysaccharide coating on the external surface of the proximal cell. Scanning electron microscopy reveals deposition of the mucilage, which initially has a patchy distribution, in the shape of a thick triangular ring. Young gametophytes in the hydrated condition have a thin coating of mucilage over the other areas of the proximal cell wall. Histochemical staining indicates that the mucilage contains sugars with vicinal hydroxyl groups, carboxylated sugars, and small amounts of sulfated sugars. Protein and phenolic materials are also found in the mucilage. Lipids, β, 1-3 glucans and β,1-4 glucans are not present. Fluorescein labelled lectin binding shows the presence of terminal galactose and terminal fucose units. Germinating spores in the presence of the microtubule inhibitors CIPC (3-chloro-N-phenyl isporopyl carbamate) and griesiofulvin cause abnormal mucilage secretion. The inhibitor CIPC prevents mucilage secretion whereas griesiofulvin disrupts the pattern of deposition. Several functions of the mucilage are postulated.  相似文献   

10.
Phloem histology in the petioles of two genera of Pennsylvanian ferns is detailed from coal balls collected at various localities in North America. Both Ankyropteris and Anachoropteris have primary phloem that completely surrounds the central xylem trace and is separated from it by a parenchymatous sheath. Ankyropteris contains very narrow (about 13.5 μm diam) sieve elements and a few strands of phloem parenchyma. End walls are either horizontal or slightly oblique and sieve areas as well as scattered individual pores have been observed. Anachoropteris phloem contains two different sizes of sieve elements. Small sieve elements that surround the C-shaped trace are similar to those seen in Ankyropteris. Larger elements (approximately 50–120 μm in diam) are present only within the C-shaped trace, and are elongate (up to 2.5 mm) with very oblique end walls. Sieve areas on these large cells are conspicuous, 5–8.5 μm in diam and aggregated into groups. The cell wall within each sieve area appears to be composed of criss-crossed fibrillar material. Phloem anatomy in these two ferns is compared to that previously described in other Carboniferous vascular cryptogams, as well as that known from extant plants.  相似文献   

11.
A method to extract cell kinetic information from histomorphology is presented. Each replicating tissue is essentially an ordered structure with an origin where cells are formed and a periphery toward which they are displaced. the displacement path is called the tissue radius. the tissue variables may be studied in two domains, space and time. the first embraces all the states a cell may assume while the second specifies the cell transition rates. During steady state both domains are related linearly. These ideas are illustrated in the rat incisor odontoblast population whose life expectation is determined by the tooth wall shape. the odontoblast cell population paves the interior of the tooth wall delimiting a cone-shaped pulp. Near the root apex the dentine wall is barely visible. As one proceeds distally, the wall thickens while the pulp narrows. Pulp narrowing is associated with odontoblast cell loss whose magnitude may be deduced from the change of the pulp circumference CI(x) (x is the distance from tooth origin). the odontoblast force of mortality μ(x) may be calculated from the instantaneous perimeter change: μ(x) = -CI' (x)/CI(x); where CI'(x) stands for the derivative of CI(x). This equation serves for the construction of the odontoblast life table which may be studied in space and time.  相似文献   

12.
A complementary DNA (cDNA) clone from a Porphyra purpurea (Roth) C. Agardh sporophyte-specific subtracted cDNA library was found to encode a protein similar to serine proteases of the chymotrypsin class. The encoded protein contains a typical signal peptide and is particularly similar to chymotrypsins in the regions surrounding the active site residues and the activation site where cleavage of the propeptide occurs. In addition, the six cysteine residues characteristic of chymotrypsins are conserved. However, two of the three residues of the active site His/Asp/Ser charge relay triad have been replaced, indicating that the protein is unlikely to have peptidase activity. Northern hybridization confirmed that this cDNA is derived from an abundant, sporophyte-specific messenger RNA (mRNA). The presence of signal peptide on the encoded protein and the abundance of its mRNA suggested that this protein might be localized in the cell wall. Consequently, sporophyte cell walls were isolated and a major protein having a molecular weight similar to that estimated for the encoded protein was purified. N-terminal sequence analysis indicated that this cell wall protein is identical to that encoded by the cDNA with the amino terminus of the mature protein beginning at the activation site. This cell wall structural protein appears to have evolved from a chymotrypsin-like progenitor but has been adapted to bind cell wall proteins and/or polysaccharides rather than to cleave proteins.  相似文献   

13.
Light is required for the germination of spores of Matteuccia struthiopteris. Histochemical studies show that dormant spores contain no starch, but have an abundance of storage protein granules. Starch accumulates in the numerous chloroplasts of the spore on exposure to light and becomes gradually more extensive. Protein granules disappear as germination progresses. Following this, the centrally located nucleus migrates toward the proximal spore face. Concomitant with the nuclear migration, an increase of cytoplasmic RNA surrounding the nucleus occurs. An equal nuclear division and unequal cell division give rise to a 2-celled gametophyte consisting of a large prothallial cell and smaller rhizoidal cell. A new peripheral wall forms around the entire protoplast at the time of nuclear migration, while a transverse wall forms after nuclear division. The rhizoid emerges through the split raphe along the proximal spore face; it is rich in cytoplasmic RNA but contains very few chloroplasts and little starch. Electron microscopy of the 2-celled stage revealed a greater concentration of mitochondria, Golgi bodies, and a more extensive endoplasmic reticulum in the rhizoid than was found in the prothallial cell, which, however, was far richer in chloroplasts and lipid bodies. As the rhizoid elongates and becomes more vacuolated, cytoplasmic RNA decreases as cytoplasmic protein increases. The rhizoid undergoes no cell divisions, while the prothallial cell retains the potential for further cell division. The possible significance of the distribution of storage products, cell organelles, and other cell components were considered in relation to the non-equational cell division and differentiation of the 2 cells.  相似文献   

14.
15.
An ultrastructural investigation of the cell wall of Penium silvae-nigrae Raban. and P. spinospermum Josh. showed that these species possess true pores with a pore apparatus and overlapping semi-cell walls. It follows that these two taxa belong not to the Peniaceae, but to the Desmidiaceae sensu stricto; they are referred to the genus Actinotaenium Teil. on account of the shape of their cells and chloroplasts. Two other species previously included in Penium Bréb. are referred to Actinotaenium. Although their cell wall structure could not be studied, they are distinguished from “typical” representatives of Penium by the following photomicroscopically observable complex of features: (pseudo-) girdle bands none, cell wall pores in longitudinal rows, zygospores not globose but of irregular shape. The following new combinations ensued: Actinotaenium borgeanum (Skuja), A. phymatosporum (Nordst.), A. silvae-nigrae (Raban.), A. silvaenigrae var. parallelum (Krieger) and A. spinospermum (Josh.). In addition the diagnosis of the genus Penium was emended and P. margaritaceum (Ehr.) ex Bréb. was selected as the lectotype species. The family Gonatozy-gaceae is merged into the Peniaceae on the basis of cell wall structure.  相似文献   

16.
The nacreous walls of sieve elements occur in seagrasses in all three genera of the family Zosteraceae and the genus Halodule of the family Cymodoceaceae but are absent from another eight seagrass genera belonging to the families Hydrocharitaceae, Cymodoceaceae, and Posidoniaceae. They occur in leaf blades, leaf sheaths, rhizomes, and erect stems but are not present in root tissues. The nacreous wall is uneven along the inner limits reflecting irregular thickness. The wall consists of hemicellulose or pectin and cellulose, but no protein, lignin, or lipid. Ultrastructurally, the wall contains parallel microfibrils or loose fibrils embedded in an amorphous matrix. Open pores occur in sieve plates and branching plasmodesmata are present in enlarged sieve areas. Mitochondria, endoplasmic reticulum, and plastids are also present in these sieve elements.  相似文献   

17.
The cell wall of the freshwater diatom Navicula pelliculosa (Bréb.) Hilse is composed of the silica shell and an organic skin which surrounds it. Isolated skins can be prepared by first removing the contents of the cell by mechanical shaking, followed by a posttreatment of these isolated cell walls with HF vapor to remove the silica shell. T h e skins can also be seen in sections, particularly well after the silica shell has been removed B y H. F; vapor. The origin and morphological composition of the shin in N. pelliculosa are not yet completely ascertaincd. As parts of the cell wn11, both the silica shell and the skin are extracellularly located. The growth of the silica shell, however, occurs intracellularly inside a vesicle delimited by a triple-layered membrane, the silicalemma. This membrane or secondary excreted organic material or both in various proportions may compose the skin.  相似文献   

18.
Cell wall–defective strains of Chlamydomonas have played an important role in the development of transformation protocols for introducing exogenous DNA (foreign genes or cloned Chlamydomonas genes) into C. reinhardtii. To promote the development of similar protocols for transformation of the distantly related homothallic species, C. monoica, we used UV mutagenesis to obtain a mutant strain with a defective cell wall. The mutant, cw‐1, was first identified on the basis of irregular colony shape and was subsequently shown to have reduced plating efficiency and increased sensitivity to lysis by a non‐ionic detergent as compared with wild‐type cells. Tetrad analysis of crosses involving the cw‐1 mutant confirmed 2:2 segregation of the cw:cw+ phenotypes, indicating that the wall defect resulted from mutation of a single nuclear gene. The phenotype showed incomplete penetrance and variable expressivity. Although some cells had apparently normal cell walls as viewed by TEM, many cells of the cw‐1 strain had broken cell walls and others were protoplasts completely devoid of a cell wall. Several cw‐1 isolates obtained from crosses involving the original mutant strain showed a marked enhancement of the mutant phenotype and may prove especially useful for future work involving somatic cell fusions or development of transformation protocols.  相似文献   

19.
The phloem of Etapteris leclercqii and Botryopteris tridentata petioles is described from Lower Pennsylvanian coal balls. Petioles of B. tridentata are characterized in transverse section by an omega-shaped xylem trace, a phloem zone which extends from 2-10 cells in width, and 2-parted cortex. Etapteris leclercqii petioles exhibit a 4–9 cell-wide phloem zone surrounding the central clepsydroid xylem mass, and a 3-parted cortex. In both taxa a 1–2 cell layer parenchyma sheath separates the xylem from the extra-xylary tissues. The phloem of both species consists of sieve elements that average about 20 μm in diam by 200 μm in length in Botryopteris, and 100 μm in length in Etapteris, with horizontal-slightly oblique end walls. In transmitted light, the radial walls of the sieve elements form an irregular reticulate pattern enclosing elliptical lighter areas. With the scanning electron microscope, these areas appear as horizontal-slightly oblique furrows on the cell wall, with many small indentations lining the furrows. These indentations, because of their regular occurrence and size (from a few fractions of a micron up to 1.0 μm in diam), are interpreted as sieve pores, and the elliptical areas that enclose them as sieve areas. The phloem of E. leclercqii and B. tridentata is compared with that described for other fossil genera and with that of extant ferns.  相似文献   

20.
The algal symbionts of Hydra viridis are found within vacuoles of the gastrodermal digestive cells of the host. Electron microscopy reveals that the symbionts possess cell walls, and that their reproductive cycle follows the general pattern of free-living Chlorella. Nuclear and chloroplast divisions arc followed by formation of new cell walls, the Golgi apparatus being quite active during cell wall synthesis. Autospores are released when the parent wall ruptures. The autospores are then usually segregated into separate animal vacuoles. Remnants of the ruptured parent wall persist in the vacuoles for an indefinite period. The ruptured parent walls curl at the breakage clefts, forming double-layered scroll-like structures. The fate of these wall remnants has not been firmly established. Long-term starvation of the animals does not result in a detectable change in the structure of the symbionts, and they continue to divide and to store carbohydrate as starch grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号