首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shuhua Hu  Da-Yong Zhang 《Oecologia》1993,96(4):569-574
Eighteen long-term competition experiments were performed on two freshwater algae, a blue-green alga, Anabaena flos-aquae, and a diatom, Cyclotella sp., under controlled light and temperature conditions and various nutrient limitations. As predicted, Anabaena displaced Cyclotella when nitrate was in short supply to both species, whereas Cyclotella became dominant when both species were phosphate-limited. The two species stably coexisted when phosphate and silicate were limited. Anabaena either displaced or coexisted with Cyclotella when nitrate and phosphate or nitrate, phosphate and silicate were limited, depending on their initial density ratios. This study revealed strong effects of initial population densities on the outcomes of algal competition for limiting nutrients.  相似文献   

2.
选取三峡库区村镇水源水中5种典型水华藻种(小球藻、衣藻、小环藻、针杆藻和光甲藻)为材料.比较研究了不同剂量的聚合氯化铝(PAC)对于这些藻种细胞(叶绿素a和浊度)的去除效果,以及混凝沉淀后絮体结构、形态的差异,以筛选典型水华藻种混凝去除的适宜PAC投加量.结果显示:(1)实验所选藻种形态差异明显,针杆藻呈长线形结构,小...  相似文献   

3.
It has been demonstrated that far-red light reduces growth of marine phytoplankton and that light quality controls growth and photosynthetic metabolism in algae. The green halotolerant microalga, Dunaliella bardawil, accumulates high amounts of β-carotene (up to 10% of its dry weight) under conditions of high light or nutrient limitation. The influence of increasing irradiance and of far-red light in D. bardawil was studied. Continuous irradiance was provided by white fluorescent lamps alone (WL) or supplemented with far-red Linestra lamps (WL+FR). For both types of light, cultures were acclimatized at increasing irradiances (50-300 µmol m?2 s?1), and cell density, photosynthetic activity and pigment content were determined. Cell density increased with the photon irradiance, and was higher in WL than in WL+FR under the same irradiance, but the reverse occurred in respect of cell volume. Growth rate was higher under WL+FR. Far-red light induced faster growth but reduced the maximal cell density of the cultures. Chlorophyll a concentration was higher in white light, but total carotenoid content increased dramatically in both far-red light treatments (about 50% on a per cell basis) and with the increase of irradiance. Our results show that far-red light has a significant influence on growth and photosynthesis of D. bardawil, inducing a decrease in cell density, photosynthetic activity and chlorophyll concentration, and an increase in growth rate, cell volume and carotenoid content.  相似文献   

4.
Exposing the inoculum of monocellular green algae Dunaliella tertiolecta and Tetraselmis viridis to 50 Hz electromagnetic field for several hours resulted in a reduced growth rate in both cultures. It was ascertained that heavy water inhibited growth of algae Dunaliella tertiolecta. The light water activated growth of the culture in the exponential phase only.  相似文献   

5.
Diatoms are a group of highly abundant and diverse aquatic algae species. They contain high lipid content along with many bioactive compounds that can be exploited for biotechnological applications. Despite these attractive attributes, diatoms are underrepresented in production projects due to difficulties in their cultivation. To optimize the growth of three freshwater diatom isolates, Cyclotella sp., Synedra sp. and Navicula sp., an orthogonal assay on N, P, Si and Fe, as well as temperature and pH, was designed using traditional single‐factor tests. We also studied the effect of using nanosilica as an alternate Si source on growth and found that the diatom isolates studied achieved their highest growth rates under different combinations of nutrient and environmental conditions. Silica had the greatest influence on growth, followed by phosphate and iron. The optimized growth conditions for Synedra sp. were N: 30 mg L?1, P: 3 mg L?1, Si: 14.8 mg L?1, Fe: 0.448 mg L?1, temperature 25°C and pH 8. For Navicula sp.: N: 20 mg L?1, P: 2.5 mg L?1, Si: 19.7 mg L?1, Fe: 0.112 mg L?1, temperature 30°C and pH 7.5–8. For Cyclotella sp.: N: 20 mg L?1, P: 2.5 mg L?1, Si: 19.7 mg L?1, Fe: 0.448 mg L?1, temperature 30°C and pH 7.5–8. Nano silica negatively affected growth in Navicula sp. and Cyclotella sp., but no such effect was observed in Synedra sp. Fatty acid profiling showed C16:0, C16:1(n ? 7), C18:0 and C20:5(n ? 3) as major fatty acids, with no significant differences in fatty acid methyl ester profiles between traditional and modified media. This work gives us a new insight into the growth requirements of freshwater diatom species, which are less studied than marine species.  相似文献   

6.
A far-red effect exists in 4 marine phytoplankton species: the diatom Ditylum brightwelli, the coccolithophorid Coccolithus huxleyi, the green flagellate Dunaliella tertiolecta, and the dinoflagellate Pyrocystis lunula. The effect is reversible and is manifested through a change in cell division rate. Cultures of algae which received 30-min far-red (FR) light (750 nm) prior to the dark period were compared to controls which received, no FR. Reversal of the FR effect was studied by exposing experimental cultures to 30 min FR followed by 5-min red (R) light (650 nm) prior to the dark period. Controls received only FR. Cultures were exposed to light at 6 different enumerated wavelengths between 460 and 750 nm. A decrease in division rate runs evident only with light at 750 nm. These results give evidence for the presence of the phytochrome system in these phytoplankton species.  相似文献   

7.
The lipid profile of seven species of unicellular eukaryotic microalgae grown under controlled conditions was studied with emphasis on the hydrocarbons and the fatty acids as part of a search for oil-producing algae. Green, slow-growing colonies of Botryococcus braunii Kutz contained the highest lipid content of 45% based on the organic weight, with an increase to 55% under nitrogen deficiency and with no effect of sodium chloride stress. Ankistrodesmus sp. Thomas, Dunaliella spp., Isochrysis sp., Nannochloris sp. Thomas, and Nitzschia sp. Chapman contained an average of 25% lipids under nitrogen sufficient conditions. Nitrogen deficiency resulted in significant increase in the lipid content in all species but Dunaliella spp., which produced a higher content of carbohydrates. Significant low amounts of acyclic hydrocarbons were detected only in Botryococcus braunii Kutz and not in the other algae. The major hydrocarbon fractions in nitrogen deficient Botryococcus braunii Kutz, Dunaliella salina Thomas, Isochrysis spp. and Nannochloris sp. Thomas were cyclic and branched polyunsaturated components which were identified as various isoprenoid derivatives. The polar lipid composition of glycolipids and phospholipids of all species investigated was fairly typical of photosynthetic eukaryotic algae. Fatty acid composition was species specific, with changes occurring in the relative amounts of individual acids of cells cultivated under different conditions and growth phases. All species synthesized C14:0, C16.0, C18:1, C18:2 and C18:3 fatty acids; C 16:4 in Ankistrodesmus sp. Thomas; C18:4 and C 22.6 in Isochrysis sp.; C16:2, C16:3 and C20:5 in Nannochloris sp. Thomas; C16:2, C16:3 and C20:5 in Nitzschia sp. Chapman. Nitrogen deficiency and salt stress induced accumulation of C18:1 in all treated species and to a lesser extent in Botryococcus braunii Kutz. The low production of hydrocarbons under optimal growth conditions and the high production of hydrocarbons under limited growth conditions cannot support the notion that microalgae can be utilized as biosolar energy converters for the production of liquid fuel, but point to the availability of a variety of neutral and polar lipid products.  相似文献   

8.
Biofuel production by microalgae has the advantage of higher biomass productivity over land crops. The selection of potential microalgae depends on the growth in outdoor mass cultivation during different seasons, which can be predicted by a mathematical model. Here, freshwater green algae were isolated from a local water body in Pilani, Rajasthan, India (geographical coordinates: 28°22′N 75°36′E) and characterized by microscopy and ribosomal RNA analysis. The strain was submitted to the Indian Agricultural Research Institute's microbial culture collection (IARI, India) and identified as Desmodesmus sp. MCC34. This strain, along with a fresh water green algae (Chlorella minutissima), two marine green algae species (Dunaliella salina and Dunaliella tertiolecta) and two nitrogen fixing cyanobacteria (Nostoc muscorum and Anabaena doliolum), were screened for lipid productivity and growth kinetics under culture room and raceway pond conditions. Desmodesmus sp. MCC34 showed the highest specific growth rate (0.26 day?1), biomass production (1.9 g L?1) and lipid productivity (103 mg L?1 day?1). The optimal temperature and saturating light intensity for maximal growth of Desmodesmus sp. MCC34 were 35 °C and 75 μmol m?2 s?1 with molar extinction coefficient of 0.22 m2 g?1, respectively. Desmodesmus sp. MCC34 was then subjected to outdoor cultivation in a 20‐m long raceway pond for 18 days during March and November 2013. The areal biomass productivity and volumetric biomass productivity were 13946.23 kg ha?1 year?1 and 56.94 mg L1day?1 during the month of March, decreasing to 6262.28 kg ha?1 year?1 and 25.57 mg L1day?1 during the month of November. A mathematical model was constructed to explain the relationship between biomass production and growth parameters such as temperature, light intensity and nutrient concentration. The productivity values predicted with the proposed model correspond well with the experimental data, suggesting the validity of the model.  相似文献   

9.
Irradiation of the inoculum with 50 Hz frequency electromagnetic field for 3 h practically did not influence the growth of suspension culture of one-celled green algae Dunaliella tertiolecta and Tetraselmis viridis. The irradiation for 4 h led to approximately 30% reduction of growth. After 6-hour irradiation the growth of Dunaliella tertiolecta was reduced by 50% and the growth of Tetraselmis viridis was reduced by 70%. The irradiation of hydras for 3 h showed no visible effect. The irradiation for 4 h stimulated a little the growth and regeneration of injured hydras. The effect of 24 h irradiation resulted in the shortening of lifetime of uninjured and injured hydras. The effect of regeneration was not observed.  相似文献   

10.
Agar-agar, agarose, carrageenan and calcium alginate were used for the immobilization of Dunaliella salina cells. Out of the four, agar-agar was found to be the most effective and therefore the study was carried out on it using different pH values ranging from 6 to 10 and cell densities from 0.1 to 0.8 μg chlorophyll (chl, a) per bead to find which are is best suited for glycerol production. The maximum glycerol production of 9.2 μM/mg chl a was recorded in agar-agar immobilized algae and this was followed by 8.4 μM/mg chl a in calcium alginate. The maximum cell number 6.2 × 109/ml and the specific growth rate (μ) of 0.80 l/day were reached at pH 8 in agar-agar immobilized algae. It was shown that the maximum amount of glycerol was produced when the cell density was 0.8 μg chl a/ block. Changing the medium after 24 hours affected the rate of glycerol production at different pH values. Using a cell density of 0.8 μg chl a/block at 16 W/m2 light intensity increased the glycerol production in comparison with the use of free living cells.  相似文献   

11.
Until recently, biodiesel production has been derived from terrestrial plants such as soybean and canola, leading to competition between biodiesel production and agricultural production for source materials. Microalgae have the potential to synthesize 30 times more oil per hectare than terrestrial plants without competing for agricultural land. We examined four genera (Cyclotella, Aulacoseira, Fragilaria, Synedra) of common freshwater diatoms (Bacillariophyceae) for growth and lipid content in defined medium (sD11) that replicates hypereutrophic conditions in lakes and wastewater treatment plant effluents and optimized the medium for silicon content. Cyclotella and Aulacoseira produced the highest levels of total lipids, 60 and 43 μg total lipids/ml, respectively. Both diatoms are rich in fatty acids C14, C16, C16:1, C16:2,7,10, and C22:5n3. Of the diatoms examined, Cyclotella reached the highest population density (>2.5 × 106 cells/ml) in stationary phase when many of the cells appeared to be filled entirely with oil. Silicon enrichment studies indicated that for optimal utilization of phosphorus and nitrogen by diatoms growing in wastewater effluent, the amount of silicon present or added to the effluent should be 17.5 times the mass of phosphorus in the effluent. With high growth rates, high lipid contents, and rapid settling rates, Cyclotella and Aulacoseira are candidates for biodiesel production.  相似文献   

12.
The production and utilization of vitamins by 2 or more, marine phytoplankters cultured in the same vessel were demonstrated. The release of toxic materials or vitamin inactivators wax also observed. The utilization of vitamins by those phytoplankters requiring them and the production of toxic materials were determined from increases and decreases in cell numbers of certain algae grown in mixed cultures. Vitamin utilization was most readily observed in mixed cultures where 2 phytoplankters were present. Dunaliella tertiolecta and Skeletonema costatum produced utilizable thiamine for Coccolithus huxleyi. C. huxleyi released utilizable vitamin B12 for Cyclotella nana. D. tertiolecta, Phaeodactylum tricornutum, and S. costatum produced utilizable biotin for Amphidinium carterae. The amount of utilizable vitamin and rate at which it was released depended on the phytoplankters present and conditions of incubation. In complex systems with more than 2 phytoplankters, beneficial effects to utilizers were often noted for short durations during the incubation period. At the end of the experiments the beneficial effects were usually not evident. P. tricornutum (nonvitamin requirer) was stimulated by a mixture of carryover B12 and thiamine when growing with A. carterae, indicating that in vitamin-free media it cannot synthesize vitamin(s) fast enough to allow for a maximum growth rate. The concentrations of vitamins in seawater samples may not be the amounts available to vitamin-requiring organisms. Among the factors affecting vitamin availability are the production of inhibitors and vitamin inactivators by various organisms in the ecosystem.  相似文献   

13.
We determined the effect of several concentrations of cadmium (0, 5, 10, and 20 μg/l) on cellular viability in the microalgae Scenedesmus sp. and Dunaliella viridis, by measuring growth at 0, 24, 48, 72, and 96 h and pigment production at 10 days. Algae were obtained from the Nonvascular Plant Laboratory collection, in the Facultad Experimental de Ciencias, Universidad del Zulia, Venezuela. Growth was measured by cellular counting, while pigment content was evaluated using conventional spectrophotometric techniques. Growth of both species decreased in the exposed cultures comparing with the control, but its behavior was similar, because in both control and exposed cultures, its was observed an adaptive phase in the first hours, as well as a growth phase after 72 h. Cadmium concentrations above 10 μg/l produced an adverse effect on pigment production, depending on the concentration and/or exhibition time. However, even though cadmium inhibited growth and pigment production, levels of both parameters indicated cellular viability, demonstrating the adaptability of the algae cultures when they were exposed to the metal.  相似文献   

14.
Carotenoids play crucial roles in structure and function of the photosynthetic apparatus of bacteria, algae, and higher plants. The entry-step reaction to carotenoid biosynthesis is catalyzed by the phytoene synthase (PSY), which is structurally and functionally related in all organisms. A comparative genomic analysis regarding the PSY revealed that the green algae Ostreococcus and Micromonas possess two orthologous copies of the PSY genes, indicating an ancient gene duplication event that produced two classes of PSY in algae. However, some other green algae (Chlamydomonas reinhardtii, Chlorella vulgaris, and Volvox carteri), red algae (Cyanidioschyzon merolae), diatoms (Thalassiosira pseudonana and Phaeodactylum tricornutum), and higher plants retained only one class of the PSY gene whereas the other gene copy was lost in these species. Further, similar to the situation in higher plants recent gene duplications of PSY have occurred for example in the green alga Dunaliella salina/bardawil. As members of the PSY gene families in some higher plants are differentially regulated during development or stress, the discovery of two classes of PSY gene families in some algae suggests that carotenoid biosynthesis in these algae is differentially regulated in response to development and environmental stress as well.  相似文献   

15.
Abstract

Growth and production of carotenoid in three Dunaliella species (Dunaliella salina (Dunal) Teodoresco, Dunaliella bardawil Ben-Amotz & Avron and Dunaliella sp.) were investigated using flat-plate photobioreactors in outdoor conditions with two optical paths (3?cm and 5?cm). The experiment was conducted in duplicate and lasted four weeks during which light intensity, temperature, pH and optical density were checked daily. The pigment production (total carotenoid and chlorophyll a) was monitored every two days. To induce an additional stress besides temperature and light intensity, two different salt concentrations were used, i.e. 6% and 8% NaCl. The highest growth in all treatment groups was noticed for Dunaliella sp. followed by D. bardawil and D. salina. D. salina produced a higher content of carotenoid concentrations corresponding to 5?cm/8% and 5?cm/6% groups; 779.102?±?0.434?μg.mL?1 and 694.326?±?0.098?μg.mL?1 were registered at the end of the experiment. The same species had also greater content of β-carotene.  相似文献   

16.
Marine microalgae were grown in multispecies continuous cultures. Under carbon dioxide limitation, blue-green algae dominated. Under nitrate and light limitation, species dominance depended on the initial conditions. When the inoculum consisted primarily of blue-green algae with smaller amounts of other species, blue-green algae and pennate diatoms dominated. When the inoculum consisted of equal amounts of all species, green flagellates and pennate diatoms dominated. Green flagellates and blue-green algae were incompatible and never shared dominance. When nutrient limitations were overcome, the productivity of seawater was increased 100-fold before light limitation occurred. The productivity could be further increased by reducing photorespiration in the culture. The dilution rates studied (0.1, 0.2, and 0.4 day(-1)) had no effect on species dominance, nor did the higher dilution rates select for smaller cells. The maximum productivity occurred at a dilution rate of 0.2 day(-1). Temperature had the greatest effect on species dominance, with green flagellates, pennate diatoms, and blue-green algae dominating at 20 degrees C and only blue-green algae dominating at 35 degrees C. The productivity at 35 degrees C was lower than that at 20 degrees C because of the lower solubility of carbon dioxide at higher temperatures. At 10% salinity, green flagellates and pennate diatoms dominated. The productivity at this salinity was 50% that obtained at the salinity of seawater (3.5%). At 25% salinity, only the green flagellate, Dunaliella salina, survived at a productivity of 1% that obtained at the salinity of seawater.  相似文献   

17.
To better predict plant production in the sea, it would be desirable to be able to calculate, from easily obtainable measurements at one sampling, the growth rate of the prevailing stock of phytoplankton. To this end growth rates, pigment composition, cell volume and cell surface area data were collected for several species of marine phytoplankton in logarithmic growth at 20–21°C and 0.07 cal/cm2. min light intensity. Similar data for one species, Dunaliella tertiolecta, are given for several combinations of light intensity and temperature, and for another species, Ditylum brightwellii, grown in nitrogen deficiency. The problem of estimating growth rates of phytoplankton was divided into three parts: 1) variation of growth rate among diverse species and its relationship to light absorption by cell chlorophyll a: 2) variation in growth rate with light intensity; 3) variation in growth rate with temperature. An equation has been formulated for calculating growth rate which provides a more precise fit of the data than do equations for growth rate based upon cell surface/volume ratios or cell volume. The formulation is based upon light absorption by chlorophyll a. It allows for variations in the efficiency of utilization of light absorbed by chlorophyll a and the changes in chlorophyll a content resulting from light intensity and temperature differences. We do not attempt to predict variations in growth rate with photoperiod or spectral distribution, nor do we allow for light effects upon growth rate not mediated by photosynthesis, so the model is, at best, a rough approximation of reality.  相似文献   

18.
Changes in a hydropsychid guild downstream from a eutrophic impoundment   总被引:7,自引:6,他引:1  
The production of unicellular algae is laborious and is a major constraint for the culturing of aquatic filter-feeders. Because of their small particle size and their high protein content yeasts are considered as a promising substitute for micro-algae. Furthermore, recent work has shown that baker's yeast can be converted into a digestible diet for Artemia by chemical treatment. The present study documents the use at laboratory scale of this manipulated yeast as an algal substitute for the culture of two anostracan species. The experiments were conducted with the brine shrimp artemia franciscana and the fairy shrimp Streptocephalus proboscideus. A similar experimental set-up was used for both species. The algal diet, consisting of Dunaliella tertiolecta for A. franciscana and Selenastrum capricornutum for S. proboscideus, was substituted at various levels by two types of treated baker's yeast: a fresh form and a dried product which was rich in highly unsaturated fatty acids (HUFA). The chemically-treated yeast offers promising possibilities as an algal substitute for Artemia; i.e. replacing 75% of the algae by the dried yeast resulted in similar survival and even higher growth rates in comparison with the reference algal diet; for the treated fresh yeast similar results could be achieved by up to 95% substitution. For S. proboscideus, a substitution of 75% by either of the yeast products resulted in good survival, though growth did not exceed 80% of the observed growth in the algal control. A diet consisting solely of yeast resulted in poor survival for larvae of both species. Experiments were run to investigate whether this was due to a sub-optimal feeding regime, nutritional deficiencies, or deterioration of the water quality.  相似文献   

19.
Algal growth on organic compounds as nitrogen sources   总被引:19,自引:0,他引:19  
Two experimental series were run to evaluate the potential of algal development on dissolved organic nitrogen (DON) compounds as the sole source of nitrogen (N) nutrition. Monocultures of several common Lake Kinneret algae (Pediastrum duplex, Synechococcus sp., Microcystis aeruginosa, Aphanizomenon ovalisporum and Cyclotella sp.) were incubated for 3 weeks in the laboratory with different inorganic (NH4+, NO3-) or organic (hypoxanthine, urea, guanine, ornithine, glucosamine, lysine) nitrogen sources. Even though the cultures were not axenic, marked differences were observed in algal growth response. Pediastrum, Cyclotella and Aphanizomenon grew well on most N sources, and cyanobacterial growth and yield were consistently greatest when the urea was the only N source. We also followed algal growth and eventual species dominance in batch samples of GF/F-filtered lake water, supplemented with orthophosphate and different inorganic or organic N compounds and inoculated with concentrated lake phytoplankton. Although no clear impact on phytoplankton growth (as chlorophyll concentration) was observed, in seven out of 11 experiments we could discern changes in the algal species that became dominant in flasks with different organic and inorganic N sources. Our results are consistent with the proposition that components of the DON pool are not only an important potential, direct or indirect N source for phytoplankton, but also that different algal species can exploit these sources with varying capabilities so that different N substrates may selectively stimulate the development of dominant algal species.   相似文献   

20.
An investigation of the subsurface chlorophyll layer (SCL) in Lake Superior was conducted from 1 May through 15 October. During spring unstratified conditions (1 May–17 July), chlorophyll a and phytoplankton biomass were vertically and temporally uniform. Phytoflagellates such as Rhodomonas minuta, Cryptomonas spp., and Ochromonas spp. were dominant at this time. The photosynthetic maximum was associated with the depth receiving 10% of surface irradiance, ca. 15–25 m. Once thermal stratification occurred, a SCL developed around 20 m. Although epilimnetic chlorophyll concentrations remained similar to spring mixing levels, concentrations in the SCL increased 3-fold. In situ production was the principal process associated with the development of the SCL. The upper portion of the SCL was dominated by Cyclotella species; C. stelligera, C. comensis, and C. ocellata. The increased abundance of Cyclotella appeared to be related to stable irradiance fields produced during thermal stratification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号