首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
Nitrosothiols are increasingly regarded as important participants in a range of physiological processes, yet little is known about their biological generation. Nitrosothiols can be formed from the corresponding thiols by nitric oxide in a reaction that requires the presence of oxygen and is mediated by reactive intermediates (NO2 or N2O3) formed in the course of NO autoxidation. Because the autoxidation of NO is second order in NO, it is extremely slow at submicromolar NO concentrations, casting doubt on its physiological relevance. In this paper we present evidence that at submicromolar NO concentrations the aerobic nitrosation of glutathione does not involve NO autoxidation but a reaction that is first order in NO. We show that this reaction produces nitrosoglutathione efficiently in a reaction that is strongly stimulated by physiological concentrations of Mg2+. These observations suggest that direct aerobic nitrosation may represent a physiologically relevant pathway of nitrosothiol formation.  相似文献   

2.
3.
Excessive reactive oxygen species (ROS), a highly reactive substance that contains oxygen, induced by ultraviolet A (UVA) cause oxidative damage to skin. We confirmed that hemin can catalyze the reaction of tyrosine (Tyr) and hydrogen peroxide (H2O2). Catalysis was found to effectively reduce or eliminate oxidative damage to cells induced by H2O2 or UVA. The scavenging effects of hemin for other free-radical ROS were also evaluated through pyrogallol autoxidation, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)-scavenging assays, and phenanthroline–Fe2+ assays. The results show that a mixture of hemin and tyrosine exhibits strong scavenging activities for H2O2, superoxide anion (O2·), DPPH·, and the hydroxyl radical (·OH). Furthermore, the inhibition of oxidative damage to human skin keratinocyte (HaCaT) cells induced by H2O2 or UVA was evaluated. The results show that catalysis can significantly reduce the ratio of cell apoptosis and death and inhibit the release of lactate dehydrogenase (LDH), as well as accumulation of malondialdehyde (MDA). Furthermore, the resistance to apoptosis was found to be enhanced. These results show that the mixture of hemin and tyrosine has a significantly protective effect against oxidative damage to HaCaT cells caused by UVA, suggesting it as a protective agent for combating UVA damage.  相似文献   

4.
《Inorganica chimica acta》1986,121(2):237-241
Kinetic studies on the oxidative coupling of methane over Sm2O3 have been carried out. The experimental rate equation observed could be well explained in terms of the reaction mechanism proposed. The reaction is initiated by abstracting hydrogen atom from the methane adsorbed by the diatomic oxygen on the surface. The coupling of two CH3· radicals leads to C2H6. Deep oxidation of CH3· produces CO and CO2. The large activation energy (149 kJ mol−1) needed for the formation of CH3· explains the sharp increase in the selectivity to C2-compounds (C2H6 + C2H4) as raising temperatures. The oxygen species responsible for initiating the reaction was suggested to be O22− or O2 on the surface.  相似文献   

5.
BackgroundNitroxide antioxidants (RNO) protect from injuries associated with oxidative stress. Tyrosine residues in proteins are major targets for oxidizing species giving rise to irreversible cross-linking and protein nitration, but the mechanisms underlying the protective activity of RNO on these processes are not sufficiently clear.MethodsTyrosine oxidation by the oxoammonium cation (RN+=O) was studied by following the kinetics of RNO formation using EPR spectroscopy. Tyrosine oxidation and nitration were investigated using the peroxidase/H2O2 system without and with nitrite. The inhibitory effect of RNO on these processes was studied by following the kinetics of the evolved O2 and accumulation of tyrosine oxidation and nitration products.ResultsTyrosine ion is readily oxidized by RN+=O, and the equilibrium constant of this reaction depends on RNO structure and reduction potential. RNO catalytically inhibits tyrosine oxidation and nitration since it scavenges both tyrosyl and NO2 radicals while recycling through RN+=O reduction by H2O2, tyrosine and nitrite. The inhibitory effect of nitroxide on tyrosine oxidation and nitration increases as its reduction potential decreases where the 6-membered ring nitroxides are better catalysts than the 5-membered ones.ConclusionsNitroxides catalytically inhibit tyrosine oxidation and nitration. The proposed reaction mechanism adequately fits the results explaining the dependence of the nitroxide inhibitory effect on its reduction potential and on the concentrations of the reducing species present in the system.General significanceNitroxides protect against both oxidative and nitrative damage. The proposed reaction mechanism further emphasizes the role of the reducing environment to the efficacy of these catalysts.  相似文献   

6.
Summary Gene expression can be activated by external oxidants which are reduced at the cell surface by plasma membrane electron transport. The signals generated in response to the plasma membrane electron transport include activation of proton release, internal calcium changes, and change in reductant/oxidant ratio in the cytosol. H2O2 generated in response to ligands which bind to plasma membrane receptors can also activate protein tyrosine kinases and gene expression. Inhibition of oxygen radical generation at the cell surface in response to the mitogen, phorbol myristate acetate by retinoic acid is consistent with a role for the plasma membrane electron transport as the source for H2O2 in Balb 3T3 cells. Agents which affect the binding of coenzyme Q to redox sites in the plasma membrane electron transport may increase formation of semiquinone radicals in the membrane which can be a source of oxygen radicals and H2O2. The generation of H2O2 by transformed cells indicates that oncogene product expression in the plasma membrane may also increase quinone-based oxygen radical generation.  相似文献   

7.
3-Hydroxykynurenine (3-OHKyn) is a tryptophan metabolite that is readily autoxidised to products that may be involved in protein modification and cytotoxicity. The oxidation of 3-OHKyn has been studied here with a view to characterising the major products as well as determining their relative rates of formation and the role that H2O2 and hydroxyl radical (HO·) may play in modifying the autoxidation process. Oxidation of 3-OHKyn generated several compounds. Xanthommatin (Xan), formed by the oxidative dimerisation of 3-OHKyn, was the major product formed initially. It was, however, found to be unstable, particularly in the presence of H2O2, and degraded to other products including the p-quinone, 4,6-dihydroxyquinolinequinonecarboxylic acid (DHQCA). A compound that has a structure consistent with that of hydroxy-xanthommatin (OHXan) was also formed in addition to at least two minor species that we were unable to identify. Hydrogen peroxide was formed rapidly upon oxidation of 3-OHKyn, and significantly influenced the relative abundance of the different autoxidation species. Increasing either pH (from pH 6 to 8) or temperature (from 25°C to 35°C) accelerated the rate of autoxidation but had little impact on the relative abundance of the autoxidation species. Using electron paramagnetic resonance (EPR) spectroscopy, a clear phenoxyl radical signal was observed during 3-OHKyn autoxidation and this was attributed to xanthommatin radical (Xan·). Hydroxyl radicals were also produced during 3-OHKyn autoxidation. The HO· EPR signal disappeared and the Xan· EPR signal increased when catalase was added to the autoxidation mixture. The HO· did not appear to play a role in the formation of the autoxidation products as evidenced using HO· traps/scavengers. We propose that the cytotoxicity of 3-OHKyn may be explained by both the generation of H2O2 and by the formation of reactive 3-OHKyn autoxidation products such as the Xan· and DHQCA.  相似文献   

8.
Highly purified bovine caudate tyrosine hydroxylase can be activated by exposure to enzymatic phosphorylating conditions. This activation is due to both a decrease in the Km for the pterin cofactor and to some increase in Vmax. The Km for the enzyme's substrate, tyrosine, is unchanged by activation. After tyrosine hydroxylase was activated in the presence of [γ-32P]-ATP, no incorporation of 32P into the enzyme was observed by either immunoprecipitation studies or by sucrose gradient studies.  相似文献   

9.
Catalytic antibodies with a metalloporphyrin cofactor represent a new generation of biocatalysts tailored for selective oxidations. Thus monoclonal antibodies, 3A3, were raised against microperoxidase 8 (MP8), and the corresponding 3A3-MP8 complexes were shown previously to have a high peroxidase activity. This paper shows that those complexes also catalyzed efficiently the nitration of phenol into 2- and 4-nitrophenol by NO2 in the presence of H2O2. pH dependence studies suggested that no amino acid from the antibody protein participated in the heterolytic cleavage of the O-O bond of H2O2. The inhibition of the reaction by cyanide and radical scavengers suggested a MP8-mediated peroxidase-like mechanism, involving the reduction of high-valent iron-oxo species by NO2 and phenol producing, respectively, NO2 · and phenoxy radicals, which then reacted to give nitrophenols. Finally, the antibody protein appears to have two major roles: (i) it protects MP8 toward oxidative degradations and (ii) it induces a regioselectivity of the reaction toward the formation of 2-nitrophenol.  相似文献   

10.
  • 1.1. The mechanism of interaction of CP with O2 radicals in chemical and enzymatic systems of Superoxide radical generation as well as in the pulse radiolysis technique was studied.
  • 2.2. It is found that CP does not exert any kinetic influence on the decomposition of Superoxide radical and, unlike SOD, cannot catalyze the reaction of disproportionation of these radicals in systems with chemical and enzymatic generation of O2.
  • 3.3. The data obtained confirm the suggestion that CP interacts with precursors of 2 radicals.
  • 4.4. The irradiation of CP does not change its inhibiting activity in the reaction of the formation of Superoxide radicals in systems with enzymatic O2 generation, but decreases its oxidase activity.
  • 5.5. The results obtained demonstrated that the increase in the radiation dose resulted in the decrease of the inhibiting activity of SOD, whereas the activity of CP did not change.
  相似文献   

11.
Heat-induced formation of 8-oxoguanine was demonstrated in DNA solutions in 10–3 M phosphate buffer, pH 6.8, by enzyme-linked immunosorbent assays using monoclonal antibodies against 8-oxoguanine. A radiation-chemical yield of 3.7 × 10–2 µmol J–1 for 8-oxoguanine production in DNA upon γ-irradiation was used as an adequate standard for quantitation of 8-oxoguanine in whole DNA. The initial yield of heat-induced 8-oxoguanine exhibits first order kinetics. The rate constants for 8-oxoguanine formation were determined at elevated temperatures; the activation energy was found to be 27 ± 2 kcal/mol. Extrapolation to 37°C gave a value of k37 = 4.7 × 10–10 s–1. Heat-induced 8-oxoguanine formation and depurination of guanine and adenine show similarities of the processes, which implies that heat-mediated generation of reactive oxygen species (ROS) should occur. Heat-induced production of H2O2 in phosphate buffer was shown. The sequence of reactions of thermally mediated ROS formation have been established: activation of dissolved oxygen to the singlet state, generation of superoxide radicals and their dismutation to H2O2. Gas saturation (O2, N2 and Ar), D2O, scavengers of 1O2, O2–• and OH radicals and metal chelators influenced heat-induced 8-oxoguanine formation as they affected thermal ROS generation. These findings imply that heat acts via ROS attack leading to oxidative damage to DNA.  相似文献   

12.
Reactive nitrogen/oxygen species (ROS/RNS) at low concentrations play an important role in regulating cell function, signaling, and immune response but in unregulated concentrations are detrimental to cell viability1, 2. While living systems have evolved with endogenous and dietary antioxidant defense mechanisms to regulate ROS generation, ROS are produced continuously as natural by-products of normal metabolism of oxygen and can cause oxidative damage to biomolecules resulting in loss of protein function, DNA cleavage, or lipid peroxidation3, and ultimately to oxidative stress leading to cell injury or death4. Superoxide radical anion (O2•-) is the major precursor of some of the most highly oxidizing species known to exist in biological systems such as peroxynitrite and hydroxyl radical. The generation of O2•- signals the first sign of oxidative burst, and therefore, its detection and/or sequestration in biological systems is important. In this demonstration, O2•- was generated from polymorphonuclear neutrophils (PMNs). Through chemotactic stimulation with phorbol-12-myristate-13-acetate (PMA), PMN generates O2•- via activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase5. Nitric oxide (NO) synthase which comes in three isoforms, as inducible-, neuronal- and endothelial-NOS, or iNOS, nNOS or eNOS, respectively, catalyzes the conversion of L- arginine to L-citrulline, using NADPH to produce NO6. Here, we generated NO from endothelial cells. Under oxidative stress conditions, eNOS for example can switch from producing NO to O2•- in a process called uncoupling, which is believed to be caused by oxidation of heme7 or the co-factor, tetrahydrobiopterin (BH4)8.There are only few reliable methods for the detection of free radicals in biological systems but are limited by specificity and sensitivity. Spin trapping is commonly used for the identification of free radicals and involves the addition reaction of a radical to a spin trap forming a persistent spin adduct which can be detected by electron paramagnetic resonance (EPR) spectroscopy. The various radical adducts exhibit distinctive spectrum which can be used to identify the radicals being generated and can provide a wealth of information about the nature and kinetics of radical production9.The cyclic nitrones, 5,5-dimethyl-pyrroline-N-oxide, DMPO10, the phosphoryl-substituted DEPMPO11, and the ester-substituted, EMPO12 and BMPO13, have been widely employed as spin traps--the latter spin traps exhibiting longer half-lives for O2•- adduct. Iron (II)-N-methyl-D-glucamine dithiocarbamate, Fe(MGD)2 is commonly used to trap NO due to high rate of adduct formation and the high stability of the spin adduct14.  相似文献   

13.
Antioxidant activity of resveratrol in endotoxin-stimulated blood platelets   总被引:4,自引:0,他引:4  
Resveratrol (3,4′,5-trihydroxystilbene) is a natural molecule with antioxidant action. It is also considered to be a molecule with antiplatelet, anticancer and anti-inflammatory action. The effects of trans-resveratrol on the reactive oxygen species (ROS) generation and thiobarbituric acid-reactive substances (TBARS) in blood platelets induced by endotoxin (lipopolysaccharide, LPS) or thrombin were studiedin vitro. The production of superoxide radicals (O2 .–) and other reactive oxygen species (H2O2, singlet oxygen, and organic radicals) in the presence of resveratrol was measured by a chemiluminescence method in resting blood platelets and platelets stimulated by LPS (0.3 μg/108 platelets) or thrombin (2.5 U/108 platelets). We have shown that resveratrol (6.25–100 μg/ml) inhibits chemiluminescence and generation of O2 .– in blood platelets. It has an inhibitory effect on the production of ROS and TBARS in platelets caused by LPS or thrombin. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The influence of GABA receptor agonists on the terminal differentiation in vitro of dopaminergic (DA) neurons derived from IPS cells was investigated. GABA-A agonist muscimol induced transient elevation of intracellular Ca2+ level ([Ca2+]i) in the investigated cells at days 5 to 21 of differentiation. Differentiation of cells in the presence of muscimol reduced tyrosine hydroxylase expression. Thus, the presence of active GABA-A receptors, associated with phenotype determination via Ca2+-signalling was demonstrated in differentiating human DA neurons.  相似文献   

15.
Abstract– Detergent-solubilized tyrosine hydroxylase from the caudate nucleus of the sheep was purified 3-fold by affinity chromatography on 3-iodotyrosine modified agarose. Supplementation of the standard assay with 1 mM Fe2+ resulted in only slight stimulation of the enzymic activity. The enzyme was, however, markedly inhibited by certain complexing agents specific for either Fe2+ or Fe3+. Double reciprocal plots of the kinetic data for a representative complexing agent, bathophenanthroline, showed the inhibition to be competitive with O2 (apparent Km 0.15 mM) and noncompetitive with either l -tyrosine or the synthetic tetrahydropterin cofactor DMPH4 (apparent Km's 0.12 and 0.29 mM, respectively). The combined inhibition and kinetics studies strongly suggest that brain tyrosine hydroxylase is an iron enzyme. Furthermore, the prosthetic iron very likely participates directly in catalytic function, presumably by binding molecular oxygen. The activity of ammonium sulphate-precipitated enzyme was found to be stimulated 2-fold by Fe2+, catalase or peroxidase, while untreated enzyme was markedly less affected by these agents. Since the only ostensible difference between the two preparations was the extensive aggregation present in the former case, the change in physical state evoked by ammonium sulphate precipitation appeared to be somehow related to this peculiar property of the enzyme.  相似文献   

16.
Hemoglobin (Hb) solution-based blood substitutes are being developed as oxygen-carrying agents for the prevention of ischemic tissue damage and low blood volume-shock. However, the cell-free Hb molecule has intrinsic toxicity to the tissue since harmful reactive oxygen species (ROS) are readily produced during autoxidation of Hb from the ferrous state to the ferric state, and the cell-free Hb also causes distortion in the oxidant/antioxidant balance in the tissues. There may be further hindering dangers in the use of free Hb as a blood substitute. It has been reported that Hb has peroxidase-like activity oxidizing peroxidase substrates such as aromatic amines. Here we observed the Hb-catalyzed ROS production coupled to oxidation of a neurotransmitter precursor, β-phenylethylamine (PEA). Addition of PEA to Hb solution resulted in generation of superoxide anion (O2??). We also observed that PEA increases the Hb-catalyzed monovalent oxidation of ascorbate to ascorbate free radicals (Asc?). The O2?? generation and Asc? formation were detected by O2??-specific chemiluminescence of the Cypridina lucigenin analog and electron spin resonance spectroscopy, respectively. PEA-dependent O2?? production and monovalent oxidation of ascorbate in the Hb solution occurred without addition of H2O2, but a trace of H2O2 added to the system greatly increased the production of both O2?? and Asc?. Addition of GSH completely inhibited the PEA-dependent production of O2?? and Asc? in Hb solution. We propose that the O2?? generation and Asc? formation in the Hb solution are due to the pseudoperoxidase activity-dependent oxidation of PEA and resultant ROS may damage tissues rich in monoamines, if the Hb-based blood substitutes were circulated without addition of ROS scavengers such as thiols.  相似文献   

17.
18.
Parkinson’s disease (PD) patients have excessive iron depositions in substantia nigra (SN). Neuroinflammation characterized by microglial activation is pivotal for dopaminergic neurodegeneration in PD. However, the role and mechanism of microglial activation in iron-induced dopaminergic neurodegeneration in SN remain unclear yet. This study aimed to investigate the role and mechanism of microglial β-nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) activation in iron-induced selective and progressive dopaminergic neurodegeneration. Multiple primary midbrain cultures from rat, NOX2+/+ and NOX2?/? mice were used. Dopaminergic neurons, total neurons, and microglia were visualized by immunostainings. Cell viability was measured by MTT assay. Superoxide (O2 ·?) and intracellular reactive oxygen species (iROS) were determined by measuring SOD-inhibitable reduction of tetrazolium salt WST-1 and DCFH-DA assay. mRNA and protein were detected by real-time PCR and Western blot. Iron induces selective and progressive dopaminergic neurotoxicity in rat neuron–microglia–astroglia cultures and microglial activation potentiates the neurotoxicity. Activated microglia produce a magnitude of O2 ·? and iROS, and display morphological alteration. NOX2 inhibitor diphenylene iodonium protects against iron-elicited dopaminergic neurotoxicity through decreasing microglial O2 ·? generation, and NOX2?/? mice are resistant to the neurotoxicity by reducing microglial O2 ·? production, indicating that iron-elicited dopaminergic neurotoxicity is dependent of NOX2, a O2 ·?-generating enzyme. NOX2 activation is indicated by the increased mRNA and protein levels of subunits P47 and gp91. Molecules relevant to NOX2 activation include PKC-σ, P38, ERK1/2, JNK, and NF-КBP65 as their mRNA and protein levels are enhanced by NOX2 activation. Iron causes selective and progressive dopaminergic neurodegeneration, and microglial NOX2 activation potentiates the neurotoxicity. PKC-σ, P38, ERK1/2, JNK, and NF-КBP65 are the potential molecules relevant to microglial NOX2 activation.  相似文献   

19.
Oxygen activation during oxidation of the lignin-derived hydroquinones 2-methoxy-1,4-benzohydroquinone (MBQH2) and 2,6-dimethoxy-1,4-benzohydroquinone (DBQH2) by laccase from Pleurotus eryngii was examined. Laccase oxidized DBQH2 more efficiently than it oxidized MBQH2; both the affinity and maximal velocity of oxidation were higher for DBQH2 than for MBQH2. Autoxidation of the semiquinones produced by laccase led to the activation of oxygen, producing superoxide anion radicals (Q·− + O2 ↔ Q + O2·−). As this reaction is reversible, its existence was first noted in studies of the effect of systems consuming and producing O2·− on quinone formation rates. Then, the production of H2O2 in laccase reactions, as a consequence of O2·− dismutation, confirmed that semiquinones autoxidized. The highest H2O2 levels were obtained with DBQH2, indicating that DBQ·− autoxidized to a greater extent than did MBQ·−. Besides undergoing autoxidation, semiquinones were found to be transformed into quinones via dismutation and laccase oxidation. Two ways of favoring semiquinone autoxidation over dismutation and laccase oxidation were increasing the rate of O2·− consumption with superoxide dismutase (SOD) and recycling of quinones with diaphorase (a reductase catalyzing the divalent reduction of quinones). These two strategies made the laccase reaction conditions more natural, since O2·−, besides undergoing dismutation, reacts with Mn2+, Fe3+, and aromatic radicals. In addition, quinones are continuously reduced by the mycelium of white-rot fungi. The presence of SOD in laccase reactions increased the extent of autoxidation of 100 μM concentrations of MBQ·− and DBQ·− from 4.5 to 30.6% and from 19.6 to 40.0%, respectively. With diaphorase, the extent of MBQ·− autoxidation rose to 13.8% and that of DBQ·− increased to 39.9%.  相似文献   

20.
Copper-induced generation of superoxide in human red cell membrane.   总被引:4,自引:0,他引:4  
The addition of CuSO4 to erythrocyte membrane preparations causes the generation of superoxide radicals as measured by the superoxide dismutasesensitive oxidation of epinephrine. The formation of O2? is accompanied by the reduction of copper to the cuprous form. These events are inhibited by pCMB suggesting the involvement of membrane -SH groups in the reduction of copper, and a subsequent autoxidation of Cu+ to generate O2? and Cu++. It is proposed that these mechanisms may be the basis for the cytotoxicity of copper in individuals exposed to copper either through a genetic deficiency of copper binding proteins or as a result of the acute ingestion of copper salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号