首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have measured the thermodynamic parameters of the slow-fast tail-fiber reorientation transition on T2L bateriophage. Proportions of the virus in each form were determined from peak-height measurements in sedimention-velocity runs and from average diffusion coefficients obtained by quasielastic laser light scattering. Computer simulation of sedimentation confirmed that there were no undetected intermediates in the transition, which was analyzed as a two-state process. Van't Hoff-type plots of the apparent equilibrium constant and of the pH midpoint of the transition as function of reciprocal temperature led to the following estimates of the thermodynamic parameters for the transition at pH 6.0 and 20°C: ΔH° = ?139 ± 18Kcal mol?1, ΔS° = ?247 ± 46 cal K?1 mol?1, and ΔG° = ?66 ± 22 kcal mol?1. Per mole of protons taken up in the transition, the analogous quantities were ?15.9 ± 1.7 kcal mol?1, ?26.3 ± 2.2 cal K?1 mol?1, and ?8.22 ± 1.8 kcal mol?1. The net number of protons taken up was about 8.5 ± 1.5. The large values of the thermodynamic functions are consistent with a highly cooperative reaction and with multiple interactions between the fibres and the remainder of the phage. The negative entropy of the transition is probably due to immobilization of the fibres.  相似文献   

2.
The hypervalent muscle pigment ferrylmyoglobin, formed by activation of metmyoglobin by hydrogen peroxide, was found to be reduced in a second-order reaction by N-tert-butyl-α-phenylnitrone (PBN, often used as a spin trap). In acidic aqueous solution at ambient temperature, the reduction is relatively slow (δH? = 65 ± 2 kJ · mol-1 and δS? = -54 ± 7 J · mol-1. K-1 for pH = 5.6), but phase transitions during freezing of the buffered solutions accelerates the reaction between ferrylmyoglobin and PBN. In these heterogenous systems at low temperature (but not when ice-formation was inhibited by glycerol), a PBN-derived radical intermediate was detected by ESR-spectroscopy, identified as a nitroxyl radical by a parallel nitrogen hyperfine coupling constant of 31.8 G, and from microwave power saturation behavior concluded not to be located in the heme-cleft of the protein. The acceleration of the reaction is most likely caused by a lowering of the pH during the freezing of the buffered solutions whereby ferrylmyoglobin becomes more oxidizing.  相似文献   

3.
Calorimetric studies of the reduction of free oxygen in solution by sodium dithionite are in agreement with a stoichiometry of 2 moles Na2S2O4 per mole of oxygen. The reaction is biphasic with ΔHt - 118±7 kcal mol?1 (?494 ± 29 kJ mol?1). The initial phase of the reaction proceeds with an enthalpy change of ca ?20 kcal (?84 kJ) and occurs when 0.5 moles of dithionite have been added per mole dioxygen present. This could be interpreted as the enthalpy change for the addition of a single electron to form the superoxide anion. Further reduction of the oxygen to water by one or more additional steps is accompanied by an enthalpy change of ca ?100 kcal (?418. 5 kJ). Neither of these reductive phases is consistent with the formation of hydrogen peroxide as an intermediate. The reduction of hydrogen peroxide by dithionite in 0.1 M phosphate buffer, pH 7.15, is a much slower process and with an enthalpy change of ca ? 74 kcal mol?1 (?314 kJ mol?1). Dissociation of oxyhemoglobin induced by the reduction of free oxygen tension with dithionite also shows a stoichiometry of 2 moles dithionite per mole oxygen present and an enthalpy change of ca. ?101 ±9 kcal mol?1 (?423± 38 kJ mol?1). The difference in the observed enthalpies (reduction of dioxygen vs. oxyhemoglobin) has been attributed to the dissociation of oxyhemoglobin, which is 17 kcal mol?1 (71 kJ mol?1).  相似文献   

4.
《Free radical research》2013,47(1):102-111
Abstract

Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 1010 L mol? 1s? 1 in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 109 L mol? 1s? 1. The ferulate moiety in the astaxanthin diester is a better radical scavenger than free ferulic acid as seen from the rate constant of scavenging of 1-hydroxyethyl radicals in ethanol at 25°C with a second-order rate constant of (1.68 ± 0.1) 108 L mol? 1s? 1 compared with (1.60 ± 0.03) 107 L mol? 1s? 1 for the astaxanthin:ferulic acid mixture, 1:2 equivalents. The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability.  相似文献   

5.
The reaction of Ru(XTPP)(DMF)2, where XTPP is the dianion of para substituted tetraphenylporphyrins and X is MeO, Me, H, Cl, Br, I, F, with O2 and CO were studied in DMF. The process was found to be first-order in metalloporphyrin, first-order in molecular oxygen and carbon monoxide, and second-order overall. Second-order rate constants for the CO reaction ranged from 0.170 to 0.665 M?1 s?1 at 25°C, those for the O2 reaction from 0.132 to 0.840 M?1 s?1 at 25°C. Similar activation parameters (ΔHCO± = 87 ± 1 kJ mol?1, ΔSCO± = 22 ± 4 JK?1 mol?1; ΔHO2± = 81 ± 1 kJ mol?1, and ΔSO2± = 11 ± 5 JK?1 mol?1) were found within each series. Reactivities of X substituted metalloporphyrins were found to follow different Hammett σ functions. The CO reactions correlated with σ? following normal behavior; the O2 reactions correlated with σ8° indicating O2 is π-bonded in the transition states. A dissociative mechanism is postulated for the process.  相似文献   

6.

This is the first study where the pyrolysis of the freshwater macroalga Chara vulgaris was explored to reveal its bioenergy potential. The suitability of C. vulgaris to bioenergy conversion via pyrolysis was accessed in terms of kinetic triplet and thermodynamic parameters. For this purpose, pyrolysis experiments under a thermogravimetric scale were conducted at multiple heating rates (5, 10, and 20 °C min?1) in an inert atmosphere. The mass-loss profiles of C. vulgaris pyrolysis showed that there are two dominant decomposition stages that are related to distinct chemical components inside its structure and that directly affect the calculated kinetic triplet and thermodynamics parameters. The average activation energy obtained using isoconversional methods of Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, Starink, and Friedman was in the range of 52.87–72.91 kJ mol?1 for the first decomposition stage and 156.14–174.65 kJ mol?1 for the second decomposition stage. The pyrolytic conversion of C. vulgaris initially follows a second-order reaction model (first decomposition stage), while in second decomposition stage is controlled by a second-order Avrami-Erofeev reaction model. The kinetic results derived from the non-isothermal decomposition of C. vulgaris proved its suitable characteristics for pyrolysis. Additionally, multi-stage kinetic interpretation was successfully attained based on two kinetic triplets, where reconstructed pyrolysis behavior correlated well with experimental pyrolysis behavior. The changes in enthalpy, Gibbs free energy, and entropy for first decomposition stage were 67.58±0.25 kJ mol?1, 180.77±5.30 kJ mol?1, and ?176.65±0.41 J mol?1 K?1, and for the second decomposition stage the values were 166.70±0.09 kJ mol?1, 285.51±1.29 kJ mol?1, and ?124.29±0.09 J mol?1 K?1, respectively. Based on thermodynamic aspects, C. vulgaris is particularly interesting for use as a raw material to produce biofuels and bioenergy.

  相似文献   

7.
8.
The kinetics of the binding of cyanide to ferric chloroperoxidase have been studied at 25°C and ionic strength 0.11 M using a stopped-flow apparatus. The dissociation constant (KCN) of the peroxidase-cyanide complex and both forward (k+) and reverse (k?) rate constants are independent of the H+ concentration over the pH range 2.7 to 7.1. The values obtained are kcn = (9.5 ± 1.0) × 10-5 M, k+. = (5.2 ± 0.5) × 104 M?1 sec?1 and k- = (5.0± 1.4) sec-1. In the presence of 0 06 M potassium nitrate the affinity of cyanide for chloroperoxidase decreases due to the inhibition of the forward reaction. The dissociation rate is not affected. The nitrate anion exerts its influence by binding to a protonated form of the enzyme, whereas the cyanide binds to the unprotonated form. Binding of nitrate results in an apparent shift towards higher pKa values of the ionization of a crucial heme-linked acid group. Hence the influence of this group can be detected in the accessible pH range. Extrapolation to zero nitrate concentration yields a value of 3.1±0.3 for the pKa of the heme-linked acid group.  相似文献   

9.
《Free radical research》2013,47(4):195-199
The rate constant for the reaction of NO with ·O2? was determined to be (6.7 ± 0.9) × 109 1 mol?1 s?1, considerably higher than previously reported. Rate measurements were made from pH 5.6 to 12.5 both by monitoring the loss of ·O2? and the formation of the product ?OONO. The decay rate of ?OONO, in the presence of 0.1 moll?1 formate, ranges from 1.2s?1 at pH 5 to about 0.2s?1 in strong base, the latter value probably reflecting catalysis by formate.  相似文献   

10.
11.
A methodological study has been made with a syringe titration unit attached to an LKB batch microcalorimeter. The presicion and accuracy of the instrument assembly have been evaluated by neutralization reactions and by dilution of sucrose solutions. As an example, heat quantities on the order of 10 mJ accompanying the addition of 10 μl titrant solution could be determined with an accuracy of better than 1%. A stepwise titration procedure was used to characterize the binding of indole-3-propionic acid to α-chymotrypsin. The following thermodynamic data were obtained (25°C, acetate buffer, pH 5.80): ΔG0 = ?18.46±0.17 kJ·mol?1, ΔH0 = ?15.26±0.20 kJ·mol?1, ΔS0 = 10.85±1.21 JK?·mol?1.  相似文献   

12.
Kinetic data for the oxidations of d-fructose and l-sorbose by chromium(VI) and vanadium(V) in perchloric acid medium are reported. The addition of perchloric acid and sodium perchlorate increases the pseudo-first-order rate constants. Change of the reaction medium from water to deuterium oxide appreciably affects the rates of chromium(VI) oxidations, but does not affect those of vanadium(V) oxidations. The activation parameters are ΔH3 = 46.6 ±3.4 (fructose) and 50.6 ±6.3 (sorbose) kJ.mol?1, and ΔS3 = ?105 ±11 (fructose) and ?100 ±20 (sorbose) J.deg?1.mol?1 for chromium(VI) oxidations, and, for the other reactions, ΔH3 = 53.2 ±4.2 (fructose) and 52.3 ±6.3 (sorbose) kJ.mol?1, and ΔS3 = ?139.0 ±14 (fructose) and ?137 ±20 (sorbose) J.deg?1.mol?1. The kinetics of the oxidations of ketohexoses by chromium(VI) indicate no intermediate-complex formation, whereas those for vanadium(V) indicate the formation of a 1:1 intermediate complex between ketohexoses and vanadium(V).  相似文献   

13.
《Free radical research》2013,47(9):1150-1156
Abstract

Oxidation of tyrosine moieties by radicals involved in lipid peroxidation is of current interest; while a rate constant has been reported for reaction of lipid peroxyl radicals with a tyrosine model, little is known about the reaction between tyrosine and alkoxyl radicals (also intermediates in the lipid peroxidation chain reaction). In this study, the reaction between a model alkoxyl radical, the tert-butoxyl radical and tyrosine was followed using steady-state and pulse radiolysis. Acetone, a product of the β-fragmentation of the tert-butoxyl radical, was measured; the yield was reduced by the presence of tyrosine in a concentration- and pH-dependent manner. From these data, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 6?±?1 × 107 M?1 s?1 at pH 10. Tyrosine phenoxyl radicals were also monitored directly by kinetic spectrophotometry following generation of tert-butoxyl radicals by pulse radiolysis of solutions containing tyrosine. From the yield of tyrosyl radicals (measured before they decayed) as a function of tyrosine concentration, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 7?±?3 × 107 M?1 s?1 at pH 10 (the reaction was not observable at pH 7). We conclude that reaction involves oxidation of tyrosine phenolate rather than undissociated phenol; since the pKa of phenolic hydroxyl dissociation in tyrosine is ~ 10.3, this infers a much lower rate constant, about 3 × 105 M?1 s?1, for the reaction between this alkoxyl radical and tyrosine at pH 7.4.  相似文献   

14.
Abstract

(±)125 I-cyanopindolol (±) I CYP) was used to characterize β-adrenoceptors on rat lung and cerebral cortex membranes. The affinity of (±) ICYP was higher for lung (Kd = 64.3 pM) at 37°C. The association reaction of (±) ICYP was faster with lung (k+1 = 1.52 × 109 M?1.min?1) than with cerebral cortex β-adrenoceptors (k+1 = 1.75 × 108 M?1.min?1). In both tissues, the dissociation reaction followed a biphasic process with a fast (t ½ = 15.4 min and 5.6 min for lung and cerebral cortex respectively) and a slow component (t ½ = 474 min and 255 min for lung and cerebral cortex respectively). The thermodynamic parameters for (±) ICYP - β-adrenoceptors binding have been determined from kinetics and equilibrium studies, for the two tissues, at several temperatures between 0° and 44° C. For lung and cerebral cortex, Arrhenius plots were linear with different energies of activation. Van't Hoff plot was not linear for lung and the standard enthalpy and entropy changes of (±) ICYP - β-adrenoceptors interaction decreased linearly with temperature : the binding occured with a negative heat capacity change (ΔCp° = -368.9 cal. moles?1. K?1) at 25° C. Thermodynamic and kinetic results show that binding of (±) ICYP to lung β-adrenoceptors could involve two successive equilibria with a conformational change of the β-adrenergic receptor.  相似文献   

15.
The antidepressant drug tetramezine [1,2‐bis‐(3,3‐dimethyldiaziridin‐1‐yl)ethane] consists of two bridged diaziridine moieties with four stereogenic nitrogen centers, which are stereolabile and, therefore, are prone to interconversion. The adjacent substituents at the nitrogen atoms of the diaziridines moieties exist only in an antiperiplanar conformation, which results in a coupled interconversion. Therefore, three stereoisomers exist (meso form and two enantiomeric forms), which epimerize when the diaziridine moieties are regarded as stereogenic units due to the coupled interconversion. Here, we have investigated the epimerization between the meso and enantiomeric forms by dynamic gas chromatography. Temperature‐dependent measurements were performed, and reaction rate constants were determined using the unified equation of chromatography implemented in the software DCXplorer. The activation barriers of the epimerization were found to be ΔG = 100.7 kJ mol?1 at 25°C and ΔG = 104.5 kJ mol?1 at 37°C, respectively. The activation enthalpy and entropy were determined to be ΔH = 70.3 ± 0.4 kJ mol?1 and ΔS = ?102 ± 2 J mol?1 K?1. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The enthalpy change for phosphorylation of ADP3? by PEP3? catalysed by pyruvate kinase has been determined at 25°C using flow microcalorimetry. Measurements were made at pH 8 in three buffer systems TRIS, TEA and HEPES and also at pH 8.5 in TRIS buffer. The values of ΔH obtained, ?8.75 kJ mol?1 in TRIS, ?7.39 kJ mol? in TEA and ?6.19 kJ mol?1 in HEPES surprisingly display a dependence on the buffer system used. The enthalpy change was combined with free energy data to calculate the entropy change for the catalysed reaction.  相似文献   

17.
The photosynthetic diatom Cyclotella sp. extrudes chitin nanofibers following cell division. This diatom requires silicon for cell wall biosynthesis and division, as well as nitrogen for biosynthesis of intracellular material and extracellular chitin, an N-acetyl glucosamine biopolymer. The initial nitrogen/silicon molar ratio was the critical parameter for assessing the limits of nitrogen delivery on cell number and chitin production during batch cultivation of Cyclotella in a bubble column photobioreactor under silicon-limited growth conditions, using nitrate as the nitrogen source. The peak rate of volumetric chitin production increased linearly, from 3.0 to 46 mg chitin L?1 day?1, with increasing N/Si ratio over the range studied (0.82 to 8.6 mol N mol?1 Si). However, the cell number yield and the chitin yield per cell increased asymptotically with increasing N/Si ratio, achieving a final cell number yield of 5.3?×?109?±?2.6?×?108 cells mol?1 Si and chitin yield of 28.7?±?1.2 mg chitin per 109 cells (1.0 S.E.). An N/Si ratio of at least 4.0 mol N mol?1 Si achieved 90% of the asymptotic chitin yield. This study has shown that scalable cultivation systems for maximizing chitin nanofiber production will require delivery of both silicon and optimal nitrogen under silicon-limiting growth conditions to promote cell division and subsequent chitin formation.  相似文献   

18.
The kinetics of the binding reaction of cyanide by human erythrocyte catalase at 25 °C has been studied over the pH range 4.2 to 10.2 by means of temperature jump and stopped flow techniques. Catalase reacts with cyanide at a constant rate in the range pH 4.2 to 8.1 which decreases at higher pH. This is most simply explained by the reaction of catalase with unionized hydrogen cyanide molecules. The pH-independent rate constant for the formation of the catalase-cyanide complex is (1.3 ± 0.1) × 106m?1 s?1. The association equilibrium constant and the dissociation rate constant for the catalase-cyanide complex were determined from the relaxation amplitudes of temperature jump experiments and by spectrophotometric titration and are (3.1 ± 0.2) × 105m?1 and 4.2 ± 0.6 s?1, respectively in the pH-independent region.  相似文献   

19.
Phytochemical investigations on the n-BuOH-soluble fraction of the whole plant of Buddleja davidii led to the isolation of the phenylpropanoid glycosides 1-10. Their structures were determined by 1D and 2D NMR spectroscopic techniques. All the compounds showed potent antioxidative activity in three different tests, with IC50 values in the range 4.15-9.47 μM in the hydroxyl radical (˙OH) inhibitory activity test, 40.32-81.15 μM in the total ROS (reactive oxygen species) inhibitory activity test, and 2.26-7.79 μM in the peroxynitrite (ONOO?) scavenging activity test. Calceolarioside A (1) displayed the strongest scavenging potential with IC50 values of (4.15?±?0.07, 40.32?± 0.09, 2.26?±?0.03μM) for ˙OH, total ROS and scavenging of ONOO?, respectively.  相似文献   

20.
Phytochemical investigations were performed on the EtOAc-soluble fraction of the whole plant of the sky flower (Duranta repens) which led to the isolation of the iridoid glycosides 16. Their structures were elucidated by both 1D and 2D NMR spectroscopic analysis. All the compounds showed potent antioxidative scavenging activity in four different tests, with half maximal inhibitory concentration (IC50) values in the range 0.481–0.719?mM against DPPH radicals, 4.07–17.21 µM for the hydroxyl radical (?OH) inhibitory activity test, 43.3–97.37 µM in the total reactive oxygen species (ROS) inhibitory activity test, and 3.39–18.94 µM in the peroxynitrite (ONOO?) scavenging activity test. Duranterectoside A (1) displayed the strongest scavenging potential with IC50 values of (0.481?±?0.06?mM, 4.07?±?0.03, 43.30?±?0.05, 3.39?±?0.02?µM) for the DPPH radicals, ?OH inhibitory activity test, total ROS inhibitory activity test and the ONOO? scavenging activity test, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号