首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
In the present study, a new in vitro model combining the short-term incubation of precision-cut human liver slices with DNA-adduct analysis by the 32P-postlabelling technique is proposed for investigation of the genotoxic potential of xenobiotics. For method validation, the metabolic turnover of testosterone (TES) and the DNA-adduct inducing potential of 2-aminofluorene (2-AF) were used. Precision-cut human liver slices were prepared from a total of 12 human liver samples which were freshly obtained as parts of resectates from liver surgery. The slices were incubated as submersion cultures with TES and 2-AF for up to 6 h in 12-well tissue culture plates at concentrations of 10-50 and 0.06-28 μM, respectively. Slices recovered from the slicing procedure in the 4 °C cold Krebs-Henseleit buffer as indicated by intracellular potassium concentrations which increased for 2 h and then remained stable until the end of the incubation. TES was extensively metabolized by human liver slices with a similar metabolite pattern as observed in vivo. Almost 90% of the metabolites were conjugates. Major phase-I metabolites were androstendione, 6β-OH-androstendione, 6β-OH-TES, and 15β-OHTES. After incubation with 2-AF, substance related DNA-adducts were detected which increased dose-dependently from 12 to 1146 adducts per 109 nucleotides. The adduct pattern consisted of one major adduct spot, A, representing 80-90% of the total adduct level and up to four minor adduct spots, B-E. In summary, the present data demonstrate that precision-cut liver slices are a valuable alternative in vitro system for DNA-adduct determination to screen chemicals for potential genotoxicity in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号