首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim was to study the effects of a scuba diving session on the lymphocyte antioxidant system, NO synthesis, the capability to produce reactive oxygen species and the antioxidant response in neutrophils. For that purpose seven male divers performed an immersion at a depth of 40 m for 25 min. The same parameters were measured after an hyperbaric oxygen (HBO) treatment at resting conditions in a hyperbaric chamber. Lymphocyte H2O2 production rose after diving and after HBO treatment. Glutathione peroxidase (GPx) and catalase activities increased after diving in lymphocytes, while after HBO exposure only increased GPx activity. Lymphocyte HO-1 mRNA expression increased after diving and after HBO exposure, while iNOS levels and nitrite levels significantly increased after diving. The hyperoxia associated to scuba diving leads to a condition of oxidative stress with increased lymphocyte H2O2 production, HO-1 expression, NO synthesis and antioxidant enzyme adaptations in order to avoid oxidative damage.  相似文献   

2.
The aim was to study the effects of a scuba diving session on the lymphocyte antioxidant system, NO synthesis, the capability to produce reactive oxygen species and the antioxidant response in neutrophils. For that purpose seven male divers performed an immersion at a depth of 40 m for 25 min. The same parameters were measured after an hyperbaric oxygen (HBO) treatment at resting conditions in a hyperbaric chamber. Lymphocyte H2O2 production rose after diving and after HBO treatment. Glutathione peroxidase (GPx) and catalase activities increased after diving in lymphocytes, while after HBO exposure only increased GPx activity. Lymphocyte HO-1 mRNA expression increased after diving and after HBO exposure, while iNOS levels and nitrite levels significantly increased after diving. The hyperoxia associated to scuba diving leads to a condition of oxidative stress with increased lymphocyte H2O2 production, HO-1 expression, NO synthesis and antioxidant enzyme adaptations in order to avoid oxidative damage.  相似文献   

3.
Abstract

The antioxidant potential of crude extracts and fractions from leaves of Ouratea parviflora, a Brazilian medicinal plant used for the treatment of inflammatory diseases, was investigated in vitro through the scavenging of radicals 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), hydroxyl radical (HO?), superoxide anion (O2??), and lipid peroxidation in rat liver homogenate. The crude extract (CEOP) and hydro-alcoholic fraction (OP4) showed strong inhibitory activity toward lipid peroxidation induced by tert-butyl peroxide (IC50 = 2.3 ± 0.2 and 1.9 ± 0.1 μg/ml, respectively). The same products exhibited a strong concentration-dependent inhibition of deoxyribose oxidation (14.9 ± 0.2 and 0.2 ± 0.1 μg/ml, respectively), and also showed a considerable antioxidant activity against O2??(87.3 ± 0.1 and 73.1 ± 0.4 μg/ml, respectively) and DPPH radicals (55.4 ± 0.3 and 38.3 ± 0.4 μg/ml, respectively). The protective effects of CEOP and OP4 were also studied in mouse liver. CCl4 significantly increased (by 90%) levels of lipid hydroperoxides, carbonyl protein content (64%), DNA damage index (133%), aspartate aminotransferase (261%), alanine aminotransferase (212%), catalase activity (23%), and also caused a decrease of 60% in GSH content. The results showed that CEOP and OP4 exerted cytoprotective effects against oxidative injury caused by CCl4 in rat liver, probably related to the antioxidant activity showed by the in vitro free radical scavenging property.  相似文献   

4.
Oxidative stress and antioxidant defenses in ethanol-induced cell injury   总被引:8,自引:0,他引:8  
Although in the past several mechanisms and factors have been proposed to be responsible for alcoholic liver disease (ALD), at present the involvement of oxygen free radicals and consequently of oxidative stress has acquired remarkable credit. In numerous experimental studies it has been shown the occurrence of alcohol-induced generation of oxygen- and ethanol-derived free radicals through different pathways and from different sources. Mitochondria appear to be both an important source of reactive oxygen species (ROS) and also a primary target of ethanol-induced damage. The consistent induction of the mitochondrial antioxidant enzyme manganese superoxide dismutase (Mn-SOD) observed in experimental animals after acute and chronic ethanol administration has all the characteristics of a "stress response" to an oxidative insult.  相似文献   

5.
Wu J  Sowinska A  Huang X  Klein CB  Pelle E  Frenkel K 《Biometals》2012,25(5):927-937
Arsenite (As) causes transformation of human osteogenic sarcoma cells (HOS) when applied continuously at low doses (0.1-0.5?μM) during 8-weeks of exposure. However, the mechanisms by which As transforms human cells are not known. We investigated whether alterations occurred in gene expression and protein levels of antioxidant defense proteins, such as superoxide dismutase 1 (SOD1) and ferritin. In comparison to control HOS cells, 0.1?μM As induced greater cell proliferation and decreased anti-oxidant defenses. The tumor suppressor protein p53 was also decreased at both mRNA and protein levels. Further, pig3 (p53-induced-gene 3), a homolog of NQO1 (NADPH quinone oxidoreductase 1), was also down-regulated after 8?weeks of As challenge. The treatment of HOS cells with dicumarol, a NQO1 inhibitor, caused a dose-dependent decline in p53 protein levels, proving the effect of an antioxidant enzyme on p53 expression and, potentially, down-stream processes. Caffeic acid phenethyl ester, an antioxidant, prevented the As-induced decreases in SOD1, p53, and ferritin mRNA and protein levels. SOD1, p53 and ferritin levels were inversely related to As-induced cell proliferation. Cumulatively, these results strongly suggest that impairment in antioxidant defenses contributes to As-induced human cell transformation and that the p53 pathway is involved in the process.  相似文献   

6.
Abstract

We report a new, fast, sensitive variation of the total oxyradical scavenging capacity (TOSC) assay for measuring the antioxidant capacity of pure compounds, plant extracts and biological fluids using selected ion flow tube mass spectrometry (SIFT-MS). The TOSC assay examines the partial inhibition of ethene formation in the presence of antioxidants that compete with α-keto-γ-methiolbutyric acid (KMBA) for reactive oxygen species. The SIFT-MS-TOSC assay takes 15 s for each ethene analysis and the time interval between consecutive analyses is 20 s. We demonstrate the method by monitoring the antioxidant capacity of several standard radical scavengers of peroxyl radicals. For peroxyl radicals the measured SIFT-MS-TOSC concentrations necessary to produce 50% inhibition of radical reaction with KMBA are 6.1 ± 0.3 μM for Trolox, 5.7 ± 0.3 μM for ascorbic acid, 8.4 ± 0.4 μM for uric acid and 38 ± 2 μM for reduced glutathione.  相似文献   

7.
Dietary flaxseed (FS) is a nutritional whole grain with high contents of omega-3 fatty acids and lignans with anti-inflammatory and antioxidant properties. We evaluated FS in a murine model of pulmonary ischemia-reperfusion injury (IRI) by dietary supplementation of 0% (control) or 10% (treatment) FS before IRI. Mice fed 0% FS undergoing IRI had a significant decrease in arterial oxygenation (Pa(O(2))) and a significant increase in bronchoalveolar lavage (BAL) protein compared with sham-operated mice. However, mice fed 10% FS undergoing IRI had a significant improvement in both Pa(O(2)) and BAL protein compared with mice fed 0% FS undergoing IRI. In addition, oxidative lung damage was decreased in 10% FS-supplemented mice undergoing IRI, as assessed by malondialdehyde levels. Immunohistochemical staining of lungs for iPF(2alpha)-III F(2) isoprostane, a measure of lipid oxidation, was diminished. FS-supplemented mice had less reactive oxygen species (ROS) release from the vascular endothelium in lungs in an ex vivo model of IRI, and alveolar macrophages isolated from FS-fed mice had significantly reduced ROS generation in response to oxidative burst. Pulmonary microvascular endothelial cells produced less ROS in a flow cessation model of ischemia when preincubated with purified FS lignan metabolites. Pharmacological inhibition of heme oxygenase-1 (HO-1) resulted in only a partial reduction of FS protection in the same model. We conclude that dietary FS is protective against IRI in an experimental murine model and that FS affects ROS generation and ROS detoxification via pathways not limited to upregulation of antioxidant enzymes such as HO-1.  相似文献   

8.
Abstract

Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. A soluble protein from Saccharomyces cerevisiae specifically provides protection against a thiol-containing metal-catalyzed oxidation system (thiol/Fe3+/O2) but not against an oxidation system without thiol. This 25 kDa protein acts as a peroxidase but requires the NADPH-dependent thioredoxin system or a thiol-containing intermediate, and was named thioredoxin peroxidase (TPx). The role of TPx in the cellular defense against oxidative stress induced by singlet oxygen was investigated in Escherichia coli containing an expression vector with a yeast genomic DNA fragment that encodes TPx and mutant in which the catalytically essential amino acid cysteine (Cys-47) has been replaced with alanine by a site-directed mutagenesis. Upon exposure to methylene blue and visible light, which generates singlet oxygen, there was a distinct difference between the two strains in regard to growth kinetics, viability, the accumulation of oxidized proteins and lipids, and modulation of activities of superoxide dismutase and catalase. The results suggest that TPx may play an important protective role in a singlet oxygen-mediated cellular damage.  相似文献   

9.
10.
Abstract

We investigated the dosing-time dependency of acute resveratrol administration on lipoperoxidation level found in the heart, liver and kidney of male rats synchronized with a 12-h dark-light cycle. Resveratrol was administered by the i.p. route at the middle of the dark (6 h after dark onset, HADO) or light span (18 HADO) and thiobarbituric acid reactive species (TBARS) measured 4 h later at 10 and 22 HADO, respectively. Basal TBARS levels in the three organs were higher during the night span when compared to day span. Resveratrol effect on tissues TBARS was also dosing-time dependent. When administered during the dark phase, resveratrol decreased TBARS levels whereas at the light span, the polyphenol increased TBARS in the three organs. Resveratrol behaved as an antioxidant during the dark span and as a pro-oxidant during the light span. These data suggested a day/night rhythm in basal lipoperoxidation and in resveratrol antioxidant effect.  相似文献   

11.
Ohtani T  Nakamura T  Toda K  Furukawa F 《FEBS letters》2006,580(6):1597-1600
Cyclophosphamide (CPA) is one of the therapeutic agents for systemic inflammatory disorders. In murine dermal endothelial cells (F-2), 4-hydroxycyclophosphamide (4-HC), which is active metabolite of CPA, enhanced TNF-alpha-induced DNA fragmentation. In addition, 4-HC was shown to elevate TNF-alpha-induced caspase-3 activation. Caspase-8 activation was identified by the treatment of TNF-alpha, whereas 4-HC was no effect. In contrast, only when treated with 4-HC, caspase-9 activation and the increase in the intracellular expression of Bax were detected. These results suggest that CPA may sensitize endothelial cells to TNF-alpha-induced apoptosis through a mitochondria-dependent pathway and clinically may contribute to the limitation of inflammatory process.  相似文献   

12.
13.
Abstract

Objectives

Oxidative stress (OS) is defined as an imbalance in the production of reactive oxygen species and the capacity of antioxidant defenses. The objective of this work was to investigate OS and antioxidant capacity in pregnant women.

Methods

Parameters of the oxidative status and antioxidant capacity in serum and whole blood were evaluated in thirty-nine women with normal pregnancy.

Results

The assessment of antioxidants indicated an increase in superoxide dismutase and catalase activities (P < 0.05 and P < 0.01) and a decrease in ascorbic acid levels and the total content of sulfhydryl (P < 0.05 and P < 0.001). Additionally, when the pro-oxidant system was investigated we found an increase (P < 0.01) in malondialdehyde and no significant change (P > 0.05) in protein carbonylation.

Discussion

This study demonstrates that there is a change in the pro-oxidant and antioxidant defenses associated with body and circulation changes that are inherent to the pregnancy process.  相似文献   

14.
15.
Cobalt ions can enhance the generation of reactive oxygen species (ROS), which may be the reason for cobalt toxicity. This study aimed to determine whether Co(2+) toxicity in goldfish is related to induced oxidative stress in gills, heart and spleen, and to assess responses of antioxidant systems. Exposure of goldfish to 50, 100 and 150 mg L(-1) of Co(2+) for 96 h elevated total hemoglobin in blood by 23, 44 and 78%, respectively. In gills, cobalt exposure enhanced lipid peroxide levels and activities of primary antioxidant enzymes; superoxide dismutase (SOD) rose by 125% and glutathione peroxidase (GPx) increased by 53-296%. Glutathione-S-transferase (GST) activity also increased by 117-157% and glucose-6-phosphate dehydrogenase (G6PDH) enhanced by 46-96%. Heart showed limited effects of fish exposure to 50 or 100 mg L(-1) of Co(2+), but the exposure to 150 mg L(-1) of Co(2+) elevated concentrations of lipid peroxides by 123% and activities of GPx by 98% and SOD by 208%. The most substantial effects of goldfish exposure to Co(2+) were observed in spleen: a decrease in total protein concentration by 44-60% and high molecular mass thiols by 59-82%, reduced activities of catalase by 24-58% and GR by 25-68%, whereas the level of low molecular mass thiols increased by 153-279% and activities of GPx, GST, G6PDH were enhanced by 114-120%, 192-769%, and 256-581%, respectively. The data show that fish exposure to 50-150 mg L(-1) of Co(2+) elevates blood hemoglobin level, mimicking effects of hypoxia, and causes the activation of defense systems against ROS.  相似文献   

16.
Platelets are key players in fundamental processes of vascular biology, such as angiogenesis, tissue regeneration, and tumor metastasis. However, the underlying mechanisms remain unclear. In this study, some tumor vascular endothelial cells were positively stained by antiplatelet antibodies. Further investigation revealed that platelets were taken up by endothelial cells in vitro and in vivo. Human umbilical vascular endothelial cells were rendered apoptotic under conditions of serum deprivation. However, endothelial apoptosis was suppressed and cell viability was enhanced when platelets were added to the cultures. Endothelial survival was paralleled by an upregulation of phosphorylated Akt and p70 S6K. In conclusion, this study demonstrated that platelets can be phagocytosed by endothelial cells, and the phagocytosed platelets could suppress endothelial apoptosis and promote cell viability level. The mechanism underlying this process involves the activation of Akt signaling.  相似文献   

17.

Background  

Airborne particulate matter, from cooking oil, smoking, engine exhaust and other sources, is associated with the development of atherosclerosis and myocardial infarction. In order to explore the cellular and molecular events following exposure of rats to lard oil smoke, we measured the generation of reactive oxygen species (ROS), substance P, cellular adhesion molecules, and thrombosis in relation to inhibitors of substance P, the NK-1 receptor, and antioxidants.  相似文献   

18.
Is the typical zinc (Zn) content of honey and pollen sufficient to meet the nutritional requirements of honey bees? To answer this question, and find the optimal dietary Zn levels for honey bees, we investigated the effects of varying dietary Zn levels on both captive worker bees and free‐flying honey bees, Apis mellifera ligustica Spinola (Hymenoptera: Apidae). We fed captive workers and free‐flying honey bees with 50% (wt/wt) sucrose solutions with Zn levels of either 0, 15, 30, 45, 60, or 75 mg kg?1 diet and measured their Cu/Zn‐SOD activity, the mean survival time of captive bees, the Cu/Zn‐SOD activity of larvae, and the Zn concentration of royal jelly. Captive workers provided with 30 mg kg?1 dietary Zn had higher Cu/Zn‐SOD activity and mean survival time than the control. Dietary Zn levels from 60 to 75 mg kg?1 significantly increased the Zn content of royal jelly provided by colonies and the Cu/Zn‐SOD activity of larvae. Honey or pollen with a Zn content of <30 mg kg?1 was insufficient to satisfy the maintenance nutritional requirements of bees that were not raising larvae. It therefore seems advisable to supply supplementary Zn to non‐brooding colonies when the Zn content of honey or pollen is <30 mg kg?1. Honey or pollen with a Zn content of 60 mg kg?1 was sufficient to satisfy the nutritional requirements for royal jelly production and to improve the health of larvae. It may therefore also be advisable to provide supplementary Zn to colonies with larvae when the Zn content of honey or pollen is <60 mg kg?1.  相似文献   

19.
Repair of the endothelium occurs in the presence of continued blood flow, yet the mechanisms by which shear forces affect endothelial wound closure remain elusive. Therefore, we tested the hypothesis that shear stress enhances endothelial cell wound closure. Human umbilical vein endothelial cells (HUVEC) or human coronary artery endothelial cells (HCAEC) were cultured on type I collagen-coated coverslips. Cell monolayers were sheared for 18 h in a parallel-plate flow chamber at 12 dyn/cm(2) to attain cellular alignment and then wounded by scraping with a metal spatula. Subsequently, the monolayers were exposed to a laminar shear stress of 3, 12, or 20 dyn/cm(2) under shear-wound-shear (S-W-sH) or shear-wound-static (S-W-sT) conditions for 6 h. Wound closure was measured as a percentage of original wound width. Cell area, centroid-to-centroid distance, and cell velocity were also measured. HUVEC wounds in the S-W-sH group exposed to 3, 12, or 20 dyn/cm(2) closed to 21, 39, or 50%, respectively, compared with only 59% in the S-W-sT cells. Similarly, HCAEC wounds closed to 29, 49, or 33% (S-W-sH) compared with 58% in the S-W-sT cells. Cell spreading and migration, but not proliferation, were the major mechanisms accounting for the increases in wound closure rate. These results suggest that physiological levels of shear stress enhance endothelial repair.  相似文献   

20.
We used fluorescent probes and EPR to study the mechanism(s) underlying reactive oxygen species (ROS) production by endothelial cell mitochondria and the action of mitoquinol, a mitochondria-targeted antioxidant. ROS measured by fluorescence resulted from complex I superoxide released to the matrix and converted to H(2)O(2). In contrast, EPR largely detected superoxide generated at complex III and effluxed outward. ROS fluorescence by mitochondria fueled by the complex II substrate, succinate, was substantial but markedly inhibited by rotenone. Superoxide, detected by EPR, in succinate-fueled mitochondria was not inhibited by rotenone and likely derived from semiquinone formation at complex III. Mitoquinol decreased H(2)O(2) fluorescence by succinate-fueled mitochondria but had little effect on the EPR signal for superoxide. This was not associated with a detectable decrease in membrane potential. Mitoquinol markedly enhanced ROS fluorescence in mitochondria fueled by the complex I substrates, glutamate and malate. Inhibitor studies suggested that this occurred in complex I, at one or more Q binding pockets. The above effects of mitoquinol were determined in mitochondria isolated and subsequently exposed to the targeted antioxidant. However, similar effects were observed in mitochondria after antecedent exposure to mitoquinol/mitoquinone in culture, suggesting that the agent is retained after isolation of the organelles. In conclusion, ROS production in bovine aortic endothelial cell mitochondria results largely from reverse transport to complex I and through the Q cycle in complex III. Mitoquinol blocks ROS from reverse electron transport but increases superoxide production derived from forward transport. These effects likely occur at one or more Q binding sites in complex I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号