首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteomic screening of complex biologic samples is of increasing importance in clinical research and diagnosis. In the postgenomic area it is evident that changes of the composition of body fluids, as well as post-translational modifications of proteins and peptides, provide more information than genetic typing. The study of these changes allows the state of health or disease of particular organs, and consequently, the whole organism, to be described. This review describes the application of capillary electrophoresis coupled online to an electrospray ionization time-of-flight mass spectrometer to the analysis of body fluids obtained from patients for the identification of biomarkers for diagnostic purposes.  相似文献   

2.
Recent developments in combined separations with mass spectrometry for sensitive and high-throughput proteomic analyses are reviewed herein. These developments primarily involve high-efficiency (separation peak capacities of ~103) nanoscale liquid chromatography (flow rates extending down to approximately 20 nl/min at optimal liquid mobile-phase separation linear velocities through narrow packed capillaries) in combination with advanced mass spectrometry and in particular, high-sensitivity and high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Such approaches enable analysis of low nanogram level proteomic samples (i.e., nanoscale proteomics) with individual protein identification sensitivity at the low zeptomole level. The resultant protein measurement dynamic range can approach 106 for nanogram-sized proteomic samples, while more abundant proteins can be detected from subpicogram-sized (total) proteome samples. These qualities provide the foundation for proteomics studies of single or small populations of cells. The instrumental robustness required for automation and providing high-quality routine performance nanoscale proteomic analyses is also discussed.  相似文献   

3.
Application of proteomics for discovery of protein biomarkers.   总被引:2,自引:0,他引:2  
Biomarkers of drug efficacy and toxicity are becoming a key need in the drug development process. Mass spectral-based proteomic technologies are ideally suited for the discovery of protein biomarkers in the absence of any prior knowledge of quantitative changes in protein levels. The success of any biomarker discovery effort will depend upon the quality of samples analysed, the ability to generate quantitative information on relative protein levels and the ability to readily interpret the data generated. This review will focus on the strengths and weaknesses of technologies currently utilised to address these issues.  相似文献   

4.
Introduction: Amyotrophic lateral sclerosis (ALS) is a progressive degenerative motor neuron disease, which usually leads to death within a few years. The diagnosis is mainly based on clinical symptoms and there is a need for ALS-specific biomarkers to make an early and precise diagnosis, for development of disease-modifying drugs and to gain new insights into pathophysiology.

Areas covered: In the present review, we summarize studies using mass spectrometric (MS) approaches to identify protein alterations in the cerebrospinal fluid (CSF) of ALS patients. In total, we identified 11 studies fulfilling our criteria by searching in the PubMed database using the keywords ‘ALS’ and ‘CSF’ combined with ‘proteome’, ‘proteomic’, ‘mass spectrometry’ or ‘protein biomarker’. Ten proteins were differently regulated in ALS CSF compared to controls in at least 2 studies. We will discuss the relevance of the identified proteins regarding the frequency of identification, extent of alteration and brain-specificity.

Expert commentary: Most of the identified CSF biomarker candidates are irreproducible or mainly blood-derived. We assign the missing success of CSF proteomic studies in biomarker discovery to a lack of sensitivity, unsuitable normalization, low quality assurance and variations originating from sample preparation. These issues must be improved in future proteomic studies in CSF.  相似文献   


5.
An important component of proteomic research is the high-throughput discovery of novel proteins and protein–protein interactions that control molecular events that contribute to critical cellular functions and human disease. The interactions of proteins are essential for cellular functions. Identifying perturbation of normal cellular protein interactions is vital for understanding the disease process and intervening to control the disease. A second area of proteomics research is the discovery of proteins that will serve as biomarkers for the early detection, diagnosis and drug treatment response for specific diseases. These studies have been referred to as clinical proteomics. To discover biomarkers, proteomics research employs the quantitative comparison of peptide and protein expression in body fluids and tissues from diseased individuals (case) versus normal individuals (control). Methods that couple 2D capillary liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis have greatly facilitated this discovery science. Coupling 2D-LC/MS/MS analysis with automated genome-assisted spectra interpretation allows a direct, high-throughput and high-sensitivity identification of thousands of individual proteins from complex biological samples. The systematic comparison of experimental conditions and controls allows protein function or disease states to be modeled. This review discusses the different purification and quantification strategies that have been developed and used in combination with 2D-LC/MS/MS and computational analysis to examine regulatory protein networks and clinical samples.  相似文献   

6.
The cornerstone of proteomics resides in using traditional methods of protein chemistry, to extract and resolve complex mixtures, in concert with the powerful engines of mass spectrometry to decipher peptide and protein identities. The broad utility of proteomics technologies to map protein interactions, understand regulatory mechanisms and identify biomarkers associated with disease states and drug treatments necessitates a targeted biochemical approach tailored to the characteristics of the tissue, fluid or cellular extract being studied. The application of affinity methods in proteomic studies to focus on particular classes of molecules is being used with increasing frequency and comprises the subject of this review. An overview of successfully applied affinity methods is provided, along with speculation on the use of innovative approaches. Sample preparation and processing are critical for proteomics with affinity reagents, as only functional and active proteins can be isolated in most cases. Considerations for methods of sample preparation to optimize affinity capture and release are also discussed.  相似文献   

7.
《Biomarkers》2013,18(4):367-377
Although cigarette smoking is recognized as the most important cause of chronic obstructive pulmonary disease (COPD), the pathophysiological mechanisms underlying the lung function decline are not well understood. Using off-line strong cation exchange fractionation with RP-LC-ESI-MS/MS and robust database searching, 1758 tryptic peptides were identified in plasma samples from cigarette smokers. Using two statistical approaches, 30 peptides were identified to be associated with the annualized rate of lung function decline over 5 years among smokers with COPD characterized as having rapid (n?=?18) or slow (n?=?18) decline and 18 smokers without COPD. The identified peptides belong to proteins that are involved in the complement or coagulation systems or have antiprotease or metabolic functions. This research demonstrates the utility of proteomic profiling to improve the understanding of molecular mechanisms involved in cigarette smoking-related COPD by identifying plasma proteins that correlate with decline in lung function.  相似文献   

8.
Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.  相似文献   

9.
Introduction: Chemoresistance is a major challenge to current ovarian cancer chemotherapy. It is important to identify biomarkers to distinguish chemosensitive and chemoresistant patients.

Areas covered: We review the medical literature, discuss MS-based technologies with respect to chemoresistant ovarian cancer and summarize the promising chemoresistant biomarkers identified. In addition, the challenges and future perspectives of biomarker discovery research are explored. With the employment of mass spectrometry-based (MS-based) proteomics, biomarker discovery of ovarian cancer has made great progress in the last decade. Many potential biomarkers were identified by MS-based proteomics technologies, some of which have been validated for further extensive studies in clinical settings.

Expert commentary: The discovery of chemoresistant biomarkers is a newly developing area and may provide a clue for predicting chemotherapeutic response and discover therapeutic targets for paving the way of personalized medicine. Multiple complementary MS-based proteomics approaches hold promise for finding novel therapeutic targets in ovarian cancer treatment.  相似文献   


10.
Wang Y  Karu K  Griffiths WJ 《Biochimie》2007,89(2):182-191
In man the brain represents about 2% of the body weight, but contains 25% of the body's cholesterol. Cholesterol itself does not cross the blood-brain barrier and is synthesised in situ. Excess cholesterol from brain is exported in the form of oxysterols, or metabolised to steroids, which in contrast to cholesterol can cross the blood-brain barrier. Steroids and oxysterols may be synthesised in brain, but can also be transported into brain from peripheral tissue. Both oxysterols and steroids have biological activity in brain. They can behave as ligands for classical nuclear receptors, and exert their effects over hours to days, or interact with neurotransmitter gated ion channels and modulate neural transmission exerting their effects in milliseconds. The exact sterol and steroid content of brain has yet to be thoroughly characterised. In this mini-review we will discuss mass spectrometry methods for the analysis of steroids and sterols in brain, and propose methods suitable for the profiling of different brain regions with high sensitivity (sub pg) and specificity.  相似文献   

11.
Introduction: Mass spectrometry (MS) is widely used in the characterization of biomolecules including peptide and protein therapeutics. These biotechnology products have seen rapid growth over the past few decades and continue to dominate the global pharmaceutical market. Advances in MS instrumentation and techniques have enhanced protein characterization capabilities and supported an increased development of biopharmaceutical products.

Areas covered: This review describes recent developments in MS-based biotherapeutic analysis including sequence determination, post-translational modifications (PTMs) and higher order structure (HOS) analysis along with improvements in ionization and dissociation methods. An outlook of emerging applications of MS in the lifecycle of product development such as comparability, biosimilarity and quality control practices is also presented.

Expert commentary: MS-based methods have established their utility in the analysis of new biotechnology products and their lifecycle appropriate implementation. In the future, MS will likely continue to grow as one of the leading protein identification and characterization techniques in the biopharmaceutical industry landscape.  相似文献   


12.
The search for biomarkers is driven by the increasing clinical importance of early diagnosis. Reliable biomarkers can also assist in directing therapy, monitoring disease activity and the efficacy of treatment. In addition, the discovery of novel biomarkers might provide clues to the pathogenesis of a disease. The dynamic range of protein concentrations in body fluids exceeds 10 orders of magnitude. These huge differences in concentrations complicate the detection of proteins with low expression levels. Since all classical biomarkers have low expression levels (e.g., prostate-specific antigen: 2–4 µg/l; and CA125: 20–35 U/ml), new developments with respect to identification and validation techniques of the low-abundance proteins are required. This review will discuss the current status of profiling cerebrospinal fluid using mass spectrometry-based techniques, and new developments in this area.  相似文献   

13.
生物质谱与蛋白质组学   总被引:4,自引:0,他引:4  
蛋白质组学是后基因组学时代最受关注的研究领域之一,其核心的鉴定技术——生物质谱近年来在仪器设计以及鉴定通量、分辨率和灵敏度等各方面均有质的飞跃,促进了蛋白质表达谱作图、定量蛋白质组分析、亚细胞器蛋白质组作图、蛋白质翻译后修饰以及蛋白质相互作用等蛋白质组研究各个领域的飞速发展。本综述了生物质谱技术的最新进展,及其在蛋白质组学研究中的应用。  相似文献   

14.
Due to the enormous complexity of the proteome, focus in proteomics shifts more and more from the study of the complete proteome to the targeted analysis of part of the proteome. The isolation of this specific part of the proteome generally includes an affinity-based enrichment. Surface plasmon resonance (SPR), a label-free technique able to follow enrichment in real-time and in a semiquantitative manner, is an emerging tool for targeted affinity enrichment. Furthermore, in combination with mass spectrometry (MS), SPR can be used to both selectively enrich for and identify proteins from a complex sample. Here we illustrate the use of SPR-MS to solve proteomics-based research questions, describing applications that use very different types of immobilized components: such as small (drug or messenger) molecules, peptides, DNA and proteins. We evaluate the current possibilities and limitations and discuss the future developments of the SPR-MS technique.  相似文献   

15.
Two mass spectrometric methods were established for the quantitative analyses of alpha-tocopherol (TH) and its oxidation product alpha-tocopherolquinone (TQ) in human plasma. Both methods make use of isotopically labeled internal standards of different levels of deuteration (d3-TH and d6-TQ). Plasma (100 microl) was saponified in the presence of a mixture of antioxidants, and then TH and TQ were extracted with hexane. With the GC-MS method, the analytes were first converted into O-trimethylsilyl derivatives before analysis in the selective ion monitoring mode. The derivatization procedure led to the quantitative conversion of TQ into the O-trimethylsilyl derivative of tocopherolhydroquinone, giving rise to a more stable molecule with less fragmentation than for TQ. The increased stability of the molecule resulted in an enhanced contribution of the base peak to the total observed ions and therefore an increased sensitivity of the base peak for quantification. With the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, TH and TQ were detected by multiple reaction monitoring after positive electrospray ionization. The GC-MS and LC-MS/MS methods showed nearly the same accuracy (>95%) and the same within-day precisions, with less than 5 and 10% for TH and TQ, respectively. The between-day precision and the limit of quantification for TQ in plasma were better by LC-MS/MS (4%; 3 nM) than by GC-MS (21%; 10 nM). Analysis and method validation were carried out with plasma samples obtained from a male volunteer pre- and postexercise. Both techniques showed that the ratio of TQ/TH was elevated by 35% immediately after exercise and had returned to basal levels when measured 24 h later.  相似文献   

16.
Ubiquitin signaling regulates a wide variety of cellular events, although it is mostly known to mediate protein degradation by the proteasome complex. The rapid development in mass spectrometry offers state-of-the-art technologies for addressing biological challenges in ubiquitin signaling. The First Conference on Proteomics of Protein Degradation & Ubiquitin Pathways in Vancouver, Canada, covers the latest progress in key topics of the field and fosters collaborative interactions among researchers.  相似文献   

17.
Papaver alkaloids play a major role in medicine and pharmacy. In this study, [ring-(13)C(6)]-tyramine as a biogenetic precursor of these alkaloids was fed to Papaver somniferum seedlings. The alkaloid pattern was elucidated both by direct infusion high-resolution ESI-FT-ICR mass spectrometry and liquid chromatography/electrospray tandem mass spectrometry. Thus, based on this procedure, the structure of about 20 alkaloids displaying an incorporation of the labeled tyramine could be elucidated. These alkaloids belong to different classes, e.g. morphinan, benzylisoquinoline, protoberberine, benzo[c]phenanthridine, phthalide isoquinoline and protopine. The valuable information gained from the alkaloid profile demonstrates that the combination of these two spectrometric methods represents a powerful tool for evaluating biochemical pathways and facilitates the study of the flux of distant precursors into these natural products.  相似文献   

18.
Introduction: The accurate and comprehensive determination of peptide hormones from biological fluids has represented a considerable challenge to analytical chemists for decades. Besides long-established bioanalytical ligand binding assays (or ELISA, RIA, etc.), more and more mass spectrometry-based methods have been developed recently for purposes commonly referred to as targeted proteomics. Eventually the combination of both, analyte extraction by immunoaffinity and subsequent detection by mass spectrometry, has shown to synergistically enhance the test methods’ performance characteristics.

Areas covered: The review provides an overview about the actual state of existing methods and applications concerning the analysis of endogenous peptide hormones. Here, special focus is on recent developments considering the extraction procedures with immobilized antibodies, the subsequent separation of target analytes, and their detection by mass spectrometry.

Expert commentary: Key aspects of procedures aiming at the detection and/or quantification of peptidic analytes in biological matrices have experienced considerable improvements in the last decade, particularly in terms of the assays’ sensitivity, the option of multiplexing target compounds, automatization, and high throughput operation. Despite these advances and progress as expected to be seen in the near future, immunoaffinity purification coupled to mass spectrometry is not yet a standard procedure in routine analysis compared to ELISA/RIA.  相似文献   


19.
The discovery of functional protein complex and the interrogation of the complex structure-function relationship (SFR) play crucial roles in the understanding and intervention of biological processes. Affinity purification-mass spectrometry (AP-MS) has been proved as a powerful tool in the discovery of protein complexes. However, validation of these novel protein complexes as well as elucidation of their molecular interaction mechanisms are still challenging. Recently, native top-down MS (nTDMS) is rapidly developed for the structural analysis of protein complexes. In this review, we discuss the integration of AP-MS and nTDMS in the discovery and structural characterization of functional protein complexes. Further, we think the emerging artificial intelligence (AI)-based protein structure prediction is highly complementary to nTDMS and can promote each other. We expect the hybridization of integrated structural MS with AI prediction to be a powerful workflow in the discovery and SFR investigation of functional protein complexes.  相似文献   

20.
Introduction: Endometrial cancer (EC) is the fourth most common cancer in women in developed countries. The identification of sensitive and specific biomarkers to improve early detection of EC is crucial for an appropriate management of this disease, in which 30% of patients are diagnosed only at advanced stages, which is associated with high levels of morbidity and mortality. Despite major efforts and investments made to identify EC biomarkers, no protein has yet reached the stage of clinical application.

Areas covered: This review gathers the numerous candidate biomarkers for EC diagnosis proposed in proteomic studies published from 1978 to 2017. Additionally, we summarize limitations associated with the proteomic technologies and study designs employed in those articles. Finally, we address new perspectives in EC biomarker research, including the comprehensive knowledge of previously suggested candidate biomarkers in conjunction with novel mass spectrometry-based proteomic technologies with enhanced sensitivity and specificity not yet applied to EC studies and a directed clinical perspective in the study design.

Expert commentary: These ingredients could be the recipe to accelerate the application of protein biomarkers in the clinic.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号