首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
The aim of this study was to test the hypothesis that a decreased myocardial concentration of reduced glutathione (GSH) during ischemia renders the myocardium more susceptible to injury by reactive oxygen species generated during early reperfusion. To this end, rats were pretreated with L-buthionine-S,R-sulfoximine (2 mmol/kg), which depleted myocardial GSH by 55%. Isolated buffer-perfused hearts were subjected to 30 min of either hypothermic or normothermic no-flow ischemia followed by reperfusion. Prior depletion of myocardial GSH did not lead to oxidative stress during reperfusion, as myocardial concentration of glutathione disulfide (GSSG) was not increased after 5 and 30 min of reperfusion. In addition, prior depletion of GSH did not exacerbate myocardial enzyme release, nor did it impair the recoveries of tissue ATP, coronary flow rate and left ventricular developed pressure during reperfusion after either hypothermic or normothermic ischemia. Even administration of the prooxidant cumene hydroperoxide (20 M) to postischemic GSH-depleted hearts during the first 10 min of reperfusion did not aggravate postischemic injury, although this prooxidant load induced oxidative stress, as indicated by an increased myocardial concentration of GSSG. These results do not support the hypothesis that a reduced myocardial concentration of GSH during ischemia increases the susceptibility to injury mediated by reactive oxygen species generated during reperfusion. Apparently, myocardial tissue possesses a large excess of GSH compared to the quantity of reactive oxygen species generated upon reperfusion. (Mol Cell Biochem 156: 79-85, 1996)  相似文献   

3.
Lipid peroxide‐derived reactive carbonyl species (RCS), generated downstream of reactive oxygen species (ROS), are critical damage‐inducing species in plant aluminum (Al) toxicity. In mammals, RCS are scavenged primarily by glutathione (reduced form of glutathione, GSH), but in plant Al stress, contribution of GSH to RCS detoxification has not been evaluated. In this study, Arabidopsis plants overexpressing the gene AtGR1 (accession code At3g24170), encoding glutathione reductase (GR), were generated, and their performance under Al stress was examined. These transgenic plants (GR‐OE plants) showed higher GSH levels and GSH/GSSG (oxidized form of GSH) ratio, and an improved Al tolerance as they suffered less inhibition of root growth than wild‐type under Al stress. Exogenous application of 4‐hydroxy‐2‐nonenal, an RCS responsible for Al toxicity in roots, markedly inhibited root growth in wild‐type plants. GR‐OE plants suffered significantly smaller inhibition, indicating that the enhanced GSH level increased the capacity of RCS detoxification. The generation of H2O2 due to Al stress in GR‐OE plants was lower by 26% than in wild‐type. Levels of various RCS, such as malondialdehyde, butyraldehyde, phenylacetaldehyde, (E)‐2‐heptenal and n‐octanal, were suppressed by more than 50%. These results indicate that high levels of GSH and GSH/GSSG ratio by GR overexpression contributed to the suppression of not only ROS, but also RCS. Thus, the maintenance of GSH level by overexpressing GR reinforces dual detoxification functions in plants and is an efficient approach to enhance Al tolerance.  相似文献   

4.
Abstract

Pyrroloquinoline quinone (PQQ), a bacterial redox co-factor and antioxidant, is highly reactive with nucleophilic compounds present in biological fluids. PQQ induced apoptosis in human promonocytic leukemia U937 cells and this was accompanied by depletion of the major cellular antioxidant glutathione and increase in intracellular reactive oxygen species (ROS). Treatment with glutathione (GSH) or N-acetyl-L-cysteine (NAC) did not spare PQQ toxicity but resulted in a 2–5-fold increase in PQQ-induced apoptosis in U937 cells. Cellular GSH levels increased following treatment by NAC alone but were severely depleted by co-treatment with NAC and PQQ. This was accompanied by an increase in intracellular ROS. Alternatively, depletion of glutathione also resulted in increased PQQ cytotoxicity. However, the cells underwent necrosis as evidenced by dual labeling with annexin V and propidium iodide. PQQ-induced cytotoxicity is thus critically regulated by the cellular redox status. An increase in GSH can augment apoptosis and its depletion can switch the mode of cell death to necrosis in the presence of PQQ. Our data suggest that modulation of intracellular GSH can be used as an effective strategy to potentiate cytotoxicity of quinones like PQQ.  相似文献   

5.
《Free radical research》2013,47(10):1183-1189
Abstract

Growth hormone (GH) transgenic fish have dramatically enhanced growth rates, increased oxygen demands and reactive oxygen species production. GH-transgenic coho salmon provide an opportunity to address effects of increased metabolism on physiological aging. The objective of this study was to compare oxidative stress in wild-type (WT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch) of different ages (1 and 2 years). Antioxidant enzyme activity, protein carbonyls (PC) and glutathione (GSH, GSSG) were measured. PC correlated to growth rates in individual fish. T fish exhibited lower antioxidant enzyme activities and GSH levels compared to the WT, while levels of PC and GSSG were higher. Age affects were observed in both WT and T fish; enzyme activities and GSH decreased while PC and GSSG increased. Our results support the metabolic rate theory of aging. This study aims to be a platform for continued studies of the theories of aging using fish as model organisms.  相似文献   

6.
There is much information about glutathione (GSH) in eukaryotic cells, but relatively little is known about GSH in prokaryotes. Without GSH and glutathione redox cycle lactic acid bacteria (LAB) cannot protect themselves against reactive oxygen species. Previously we have shown the presence of GSH in Lactobacillus fermentum ME-3 (DSM14241). Results of this study show that probiotic L. fermentum ME-3 contains both glutathione peroxidase and glutathione reductase. We also present that L. fermentum ME-3 can transport GSH from environment and synthesize GSH. This means that it is characterized by a complete glutathione system: synthesis, uptake and redox turnover ability that makes L. fermentum ME-3 a perfect protector against oxidative stress. To our best knowledge studies on existence of the complete glutathione system in probiotic LAB strains are still absent and glutathione synthesis in them has not been demonstrated.  相似文献   

7.
Ozone produces reactive oxygen species and induces the synthesis of phytohormones, including ethylene and salicylic acid. These phytohormones act as signal molecules that enhance cell death in response to ozone exposure. However, some studies have shown that ethylene and salicylic acid can instead decrease the magnitude of ozone‐induced cell death. Therefore, we studied the defensive roles of ethylene and salicylic acid against ozone. Unlike the wild‐type, Col‐0, Arabidopsis mutants deficient in ethylene signaling (ein2) or salicylic acid biosynthesis (sid2) generated high levels of superoxide and exhibited visible leaf injury, indicating that ethylene and salicylic acid can reduce ozone damage. Macroarray analysis suggested that the ethylene and salicylic acid defects influenced glutathione (GSH) metabolism. Increases in the reduced form of GSH occurred in Col‐0 6 h after ozone exposure, but little GSH was detected in ein2 and sid2 mutants, suggesting that GSH levels were affected by ethylene or salicylic acid signaling. We performed gene expression analysis by real‐time polymerase chain reaction using genes involved in GSH metabolism. Induction of γ‐glutamylcysteine synthetase (GSH1), glutathione synthetase (GSH2), and glutathione reductase 1 (GR1) expression occurred normally in Col‐0, but at much lower levels in ein2 and sid2. Enzymatic activities of GSH1 and GSH2 in ein2 and sid2 were significantly lower than in Col‐0. Moreover, ozone‐induced leaf damage observed in ein2 and sid2 was mitigated by artificial elevation of GSH content. Our results suggest that ethylene and salicylic acid protect against ozone‐induced leaf injury by increasing de novo biosynthesis of GSH.  相似文献   

8.
Abstract

Objective: Multiple pregnancy is associated with an enhanced metabolism and demand for O2, which may lead to the overproduction of reactive oxygen species and the development of oxidative stress. The degree of oxidative damage depends on the level of the antioxidant protection system of the foetus. The objective of the study was to identify the relationship between the state of the maturity and the antioxidant status of twin neonates. Investigations of the umbilical cord blood were carried out to detect differences in the antioxidant defence system between mature and premature twin neonates.

Methods: The activities of the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) enzymes, the levels of reduced glutathione (GSH), protein carbonyls and oxidized lipids and the total antioxidant capacity of the plasma were determined.

Results: The level of lipid peroxidation was significantly higher in the premature neonates. An increase in the total antioxidant capacity was accompanied by a decrease in the damaged protein concentration. Significantly elevated activities of GPx alone were observed in the premature twins, though the GSH content too tended to be increased. The activity of SOD was decreased in the premature neonates.

Discussion: The antioxidant status of twin neonates are mainly influenced by maturity. We suggest that the level of lipid peroxidation might be of clinical value as a marker of pre- and perinatal distress in twins.  相似文献   

9.
《Free radical research》2013,47(5):600-610
Abstract

γ-Glutamyltransferase (GGT) plays a significant role in antioxidant defence and participates in the metabolism of glutathione (GSH). The enzyme is up-regulated after acute oxidative stress and during pro-oxidant periods, but the underlying regulatory mechanisms are not well known. The present investigation studied whether the endogenous reactive oxygen species (ROS) level was a determinant for GGT expression. A substantial amount of ROS is produced through the NADPH oxidase (NOX) system and knockdown of p22phox, a sub-unit of NOX1-4, resulted not only in reduced ROS levels but also in reduced GGT expression in human endometrial carcinoma cells. Phorbol-12-myristate-13-acetate (PMA) is an activator of NOX and it was found that PMA treatment of human colon carcinoma cells both increased cellular ROS levels and subsequently up-regulated GGT expression. On the other hand, the NOX inhibitor apocynin reduced ROS levels as well as GGT expression. The GGT mRNA sub-type A was increased after PMA-induced NOX activation. These results demonstrate that ROS generated from NOX enzymes are a significant determinant for GGT expression and activity.  相似文献   

10.
We examined the involvement of intracellular glutathione (GSH) in methyl jasmonate (MeJA) signaling. The chlorina1-1 (ch1-1) mutation decreased GSH in guard cells and narrowed the stomatal aperture. GSH monoethyl ester increased intracellular GSH, diminishing this phenotype. GSH did not affect MeJA-induced reactive oxygen species production or cytosolic Ca2+ oscillation, suggesting that GSH modulates MeJA signaling downstream of production and oscillation.  相似文献   

11.
Abstract

Background: Despite the importance of oxidative stress and apoptosis through mitochondrial depolarization in neurodegenerative diseases, their roles in etiology of glaucoma are poorly understood. We aimed to investigate whether oxidative stress and apoptosis formation are altered in rat pheochromocytoma-derived cell line-12 (PC12) neuronal cell cultures exposed to elevated different hydrostatic pressures as a cell culture model of glaucoma. Materials: Cultured PC12 cells were subjected to 0, 15 and 70?mmHg hydrostatic pressure for 1 and 24?h. Then, the following values were analyzed: (a) cell viability; (b) lipid peroxidation and intracellular reactive oxygen species production; (c) mitochondrial membrane depolarization; (d) cell apoptosis; (e) caspase-3 and caspase-9 activities; (f) reduced glutathione (GSH) and glutathione peroxidase (GSH-Px). Results: The hydrostatic pressures (15 and 70?mmHg) increased oxidative cell damage through a decrease of GSH and GSH-Px values, and increasing mitochondrial membrane potential. Additionally, 70?mmHg hydrostatic pressure for 24?h indicated highest apoptotic effects, as demonstrated by plate reader analyses of apoptosis, caspase-3 and -9 values. Conclusion: The present data indicated oxidative stress, apoptosis and mitochondrial changes in PC12 cell line during different hydrostatic pressure as a cell culture model of glaucoma. This findings support the view that mitochondrial oxidative injury contributes early to glaucomatous optic neuropathy.  相似文献   

12.
《Free radical research》2013,47(4):503-510
Abstract

Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy affecting adults and is due to trinucleotide sequence (CTG) in the 3′ UTR region of DMPK gene located at 19q13.3 chromosome. The pathogenic mechanisms of multisystemic involvement of DM1 are still unclear. The increased levels of reactive oxygen species/free radicals and lipid peroxides and decreased antioxidant levels play an important role in the pathogenesis of DM1. Present study includes 20 DM1 patients and 40 age- and sex-matched controls. Malonilaldehyde (MDA), superoxide dismutase (SOD), glutathione peroxidise (GPX), glutathione-S-transferase (GST), reduced glutathione (GSH), and TAS levels were measured and its association with clinical phenotype were evaluated. Results revealed significantly higher levels of MDA (p = 0.002), SOD (p = 0.006), and TAS p = 0.004) and lower level of GPX (p = 0.003), GST (P < 0.001) and GSH (P = 0.016) in DM1 patients. A significant negative correlation of MDA level with dyspepsia and CK-MB and GST level with serum SCK, CK-MB, and diabetes were observed. However, a significant positive correlation of SOD level with serum CK-MB, CK-MM, and diabetes and negative correlation with facial weakness were noted. Though, GSH level had significant positive correlation with learning and writing disability, speech, and languages disability yet found negative correlation with duration of disease. The GPX and TAS showed no correlation with any clinical findings. Our data further support the pathogenic role of oxidative stress in DM1 of Indian origin and support the opportunity to undertake clinical trials with antioxidants in this disorder.  相似文献   

13.
Abstract

Andrographolide (ANDRO), a diterpenoid lactone isolated from the traditional herbal plant Andrographis paniculata, was reported to induce apoptosis in hepatoma Hep3B cells in our previous study (Ji LL, Liu TY, Liu J, Chen Y, Wang ZT. Andrographolide inhibits human hepatoma-derived Hep3B cells growth through the activation of c-Jun N-terminal kinase. Planta Med 2007; 73: 1397–1401). The present investigation was carried out to observe whether cellular reduced glutathione (GSH) plays important roles in ANDRO-induced apoptosis. ANDRO initially increased intracellular GSH levels which then decreased later, while inhibition of cellular GSH synthesis by L-Buthionine-(S,R)-sulfoximine (BSO) augmented ANDRO-induced cytotoxicity and apoptosis in Hep3B cells. On the other hand, the thiol antioxidant dithiothreitol (DTT) rescued ANDRO-depleted cellular GSH, and abrogated ANDRO-induced cytotoxicity and apoptosis. Furthermore, BSO pretreatment augmented ANDRO-decreased expression of antioxidant protein thioredoxin 1 (Trx1), while DTT reversed this decrease. Further results showed that ANDRO increased the activity of the GSH-related antioxidant enzyme glutathione peroxidase (GPx) and the production of intracellular reactive oxygen species (ROS). Taken together, this study demonstrates that the intracellular redox system plays important roles in regulating the cytotoxicity of ANDRO on hepatoma Hep3B cells.  相似文献   

14.
Cadmium (Cd) homeostasis and detoxification in sunflower (Helianthus annuus L.) cells differing in Cd sensitivity/tolerance were studied by analyzing the glutathione-mediated antioxidant mechanism vis-à-vis phytochelatin biosynthesis in vitro. Calluses exposed to Cd-shock/-acclimatization (150μM) were assayed for oxidative stress, reduced glutathione (GSH), glutathione disulfide (GSSG), phytochelatins (PCs) and reactive oxygen species (ROS). Although Cd did not induce any oxidative stress in Cd-tolerant callus (TCd), it generated oxidative stress in Cd-shock callus (SCd) both in terms of lipid peroxidation and protein oxidation. GSH/GSSG ratio remained similar to control values in the cadmium-acclimatized calluses. However, after acute treatment, there was a decline in both GSH and GSSG levels in SCd with concomitant reduction in the GSH/GSSG ratio. Analysis of PCs was performed using HPLC and mass spectrometry methods. PC concentration in TCd were approximately twice those that in SCd, showing in both cases a 1:2:1 relative proportion for PC n = 2 (PC2): PC n = 3 (PC3): PC n = 4 (PC4). Calluses growing in the presence of Cd developed an increased resistance to paraquat oxidative stress generation. These results indicated that PCs synthesis was an important mechanism for Cd detoxification in sunflower calluses, but the capacity to grow in the presence of Cd is related to the tissues ability to maintain high intracellular levels of GSH.  相似文献   

15.
ABSTRACT

A critical pathogenic factor in the development of lethal liver failure is cell death induced by the accumulation of lipid reactive oxygen species. In this study, we discovered and illuminated a new mechanism that led to alcoholic liver disease via ferroptosis, an iron-dependent regulated cell death. Study in vitro showed that both necroptosis inhibitor and ferroptosis inhibitors performed significantly protective effect on alcohol-induced cell death, while apoptosis inhibitor and autophagy inhibitor had no such effect. Our data also indicated that alcohol caused the accumulation of lipid peroxides and the mRNA expression of prostaglandin-endoperoxide synthase 2, reduced the protein expression of the specific light-chain subunit of the cystine/glutamate antiporter and glutathione peroxidase 4. Importantly, ferrostatin-1 significantly ameliorated liver injury that was induced by overdosed alcohol both in vitro and in vivo. These findings highlight that targeting ferroptosis serves as a hepatoprotective strategy for alcoholic liver disease treatment.  相似文献   

16.
BackgroundLead (Pb) is ubiquitous in the environment and is an environmental genotoxic metal. Pb accumulation in the body could cause the oxidative stress.ObjectiveThis meta-analysis aimed to perform a systematic evaluation of the extent of oxidative damage in rats/mice induced by lead.MethodsAll relevant articles in English or Chinese were retrieved from Embase, PubMed, Web of Science, Medline, China National Knowledge Infrastructure, and Chinese Biological Medicine databases from their inception date until July 22, 2018.ResultsA total of 108 eligible articles were included in this study. The indicators of oxidative stress included malondialdehyde (MDA), glutathione disulfide (GSSG), reactive oxygen species (ROS), hydrogen peroxide (H2O2), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced glutathione (GSH), superoxide dismutase (SOD), and glutathione-s-transferase (GST). The meta-analysis showed that lead significantly increased oxidants levels, such as MDA, GSSG, ROS, and H2O2 (P < 0.05), and significantly reduced the level of antioxidants, such as CAT, GPx, GR, GSH, SOD, and GST (P < 0.05). The intraperitoneal mode was more effective than water drinking mode in reducing the levels of CAT, GPx, GSH, and SOD (P < 0.05). Other factors that influenced the overall oxidative stress, including species of animals, type of tissues, and intervention dosage and time, were comprehensively evaluated.ConclusionThe results of meta-analysis indicated that mice were more sensitive to lead than rats, and intraperitoneal mode was an effective intervention mean. High doses and long periods of lead treatment can cause serious oxidative damage. Moreover, testicular was more vulnerable to lead than other tissues. These results provided scientific evidence for preventing and treating lead toxicity.  相似文献   

17.
BACKGROUNDCellular metabolism regulates stemness in health and disease.  A reduced redox state is essential for self-renewal of normal and cancer stem cells (CSCs). However, while stem cells rely on glycolysis, different CSCs, including pancreatic CSCs, favor mitochondrial metabolism as their dominant energy-producing pathway. This suggests that powerful antioxidant networks must be in place to detoxify mitochondrial reactive oxygen species (ROS) and maintain stemness in oxidative CSCs. Since glutathione metabolism is critical for normal stem cell function and CSCs from breast, liver and gastric cancer show increased glutathione content, we hypothesized that pancreatic CSCs also rely on this pathway for ROS detoxification.AIMTo investigate the role of glutathione metabolism in pancreatic CSCs.METHODSPrimary pancreatic cancer cells of patient-derived xenografts (PDXs) were cultured in adherent or CSC-enriching sphere conditions to determine the role of glutathione metabolism in stemness. Real-time polymerase chain reaction (PCR) was used to validate RNAseq results involving glutathione metabolism genes in adherent vs spheres, as well as the expression of pluripotency-related genes following treatment. Public TCGA and GTEx RNAseq data from pancreatic cancer vs normal tissue samples were analyzed using the webserver GEPIA2. The glutathione-sensitive fluorescent probe monochlorobimane was used to determine glutathione content by fluorimetry or flow cytometry. Pharmacological inhibitors of glutathione synthesis and recycling [buthionine-sulfoximine (BSO) and 6-Aminonicotinamide (6-AN), respectively] were used to investigate the impact of glutathione depletion on CSC-enriched cultures. Staining with propidium iodide (cell cycle), Annexin-V (apoptosis) and CD133 (CSC content) were determined by flow cytometry. Self-renewal was assessed by sphere formation assay and response to gemcitabine treatment was used as a readout for chemoresistance.RESULTSAnalysis of our previously published RNAseq dataset E-MTAB-3808 revealed up-regulation of genes involved in the KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathway Glutathione Metabolism in CSC-enriched cultures compared to their differentiated counterparts. Consistently, in pancreatic cancer patient samples the expression of most of these up-regulated genes positively correlated with a stemness signature defined by NANOG, KLF4, SOX2 and OCT4 expression (P < 10-5). Moreover, 3 of the upregulated genes (MGST1, GPX8, GCCT) were associated with reduced disease-free survival in patients [Hazard ratio (HR) 2.2-2.5; P = 0.03-0.0054], suggesting a critical role for this pathway in pancreatic cancer progression. CSC-enriched sphere cultures also showed increased expression of different glutathione metabolism-related genes, as well as enhanced glutathione content in its reduced form (GSH). Glutathione depletion with BSO induced cell cycle arrest and apoptosis in spheres, and diminished the expression of stemness genes. Moreover, treatment with either BSO or the glutathione recycling inhibitor 6-AN inhibited self-renewal and the expression of the CSC marker CD133. GSH content in spheres positively correlated with intrinsic resistance to gemcitabine treatment in different PDXs r = 0.96, P = 5.8 × 1011). Additionally, CD133+ cells accumulated GSH in response to gemcitabine, which was abrogated by BSO treatment (P < 0.05). Combined treatment with BSO and gemcitabine-induced apoptosis in CD133+ cells to levels comparable to CD133- cells and significantly diminished self-renewal (P < 0.05), suggesting that chemoresistance of CSCs is partially dependent on GSH metabolism.CONCLUSIONOur data suggest that pancreatic CSCs depend on glutathione metabolism. Pharmacological targeting of this pathway showed that high GSH content is essential to maintain CSC functionality in terms of self-renewal and chemoresistance.  相似文献   

18.
Yang  Dong-Yue  Zhuang  Kun-Yang  Ma  Na-Na 《Protoplasma》2023,260(2):625-635

Ascorbic acid (AsA) plays an important role in scavenging reactive oxygen species (ROS) and reducing photoinhibition in plants, especially under stress. The function of SlGGP which encodes the key enzyme GDP-L-galactose phosphorylase in AsA synthetic pathway is relatively clear. However, there is another gene SlGGP-LIKE that encodes this enzyme in tomato, and there are few studies on it, especially under salt stress. In this study, we explored the function of this gene in tomato salt stress response using transgenic lines overexpressing SlGGP-LIKE (OE). Under normal conditions, overexpressing SlGGP-LIKE can increase the content of reduced AsA and the ratio of AsA/ DHA (dehydroascorbic acid), as well as the level of xanthophyll cycle. Under salt stress, compared with the wild-type plants (WT), the OE lines can maintain higher levels of reduced AsA. In addition, OE lines also have higher levels of reduced GSH (glutathione) and total GSH, higher ratios of AsA/DHA and GSH/oxidative GSH (GSSR), and higher level of xanthophyll cycle. Therefore, the OE lines are more tolerant to salt stress, with higher photosynthetic activity, higher antioxidative enzyme activities, higher content of D1 protein, lower production rate of ROS, and lighter membrane damage. These results indicate that overexpressing SlGGP-LIKE can enhance tomato resistance to salt stress through promoting the synthesis of AsA.

  相似文献   

19.
The purpose of the presentation is to interconnect and illuminate certain parts of metabolism regarding stress signalling and defensive functions, including secondary metabolism in intact plants and plant tissue cultures. Increased cell/tissue levels of reactive oxygen species like H2O2, O2 - and ·OH and the metabolism of glutathione, are linked to defensive/secondary metabolism and tissue differentiation. Special attention is paid to nicotinamide. A hypothetical role of nicotinamide and its metabolites as stress signals is also put forward especially in connection with hypomethylation of DNA. A role of DNA hypomethylation, as a link between various types of stressors and the induction of plant devensive metabolism, is discussed. We suggest that nicotinamide or nicotinamide based substances may be of value within biotechnology for the production of valuable substances as well as for plant protection.Abbreviations BSO buthionine sulfoximine - CHS chalcone synthase - GSH reduced glutathione - GSSG oxidized glutathione - INA isonicotinic acid - NIC nicotinamide - PADPRP poly(ADP-ribose)polymerase - PAL phenylalanine ammonia-lyase - SA salicylic acid - SAM S-adenosylmethionine - SSB single strand breakage  相似文献   

20.
Abstract

The malaria parasite Plasmodium falciparum is still a major threat to human health in the non-industrialised world mainly due to the increasing incidence of drug resistance. Therefore, there is an urgent need to identify and validate new potential drug targets in the parasite's metabolism that are suitable for the design of new anti-malarial drugs. It is known that infection with P. falciparum leads to increased oxidative stress in red blood cells, implying that the parasite requires efficient antioxidant and redox systems to prevent damage caused by reactive oxygen species. In recent years, it has been shown that P. falciparum possess functional thioredoxin and glutathione systems. Using genetic and chemical tools, it was demonstrated that thioredoxin reductase, the first step of the thioredoxin redox cycle, and γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step of glutathione synthesis, are essential for parasite survival. Indeed, the mRNA levels of γ-GCS are elevated in parasites that are oxidatively stressed, indicating that glutathione plays an important antioxidant role in P. falciparum. In addition to this antioxidant function, glutathione is important for detoxification processes and is possibly involved in the development of resistance against drugs such as chloroquine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号