首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this inter-species comparison (calves and pigs) was to identify methodological and biological influences on the collection and composition of exhaled breath condensate (EBC). A total of 352 EBC samples were collected, whilst variables of ventilation were registered in parallel. Partial pressure of carbon dioxide (pCO2) and pH were analysed in non-degassed EBC samples. The concentration of total protein in EBC was measured colorimetrically. In both species, lung function was evaluated before and after EBC collection. Statistical analyses were performed to study the effect of EBC collection on lung function and to identify the influence of ventilatory variables on the collection and composition of EBC. Collection of EBC did not affect lung function. Despite the volume of EBC collected per unit time being primarily dependent on ventilation per unit time, species-specific conditions during the EBC collection process resulted in different dependences of EBC collection from other variables of ventilation (i.e. maximal airflow during expiration or expired tidal volume kg-1 body weight). The concentration of protein ml-1 EBC increased with the expired volume per min and with peak expiratory flow. Although the pCO2 in fresh EBC was significantly negatively dependent on the duration of collection, comparable pHs (5.6 - 6.2) were measured in EBC of both calves and pigs. The obtained data may help one standardize EBC collection in different species.  相似文献   

2.
Abstract

This veterinary study is aimed at further standardization of H2O2 and pH measurements in exhaled breath condensate (EBC). Data obtained in the study provide valuable information for many mammalian species including humans, and may help to avoid general pitfalls in interpretation of EBC data. EBC was sampled via the ‘ECoScreen’ in healthy calves (body weight 63–98 kg). Serum samples and condensates of ambient (indoor) air were collected in parallel. In the study on H2O2, concentrations of H2O2 in EBC, blood and ambient air were determined with the biosensor system ‘ECoCheck’. In EBC, the concentration of H2O2 was found to be dependent on food intake and increased significantly in the course of the day. Physiologically, lowest H2O2 concentrations at 06:00 varied within the range 138–624 nmol l?1 EBC or 0.10–0.94 nmol per 100 l exhaled breath and individual concentrations were significantly different indicating a remarkable intersubject variability. Highly reproducible results were seen within each subject (three different days within 4 weeks). No correlation existed between H2O2 concentrations in EBC and blood, and EBC–H2O2 was not influenced by variables of spontaneous breathing. Further results confirmed that standardization of H2O2 measurements in EBC requires (1) the re-calculation of the concentration exhaled per 100 l exhaled breath (because the analyzed concentration in the liquid condensate underlies multiple methodological sources of variability given by the collection process), and (2) subtracting the concentration of inspired indoor H2O2. In the study on pH use of the ISFET electrode (Sentron, the Netherlands) and a blood gas analyzer ABL 550 (Radiometer, Denmark) led to comparable results for EBC–pH (r=0.89, R2=79.3%, p≤0.001). Physiological pH data in non-degassed EBC samples varied between 5.3 and 6.5, and were not significantly different between subjects, but were significantly higher in the evening compared with the morning. EBC–pH was not dependent on variables of spontaneous breathing pattern or ambient conditions, and no significant correlation was found between serum and EBC for pH.  相似文献   

3.

Background

Helium is a noble gas with a low density, allowing for lower driving pressures and increased carbon dioxide (CO2) diffusion. Since application of protective ventilation can be limited by the development of hypoxemia or acidosis, we hypothesized that therefore heliox facilitates ventilation in an animal model of ventilator–induced lung injury.

Methods

Sprague-Dawley rats (N=8 per group) were mechanically ventilated with heliox (50% oxygen; 50% helium). Controls received a standard gas mixture (50% oxygen; 50% air). VILI was induced by application of tidal volumes of 15 mL kg-1; lung protective ventilated animals were ventilated with 6 mL kg-1. Respiratory parameters were monitored with a pneumotach system. Respiratory rate was adjusted to maintain arterial pCO2 within 4.5-5.5 kPa, according to hourly drawn arterial blood gases. After 4 hours, bronchoalveolar lavage fluid (BALF) was obtained. Data are mean (SD).

Results

VILI resulted in an increase in BALF protein compared to low tidal ventilation (629 (324) vs. 290 (181) μg mL-1; p<0.05) and IL-6 levels (640 (8.7) vs. 206 (8.7) pg mL-1; p<0.05), whereas cell counts did not differ between groups after this short course of mechanical ventilation. Ventilation with heliox resulted in a decrease in mean respiratory minute volume ventilation compared to control (123±0.6 vs. 146±8.9 mL min-1, P<0.001), due to a decrease in respiratory rate (22 (0.4) vs. 25 (2.1) breaths per minute; p<0.05), while pCO2 levels and tidal volumes remained unchanged, according to protocol. There was no effect of heliox on inspiratory pressure, while compliance was reduced. In this mild lung injury model, heliox did not exert anti-inflammatory effects.

Conclusions

Heliox allowed for a reduction in respiratory rate and respiratory minute volume during VILI, while maintaining normal acid-base balance. Use of heliox may be a useful approach when protective tidal volume ventilation is limited by the development of severe acidosis.  相似文献   

4.
It is a well-established fact that exercise increases pro-oxidants and favors oxidative stress; however, this phenomenon has been poorly studied in human lungs. Pro-oxidative generation (H2O2, NO2 ?), lipid peroxidation markers (MDA), and inflammation (pH) in exhaled breath condensate (EBC) have been determined through data from 10 active subjects who ran 10 km; samples were obtained immediately before, at 20, and at 80 min post-exertion. In EBC, the concentration of H2O2 at 80 min post-exertion was increased. NO2 ? concentration showed a tendency to increase at 80 min post-exertion, with no variations in MDA and pH. No variations of NO2 ? were found in plasma, while there was an increase of NO2 ? at 80 min post-exertion in the relation between EBC and plasma. NO2 ? in EBC did not correlate to plasmatic NO2 ?, while it did correlate directly with H2O2 in EBC, suggesting a localized origin for the exercise-related NO2 ? increase in EBC. MDA in plasma did not increase nor correlate with MDA in EBC. In conclusion, high-intensity exercise increases lung-originated pro-oxidants in non-athlete subjects with no evidence of early lipid peroxidation and changes in the pH value in EBC.  相似文献   

5.
The association between oxidative stress and neutrophilic inflammation in cystic fibrosis (CF) lung disease is well recognized. 8-Isoprostane is a product of non-enzymatic oxidation of arachidonic acid. The aim of the present study was to examine the relationship between lung function decline and 8-isoprostane concentrations in exhaled breath condensate (EBC) in CF patients with Burkholderia cenocepacia airway colonization. Concentrations of 8-isoprostane in EBC were measured in 24 stable CF patients with B. cenocepacia airway colonization. The median (interquartile range) age of the cohort was 23.9 (22.0; 26.6) years. All patients underwent clinical examinations and pulmonary function tests at the time of EBC collection and in 1-, 3-, and 5-year intervals. 8-Isoprostane concentrations in EBC correlated to 1- and 3-year declines of forced expiratory volume in 1 s (FEV1) with r S values of ?0.511 (p?=?0.0011) and ?0.495 (p?=?0.016), respectively. In multiple regression analysis, 8-isoprostane concentrations in EBC were the only independent predictor for 1-year FEV1 decline (p?=?0.01). When the median value of 8-isoprostane concentration in EBC (10.0 pg/mL) was used as a cutoff, subgroups of patients with lower and higher level of oxidative stress had significantly different median (interquartile range) FEV1 declines in 1-year interval, ?2.4 % (?5.3; 0.8) and ?7.3 % (?10.3; ?5.8) predicted (p?=?0.009). In conclusion, 8-isoprostane concentrations in EBC correlated to short-term lung function decline in CF patients with B. cenocepacia airway colonization. This correlation reflects the role of oxidative stress in CF lung pathogenesis and contributes to prediction of prognosis in these patients.  相似文献   

6.
The diazotrophic cyanobacteria Trichodesmium spp. contribute approximately half of the known marine dinitrogen (N2) fixation. Rapidly changing environmental factors such as the rising atmospheric partial pressure of carbon dioxide (pCO2) and shallower mixed layers (higher light intensities) are likely to affect N2‐fixation rates in the future ocean. Several studies have documented that N2 fixation in laboratory cultures of T. erythraeum increased when pCO2 was doubled from present‐day atmospheric concentrations (~380 ppm) to projected future levels (~750 ppm). We examined the interactive effects of light and pCO2 on two strains of T. erythraeum Ehrenb. (GBRTRLI101 and IMS101) in laboratory semicontinuous cultures. Elevated pCO2 stimulated gross N2‐fixation rates in cultures growing at 38 μmol quanta · m?2 · s?1 (GBRTRLI101 and IMS101) and 100 μmol quanta · m?2 · s?1 (IMS101), but this effect was reduced in both strains growing at 220 μmol quanta · m?2 · s?1. Conversely, CO2‐fixation rates increased significantly (P < 0.05) in response to high pCO2 under mid‐ and high irradiances only. These data imply that the stimulatory effect of elevated pCO2 on CO2 fixation and N2 fixation by T. erythraeum is correlated with light. The ratio of gross:net N2 fixation was also correlated with light and trichome length in IMS101. Our study suggests that elevated pCO2 may have a strong positive effect on Trichodesmium gross N2 fixation in intermediate and bottom layers of the euphotic zone, but perhaps not in light‐saturated surface layers. Climate change models must consider the interactive effects of multiple environmental variables on phytoplankton and the biogeochemical cycles they mediate.  相似文献   

7.
To predict effects of climate change and possible feedbacks, it is crucial to understand the mechanisms behind CO2 responses of biogeochemically relevant phytoplankton species. Previous experiments on the abundant N2 fixers Trichodesmium demonstrated strong CO2 responses, which were attributed to an energy reallocation between its carbon (C) and nitrogen (N) acquisition. Pursuing this hypothesis, we manipulated the cellular energy budget by growing Trichodesmium erythraeum IMS101 under different CO2 partial pressure (pCO2) levels (180, 380, 980 and 1400 µatm) and N sources (N2 and NO3?). Subsequently, biomass production and the main energy‐generating processes (photosynthesis and respiration) and energy‐consuming processes (N2 fixation and C acquisition) were measured. While oxygen fluxes and chlorophyll fluorescence indicated that energy generation and its diurnal cycle was neither affected by pCO2 nor N source, cells differed in production rates and composition. Elevated pCO2 increased N2 fixation and organic C and N contents. The degree of stimulation was higher for nitrogenase activity than for cell contents, indicating a pCO2 effect on the transfer efficiency from N2 to biomass. pCO2‐dependent changes in the diurnal cycle of N2 fixation correlated well with C affinities, confirming the interactions between N and C acquisition. Regarding effects of the N source, production rates were enhanced in NO3? grown cells, which we attribute to the higher N retention and lower ATP demand compared with N2 fixation. pCO2 effects on C affinity were less pronounced in NO3? users than N2 fixers. Our study illustrates the necessity to understand energy budgets and fluxes under different environmental conditions for explaining indirect effects of rising pCO2.  相似文献   

8.
In a recent pilot study with asthma patients we demonstrated beneficial outcomes of a breathing training using capnometry biofeedback and paced breathing assistance to increase pCO2 levels and reduce hyperventilation. Here we explored the time course changes in pCO2, respiration rate, symptoms and lung function across treatment weeks, in order to determine how long training needs to continue. We analyzed in eight asthma patients whether gains in pCO2 and reductions in respiration rate achieved in home exercises with paced breathing tapes followed a linear trend across the 4-week treatment period. We also explored the extent to which gains at home were manifest in weekly training sessions in the clinic, in terms of improvement in symptoms and spirometric lung function. The increases in pCO2 and respiration rate were linear across treatment weeks for home exercises. Similar increases were seen for in-session measurements, together with gradual decreases in symptoms from week to week. Basal lung function remained stable throughout treatment. With our current protocol of paced breathing and capnometry-assisted biofeedback at least 4 weeks are needed to achieve a normalization of pCO2 levels and reduction in symptoms in asthma patients.  相似文献   

9.
Effects of free‐air carbon dioxide enrichment (FACE, 60 Pa pCO2) on plant growth as compared with ambient pCO2 (36 Pa) were studied in swards of Lolium perenne L. (perennial ryegrass) at two levels of N fertilization (14 and 56 g m?2 a?1) from 1993 to 2002. The objectives were to determine how plant growth responded to the availability of C and N in the long term and how the supply of N to the plant from the two sources of N in the soil, soil organic matter (SOM) and mineral fertilizer, varied over time. In three field experiments, 15N‐labelled fertilizer was used to distinguish the sources of available N. In 1993, harvestable biomass under elevated pCO2 was 7% higher than under ambient pCO2. This relative pCO2 response increased to 32% in 2002 at high N, but remained low at low N. Between 1993 and 2002, the proportions and amounts of N in harvestable biomass derived from SOM (excluding remobilized fertilizer) were, at high N, increasingly higher at elevated pCO2 than at ambient pCO2. Two factorial experiments confirmed that at high N, but not at low N, a higher proportion of N in harvestable biomass was derived from soil (including remobilized fertilizer) following 7 and 9 years of elevated pCO2, when compared with ambient pCO2. It is suggested that N availability in the soil initially limited the pCO2 response of harvestable biomass. At high N, the limitation of plant growth decreased over time as a result of the stimulated mobilization of N from soil, especially from SOM. Consequently, harvestable biomass increasingly responded to elevated pCO2. The underlying mechanisms which contributed to the increased mobilization of N from SOM under elevated pCO2 are discussed. This study demonstrated that there are feedback mechanisms in the soil which are only revealed during long‐term field experiments. Such investigations are thus, a prerequisite for understanding the responses of ecosystems to elevated pCO2 and N supply.  相似文献   

10.
This work originates from three facts: (i) changes in CO2 availability influence metabolic processes in algal cells; (ii) Spatial and temporal variations of nitrogen availability cause repercussions on phytoplankton physiology; (iii) Growth and cell composition are dependent on the stoichiometry of nutritional resources. In this study, we assess whether the impact of rising pCO2 is influenced by N availability, through the impact that it would have on the C/N stoichiometry, in conditions of N sufficiency. Our experiments used the dinoflagellate Protoceratium reticulatum, which we cultured under three CO2 regimes (400, 1,000, and 5,000 ppmv, pH of 8.1) and either variable (the NO3? concentration was always 2.5 mmol · L?1) or constant (NO3? concentration varied to maintain the same Ci/NO3? ratio at all pCO2) Ci/NO3? ratio. Regardless of N availability, cells had higher specific growth rates, but lower cell dry weight and C and N quotas, at elevated CO2. The carbohydrate pool size and the C/N was unaltered in all treatments. The lipid content only decreased at high pCO2 at constant Ci/NO3? ratio. In the variable Ci/NO3? conditions, the relative abundance of Rubisco (and other proteins) also changed; this did not occur at constant Ci/NO3?. Thus, the biomass quality of P. reticulatum for grazers was affected by the Ci/NO3? ratio in the environment and not only by the pCO2, both with respect to the size of the main organic pools and the composition of the expressed proteome.  相似文献   

11.
Summary Pulmonary ventilation (tidal volume, frequency) and oxygen content of expired air were measured in separate flights for 3 species of birds — Evening Grosbeak (Hesperiphona vespertina), Ring-billed Gull (Larus delawarensis), and Black Duck (Anas rubripes). Heart rate was measured in flight or immediately after landing in 12 species.Respiratory frequency and tidal volume were greater in flight than during rest. As the O2 content of expired air did not change appreciably, the increase in O2 consumption was similar to the increase in ventilation and averaged more than 10 times basal. The influence of body weight on metabolism during flight was similar to that previously observed under basal conditions.Heart rates during flight (10 species), immediately after landing (12 species), and maximal rates from various authors (15 species) were in close agreement, and were 2–4 times as high as during rest. The heart rate decreased with increasing body weight according to the equation HRf=25.1 BW–0.16 (HR per sec, BW in g). In flight there was much less variation and there was a smaller decrease with increasing weight than during rest. Although the estimated stroke volume and heart size appear larger in birds, the ratio of these functions was similar to that in mammals.Issued as N.R.C.C. No. 11094.The valuable technical assistance of Mr. B. Mackenzie and Mr. R. Charbonneau made this study possible. We are also indebted to Dr. Doris Jensen of McMaster University for providing facilities for tests on ring-billed gulls.  相似文献   

12.
A fish respirometer-metabolism chamber was used to obtain in vivo respiratory-cardiovascular and chloroethane gill flux data on transected channel catfish (Ictalurus punctatus). Methods used for spinal transection, attachment of an oral membrane (respiratory mast), placement and attachment of blood cannulas and urine catheters are described. Respiratory physiology, cardiac output and chemical extraction efficiencies for 1,1,2,2-tetrachloroethane (TCE), pentachloroethane (PCE), and hexachloroethane (HCE) were determined on 419–990 g catfish. The overall mean values (± s.d.) for ventilation volume (Qv), effective respiratory volume (Qw), oxygen consumption (Vo2 and percentage utilization of oxygen (U) were 17-3 ±4–71 h?1 kg?1, 9·8±l·71 h?1 kg?1, 71·6±12·5mg h?1 kg?1, and 49± 10%, respectively, while cardiac output calculated via the Fick Method was 2·4±0·61 h?1 kg?1. Additional measurements were made on ventilation rate (Vr), total plasma protein, haematocrit (Hct), and urine volume; while both arterial and venous blood were analysed for pH, oxygen partial pressure (P02), carbon dioxide partial pressure (Pco2), total oxygen (To2), total carbon dioxide (Tco2) and total ammonia (TAMM). Physiological measurements taken at 24 h were not significantly different from those taken at 48 h and indicated no deterioration of the in vivo preparation. All of these values agreed well with literature values on UTitransected channel catfish, except for Hct which was lower for cannulated animals used in this study. Overall, these data provide strong support for the use of transected channel catfish for in vivo collection of physiological and chemical gill flux data. The mean initial chemical extraction efficiencies for TCE, PCE and HCE were 41, 61 and 73%, respectively. Chemical clearances (ClX) for these same three chemicals were 5·9, 9·3 and 10·8 1 h?1 kg?1, respectively. The approximate 1: 1 relationship between effective respiratory volume (Qw) and chemical clearance (Clx) indicated that branchial uptake of PCE and HCE was water flow-limited. Chemical gill flux observed for channel catfish and chloroethanes was similar to that observed for rainbow trout in previous studies and provided further support for the flow-limited model of chemical flux across fish gills.  相似文献   

13.
We studied the interactive effects of pCO2 and growth light on the coastal marine diatom Thalassiosira pseudonana CCMP 1335 growing under ambient and expected end-of-the-century pCO2 (750 ppmv), and a range of growth light from 30 to 380 µmol photons·m−2·s−1. Elevated pCO2 significantly stimulated the growth of T. pseudonana under sub-saturating growth light, but not under saturating to super-saturating growth light. Under ambient pCO2 susceptibility to photoinactivation of photosystem II (σi) increased with increasing growth rate, but cells growing under elevated pCO2 showed no dependence between growth rate and σi, so under high growth light cells under elevated pCO2 were less susceptible to photoinactivation of photosystem II, and thus incurred a lower running cost to maintain photosystem II function. Growth light altered the contents of RbcL (RUBISCO) and PsaC (PSI) protein subunits, and the ratios among the subunits, but there were only limited effects on these and other protein pools between cells grown under ambient and elevated pCO2.  相似文献   

14.
Recently, it was observed that the freely chosen pedal rate of elite cyclists was significantly lower at 06:00 than at 18:00 h, and that ankle kinematics during cycling exhibits diurnal variation. The modification of the pedaling technique and pedal rate observed throughout the day could be brought about to limit the effect of diurnal variation on physiological variables. Imposing a pedal rate should limit the subject's possibility of adaptation and clarify the influence of time of day on physiological variables. The purpose of this study was to determine whether diurnal variation in cardiorespiratory variables depends on pedal rate. Ten male cyclists performed a submaximal 15 min exercise on a cycle ergometer (50% Wmax). Five test sessions were performed at 06:00, 10:00, 14:00, 18:00, and 22:00 h. The exercise bout was divided into three equivalent 5 min periods during which different pedal rates were imposed (70 rev · min?1, 90 rev · min?1 and 120 rev · min?1). No significant diurnal variation was observed in heart rate and oxygen consumption, whatever the pedal rate. A significant diurnal variation was observed in minute ventilation (p=0.01). In addition, the amplitude of the diurnal variation in minute ventilation depended on pedal rate: the higher the pedal rate, the greater the amplitude of its diurnal variation (p=0.03). The increase of minute ventilation throughout the day is mainly due to variation in breath frequency (p=0.01)—the diurnal variation of tidal volume (all pedal rate conditions taken together) being non‐significant—but the effect of pedal rate×time of day interaction on minute ventilation specific to the higher pedal rate conditions (p=0.03) can only be explained by the increase of tidal volume throughout the day. Even though an influence of pedal rate on diurnal rhythms in overall physiological variables was not also evidenced, high pedal rate should have been imposed when diurnal variations of physiological variables in cycling were studied.  相似文献   

15.
Soil respiration in a cropland is the sum of heterotrophic (mainly microorganisms) and autotrophic (root) respiration. The contribution of both these types to soil respiration needs to be understood to evaluate the effects of environmental change on soil carbon cycling and sequestration. In this paper, the effects of free-air CO2 enrichment (FACE) on hetero- and autotrophic respiration in a wheat field were differentiated and evaluated by a novel split-root growth and gas collection system. Elevated atmospheric pCO2 of approximately 200 μmol mol−1 above the ambient pCO2 significantly increased soil respiration by 15.1 and 14.8% at high nitrogen (HN) and low nitrogen (LN) application rates, respectively. The effect of elevated atmospheric pCO2 on root respiration was not consistent across the wheat growth stages. Elevated pCO2 significantly increased and decreased root respiration at the booting-heading stage (middle stage) and the late-filling stage (late stage), respectively, in HN and LN treatments; however, no significant effect was found at the jointing stage (early stage). Thus, the effect of increased pCO2 on cumulative root respiration for the entire wheat growing season was not significant. Cumulative root respiration accounted for approximately 25–30% of cumulative soil respiration in the entire wheat growing season. Consequently, cumulative microbial respiration (soil respiration minus root respiration) increased by 22.5 and 21.1% due to elevated pCO2 in HN and LN, respectively. High nitrogen application significantly increased root respiration at the late stage under both elevated pCO2 and ambient pCO2; however, no significant effects were found on cumulative soil respiration, root respiration, and microbial respiration. These findings suggest that heterotrophic respiration, which is influenced by increased substrate supplies from the plant to the soil, is the key process to determine C emission from agro-ecosystems with regard to future scenarios of enriched pCO2.  相似文献   

16.
Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.1 to 8 Hz via a broadband ventilation waveform technique. We quantified ventilation heterogeneity using a recently developed coefficient of variation method from HP 3He-MRI imaging. Dynamic lung mechanics and imaging were performed at baseline, post-challenge, and after a series of five deep inspirations. AHR was measured via the concentration of agonist that elicits a 20% decrease in the subject’s forced expiratory volume in one second compared to baseline (PC20) dose. The ventilation coefficient of variation was correlated to low-frequency lung resistance (R = 0.647, P < 0.0001), the difference between high and low frequency lung resistance (R = 0.668, P < 0.0001), and low-frequency lung elastance (R = 0.547, P = 0.0003). In asthmatic subjects with PC20 values <25 mg/mL, the coefficient of variation at baseline exhibited a strong negative trend (R = -0.798, P = 0.02) to PC20 dose. Our findings were consistent with the notion of peripheral rather than central involvement of ventilation heterogeneity. Also, the degree of AHR appears to be dependent on the degree to which baseline airway constriction creates baseline ventilation heterogeneity. HP 3He-MRI imaging may be a powerful predictor of the degree of AHR and in tracking the efficacy of therapy.  相似文献   

17.
The quantitative contribution of tropical estuaries to the atmospheric CO2 budget has large uncertainties, both spatially and seasonally. We investigated the seasonal and spatial variations of carbon biogeochemistry downstream of Ho Chi Minh City (Southern Vietnam). We sampled four sites distributed from downstream of a highly urbanised watershed through mangroves to the South China Sea coast during the dry and wet seasons. Measured partial pressure of CO2 (pCO2) ranged from 660 to 3000 μatm during the dry season, and from 740 to 5000 μatm during the wet season. High organic load, dissolved oxygen saturation down to 17%, and pCO2 up to 5000 μatm at the freshwater endmember of the estuary reflected the intense human pressure on this ecosystem. We show that releases from mangrove soils affect the water column pCO2 in this large tropical estuary (~600 m wide and 10–20 m deep). This study is among the few to report direct measurements of both water pCO2 and CO2 emissions in a Southeast Asian tropical estuary located in a highly urbanised watershed. It shows that the contribution of such estuaries may have been previously underestimated, with CO2 emissions ranging from 74 to 876 mmol m?2 day?1 at low current velocity (< 0.2 m s?1). Corresponding gas transfer velocities k600, ranging from 1.7 to 11.0 m day?1, were about 2 to 4 times of k600 estimated using published literature equations.  相似文献   

18.
Ventilation systems that operate at high-frequency and deliver small volumes have the potential to provide adequate alveolar ventilation without excessive pulmonary pressures. One way of producing high-frequency ventilation is by use of jet bursts of an input gas through a cannula controlled by a solenoid valve. This high-frequency jet ventilation has yet to be quantitatively analysed for optimal clinical use. From an analysis of the jet-producing device, we obtained a quantitative relationship which allowed us to predict the gas volume of a jet burst (Vjet) from the driving pressure (Pd), and the jet duration (tI). The device was applied to a mechanical lung model (a tube attached to an elastic bag corresponding to the lung airway and alveolar space). We examined how the control variables of the jet ventilation system changed the bag (alveolar) volume with respect to Vjet, the volume of entrained gas, and the volume of shunted gas. Using a nitrogen washout analysis, we evaluated the operating lung volume, effective dead-space volume (Veds), and effective ventilation rate (Veff). We found that Veds is independent of the individual effects of jet cycle frequency, duty cycle, cannula diameter, and entrainment fraction. While Veds was not affected significantly by the shape of the airway, it did depend on the distance of the jet cannula tip to the ventilated bag (or alveolar region) and on the tidal volume.  相似文献   

19.
摘要 目的:探讨莫西沙星联合纤维支气管镜药物灌注对耐多药肺结核患者T细胞亚群、肺功能和肝功能的影响。方法:选取2017年2月~2018年12月期间我院收治的90例耐多药肺结核患者,根据随机数字表法分为对照组(n=45,常规基础治疗)和研究组(n=45,莫西沙星联合纤维支气管镜药物灌注),比较两组患者痰菌转阴率、病灶吸收率、T细胞亚群、肺功能和肝功能。结果:研究组治疗6个月后的痰菌转阴率为88.89%(40/45),高于对照组的68.89%(31/45)(P<0.05)。研究组治疗6个月后的病灶吸收率为84.44%(38/45),高于对照组的64.44%(29/45)(P<0.05)。两组治疗6个月后第1 s用力呼气容积(FEV1)、用力肺活量(FVC)、每分钟最大通气量(MVV)占预计值百分比、总蛋白(TP)、CD4+、CD4+/CD8+均升高,且研究组高于对照组(P<0.05);丙氨酸氨基转移酶(ALT)、门冬氨酸氨基转移酶(AST)、CD8+均降低,且研究组低于对照组(P<0.05)。结论:莫西沙星联合纤维支气管镜药物灌注治疗耐多药肺结核,可有效阻止疾病进展,同时在改善患者T细胞亚群、肺功能和肝功能方面效果显著。  相似文献   

20.
After a step increase in the atmospheric partial pressure of CO2 (pCO2), the availability of mineral N may be insufficient to meet the plant's increased demand for N. Over time, however, the ecosystem may adapt to the new conditions, and a new equilibrium may be established in the fluxes of C and N. This would result in a higher dry mass (DM) yield response of the plants to elevated pCO2. The effect of elevated atmospheric pCO2 (60 Pa pCO2) was studied in Lolium perenne L. swards with two N fertilization treatments (14 and 56 g m?2 y?1) in a six‐year FACE (Free Air Carbon dioxide Enrichment) experiment. In the high N treatment, the input of N with fertilizer considerably exceeded the export of N with the harvested plant material in both CO2 treatments leading to an apparent net input of N into the ecosystem. Accordingly, the proportion of harvested N derived from 15N labelled fertilizer N, applied throughout the experiment (< 6 years), increased over the years. Under these high N conditions, the annual DM yield response of the Lolium perenne sward to elevated pCO2 increased (from 7% in 1993 to 25% in 1998). In parallel, the response of N yield to elevated pCO2 increased, and the initially negative effect of elevated pCO2 on specific leaf area (SLA) disappeared. The high N input system seemed to overcome in part an initially limiting effect of N on the yield response to elevated pCO2 within a few years. In contrast, there was no apparent net input of N into the ecosystem in the low N treatment, because N fertilization just compensated the export of N with the harvested plant material. Accordingly, the proportion of harvested N yield, derived from fertilizer N, which was applied throughout the experiment, remained low. At low N, the availability of mineral N strongly limited plant growth and yield production in both CO2 treatments; the low yields of DM and N, the low concentration of N in the plant material, and the low SLA reflected this. Although the plants grew under the same environmental conditions and the same management treatment as plants in the high N treatment, the response of DM yields to elevated pCO2 in the low N treatment remained weak throughout the experiment (5% in 1993 and 9% in 1998). The results are discussed in the context of the sizes of the different N pools in the soil, the allocation of N within the plant and the possible effects on temporal immobilization, and the availability of mineral N for yield production as affected by elevated pCO2 and N fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号