首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang YC  Bachrach U 《Amino acids》2002,22(2):131-143
Summary. The effect of the green tea polyphenol-(−)epigallocatechin-3-gallate (EGCG) was tested in cultures of normal and transformed NIH-pATMras fibroblasts. In this system transformation can be induced at will by the addition of dexamethasone, which induces the expression of H-ras by activating the mammary tumor virus long terminal repeat (MMTV-LTR) promoter. This facilitates a reliable comparison of the susceptibility of normal and transformed cells to EGCG. It has been shown that EGCG inhibited the growth of transformed but not of the normal fibroblasts. In an attempt to elucidate the mode of the preferential inhibitory activity of EGCG, its effect on growth promoting factors has been examined. The level of ornithine decarboxylase (ODC, EC 4.1.1.17), which is a signal for cellular proliferation, was reduced by EGCG in the transformed but not in the normal cells. EGCG also showed strong inhibition of tyrosine kinase and mitogen-activated protein kinase (MAPK) activities, without affecting the kinases in the normal cells. Similarly, EGCG also preferentially decreased the levels of the oncogenes Ras and Jun in transformed cell. EGCG preferentially induced apoptosis in the transformed fibroblasts. In vitro chemosensitivity tests demonstrated that EGCG inhibited the proliferation of leukemic cells. These findings suggest that EGCG has a therapeutic potential in the combat against cancer. Received July 27, 2001 Accepted September 8, 2001  相似文献   

2.
《Phytomedicine》2013,21(14):1247-1250
Green tea catechins have been shown to affect the activities of drug transporters in vitro, including P-glycoprotein and organic anion transporting polypeptides. However, it remains unclear whether catechins influence the in vivo disposition of substrate drugs for these transporters. In the present study, we investigated effects of green tea extract (GTE) and (−)-epigallocatechin-3-gallate (EGCG) on pharmacokinetics of a non-selective hydrophilic β-blocker nadolol, which is reported to be a substrate for several drug transporters and is not metabolized by cytochrome P450 enzymes. Male Sprague-Dawley rats received GTE (400 mg/kg), EGCG (150 mg/kg) or saline (control) by oral gavage, 30 min before a single intragastric administration of 10 mg/kg nadolol. Plasma and urinary concentrations of nadolol were determined using high performance liquid chromatography. Pharmacokinetic parameters were estimated by a noncompartmental analysis. Pretreatment with GTE resulted in marked reductions in the maximum concentration (Cmax) and area under the time–plasma concentration curve (AUC) of nadolol by 85% and 74%, respectively, as compared with control. In addition, EGCG alone significantly reduced Cmax and AUC of nadolol. Amounts of nadolol excreted into the urine were decreased by pretreatments with GTE and EGCG, while the terminal half-life of nadolol was not different among groups. These results suggest that the coadministration with green tea catechins, particularly EGCG, causes a significant alteration in the pharmacokinetics of nadolol, possibly through the inhibition of its intestinal absorption mediated by uptake transporters.  相似文献   

3.
《Free radical research》2013,47(10):836-846
Abstract

Oxidative stress triggered by amyloid beta (Aβ) accumulation contributes substantially to the pathogenesis of Alzheimer's disease (AD). In the present study, we examined the involvement of the antioxidant activity of peroxiredoxin 6 (Prdx 6) in protecting against Aβ25–35-induced neurotoxicity in rat PC12 cells. Treatment of PC12 cells with Aβ25-35 resulted in a dose- and time-dependent cytotoxicity that was associated with increased accumulation of intracellular reactive oxygen species (ROS) and mitochondria-mediated apoptotic cell death, including activation of Caspase 3 and 9, inactivation of poly ADP-ribosyl polymerse (PARP), and dysregulation of Bcl-2 and Bax. This apoptotic signaling machinery was markedly attenuated in PC12 cells that overexpress wild-type Prdx 6, but not in cells that overexpress the C47S catalytic mutant of Prdx 6. This indicates that the peroxidase activity of Prdx 6 protects PC12 cells from Aβ25-35-induced neurotoxicity. The neuroprotective role of the antioxidant Prdx 6 suggests its therapeutic and/or prophylactic potential to slow the progression of AD and limit the extent of neuronal cell death caused by AD.  相似文献   

4.
5.
(2)-Epigallocatechin-3-gallate (EGCG) is a major polyphenolic component of green tea. A number of studies have demonstrated EGCG has the possibility for delaying the onset or retarding the progression of Alzheimer's disease (AD) and indicated EGCG possess inhibition of β-secretase activity. We utilized homogeneous time-resolved fluorescence assay with a substrate Eu-CEVNLDAEFK-Qsy7 to screen β-secretase inhibitor in a cell-free system and AlphaLISA assay in cell system. The results first showed that EGCG had significant inhibition of β-secretase activity with IC(50) value of 7.57 × 10(-7)M in screening assay, but then we found EGCG had significant fluorescence-quenching effect in confirming assay, this indicates EGCG has the false positive β-secretase inhibitory activity. Furthermore, the followed AlphaLISA assay based on cell showed EGCG did not reduce the β-amyloid 1-40 secretion in HuAPPswe/HuBACE1 Chinese hamster ovary cell without affecting cell viability. Therefore our findings indicate EGCG do not inhibit β-secretase cleavage activity. Overall this study illustrates that EGCG is not a β-secretase inhibitor based on the compelling data. This provides further support that the choice of complementary assay format or technology is a critical factor in molecular screening and drug development for improving the hit-finding capability and efficiency.  相似文献   

6.
7.
The aim of this study is to show that protective effects of the main catechin (−)-epigallocatechin-3-gallate (EGCG) against capsaicin (CAP) induced oxidative stress and DNA damage in human blood in vitro. Superoxide dismutase, catalase, glutathione peroxidase and malondialdehyde (MDA) level were studied in erythrocytes and leucocytes with increased concentrations of CAP. DNA damage in leucocytes was measured by the comet assay. Human blood cells have been administered with doses between 0 and 200 μM of CAP and/or EGCG (20 μM) for an hour at 37 °C. Treatment with CAP alone has increased the levels of MDA and decreased antioxidant enzymes in human blood cells. A significant increase in tail DNA%, mean tail length and tail moment indicating DNA damage has been observed at the highest dose of CAP treatment when compared to controls. Treatment of cells with CAP plus EGCG prevented CAP-induced changes in antioxidant enzyme activities and MDA level and mean tail lenght indicating DNA damage. A significant increase in mean tail lenght was observed at high doses of CAP. These data suggest that EGCG can prevent toxicity to human erythrocytes and leucocytes caused by CAP, only at low doses.  相似文献   

8.
Epigallocatechin-3-gallate (EGCG) is the main polyphenolic constituent in green tea and is believed to function as an antioxidant. However, increasing evidence indicates that EGCG produces reactive oxygen species (ROS) and subsequent cell death. In this study, we investigated the prooxidative effects of EGCG on the HIT-T15 pancreatic beta cell line. Dose-dependent cell viability was monitored with the cell counting kit-8 assay, while the induction of apoptosis was analyzed by a cell death ELISA kit and comet assay. Extracellular H2O2 was determined using the Amplex Red Hydrogen Peroxide Assay Kit. Intracellular oxidative stress was measured by fluorometric analysis of 2′,7′-dichlorofluorescin (DCFH) oxidation using DCFH diacetate (DA) as the probe. Treatment with EGCG (5–100 μM) decreased the viability of pancreatic beta cells, caused concomitant increases in apoptotic cell death, and increased the production of H2O2 and ROS. Catalase, the iron-chelating agent diethylenetriaminepentaacetic acid, and the Fe(II)-specific chelator o-phenanthroline all suppressed the effects of EGCG, indicating the involvement of both H2O2 and Fe(II) in the mechanism of action of EGCG. The antioxidant N-acetyl-cysteine and alpha-lipoic acid also suppressed the effects of EGCG. Furthermore, EGCG did not scavenge exogenous H2O2, but rather, it synergistically increased H2O2-induced oxidative cell damage in pancreatic beta cells. Together, these findings suggest that in the HIT-T15 pancreatic beta cell line, EGCG mediated the generation of H2O2, triggering Fe(II)-dependent formation of a highly toxic radical that in turn induced oxidative cell damage.  相似文献   

9.
10.
In this study, 17 α-mangostin Boc amino acid/organic acid ester derivatives 1–17 were synthesized and subjected to cytotoxicity and cell viability screening assays. A hypoxia/reoxygenation model of cardiomyocyte injury was selected and compound 5 was found to have a better protective effect against hypoxia/reoxygenation-induced myocardial injury by prophylactic administration screening. The levels of LDH and CK-MB in extracellular fluid were detected by ELISA; apoptosis was detected by Hoechst3358/PI double staining, Annexin V-FITC/PI double staining and mitochondrial membrane potential; the expression of key proteins in PI3K/Akt signaling pathway was detected by western blot. The result showed that compound 5 was non-toxic and has a significant cytoprotection effect at concentrations of 1 μM and 10 μM, and reduced the levels of LDH and CK-MB in the extracellular fluid. Hoechst 33,258/PI double staining results showed that compound 5 treatment significantly reduced bright blue cell nuclei and had anti-apoptotic effects; flow cytometry results showed that compound 5 improved hypoxia/reoxygenation-induced mitochondrial membrane potential and thus apoptosis. The western blot results showed that compound 5 upregulated the levels of p-PI3K and p-Akt, decreased the expression of cleaved caspase-3, cleaved caspase-9 and increased the Bcl-2/Bax ratio in a concentration-dependent manner. In addition, compound 5 reversed the effect of the LY294002 inhibitor. The present study suggests that compound 5 may serve as a potential PI3K activator and a safe and effective lead compound for the treatment of cardiovascular disease.  相似文献   

11.
Recent studies have shown that lead (Pb) could disrupt tissue prooxidant/antioxidant balance which lead to physiological dysfunction. Natural antioxidants are particularly useful in such situation. Current study was designed to investigate efficacy of green tea extract (GTE), on oxidative status in brain tissue and blood caused by chronic oral Pb administration in rats. Four groups of adult male rats (each 15 rats) were utilized: control group; GTE-group (oral 1.5% w/v GTE for 6 weeks); Pb-group (oral 0.4% lead acetate for 6 weeks), and Pb+GTE-group (1.5% GTE and 0.4% lead acetate for 6 weeks). Levels of prooxidant/antioxidant parameters [lipid peroxides (LPO), nitric oxides (NO), total antioxidant capacity (TAC), glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD)] in plasma, erythrocytes, and brain tissue homogenate were measured using colorimetric methods. Pb concentrations in whole blood and brain tissue homogenate were measured by atomic absorption. In Pb-group, levels of LPO were higher while NO and GSH were lower in plasma, erythrocytes, and brain tissue than controls. TAC in plasma, SOD in erythrocytes, and GST in brain tissue homogenate were lower in Pb-group versus control. GTE co-administrated with Pb-reduced Pb contents, increased antioxidant status than Pb-group. In erythrocytes, Pb correlated positively with LPO and negatively with NO, GSH, SOD, and Hb. In brain tissue homogenate, Pb correlated positively with LPO and negatively with GSH. This study suggests that lead induce toxicity by interfering balance between prooxidant/antioxidant. Treatment of rats with GTE combined with Pb enhances antioxidant/ detoxification system which reduced oxidative stress. These observations suggest that GTE is a potential complementary agent in treatment of chronic lead intoxication.  相似文献   

12.
Excessive production of Aβ (amyloid β-peptide) has been shown to play an important role in the pathogenesis of AD (Alzheimer''s disease). Although not yet well understood, aggregation of Aβ is known to cause toxicity to neurons. Our recent study demonstrated the ability for oligomeric Aβ to stimulate the production of ROS (reactive oxygen species) in neurons through an NMDA (N-methyl-d-aspartate)-dependent pathway. However, whether prolonged exposure of neurons to aggregated Aβ is associated with impairment of NMDA receptor function has not been extensively investigated. In the present study, we show that prolonged exposure of primary cortical neurons to Aβ oligomers caused mitochondrial dysfunction, an attenuation of NMDA receptor-mediated Ca2+ influx and inhibition of NMDA-induced AA (arachidonic acid) release. Mitochondrial dysfunction and the decrease in NMDA receptor activity due to oligomeric Aβ are associated with an increase in ROS production. Gp91ds-tat, a specific peptide inhibitor of NADPH oxidase, and Mn(III)-tetrakis(4-benzoic acid)-porphyrin chloride, an ROS scavenger, effectively abrogated Aβ-induced ROS production. Furthermore, Aβ-induced mitochondrial dysfunction, impairment of NMDA Ca2+ influx and ROS production were prevented by pre-treatment of neurons with EGCG [(−)-epigallocatechin-3-gallate], a major polyphenolic component of green tea. Taken together, these results support a role for NADPH oxidase-mediated ROS production in the cytotoxic effects of Aβ, and demonstrate the therapeutic potential of EGCG and other dietary polyphenols in delaying onset or retarding the progression of AD.  相似文献   

13.
Green tea has attracted great interest as a cancer prevention agent. Interactions of tea polyphenols with serum albumin may influence the efficacy of drugs. The interactions of (–)-epigallocatechin-3-gallate (EGCG), (–)-epicatechin-3-gallate (ECG), and tegafur (TF) alone or in combination with human serum albumin (HSA) at pH 7.4 and different temperatures were investigated by spectroscopic methods, isothermal titration calorimetry (ITC), and molecular docking. The binding affinities to HSA were ranked in the order of EGCG?>?ECG?>?TF, and the interactions were spontaneous and exothermic. Ternary system studies showed that the presence of one component hindered the binding of another component to HSA. The secondary structures of HSA were slightly altered in the presence of the ligands. Site marking experiments and molecular docking showed that EGCG and ECG mainly bound to subdomain IIA and ΙΙΙA while TF bound to subdomain ΙΙA and ΙB. Results indicated that the existence of ECG and EGCG would influence the binding of TF to HSA and can increase the free concentration of TF. Obtained results would provide beneficial information about possible interference upon simultaneous co-administration of the tea components and drugs.

Communicated by Ramaswamy H. Sarma  相似文献   


14.
The stylet probing activities of the tea green leafhopper Empoasca vitis Gothe (Hemiptera: Cicadellidae) were studied using the DC electrical penetration graph (EPG) technique. Seven different EPG waveforms (i.e., Np, E1, E2, E3, E4, E5 and E6) were distinguished and characterized on susceptible tea leaves. In addition, four of them (i.e., Np, E1, E2, E3), together accounting for 97.08% of the total recording time, were behaviorally correlated with probing and non-probing activities using artificial diet observation with high-magnification video recording. At the start of stylet probing, waveform E1 always occurred at a variable voltage. E1, with all three of its waveform sub-types (E1-A to E1-C), was correlated with production of the salivary sheath trunk, stylet laceration, and channel cutting in viscous artificial diet. Afterwards, two types of high-amplitude waveforms, E2 and E3, followed. E2 had a highly regular, quasi-square wave, repetitive appearance, and lasted the longest duration of all E. vitis probing waveforms. E3 usually appeared after E2, and also exhibited a quasi-square wave feature similar to E2, but had much higher amplitude. Both waveforms E2 and E3 were correlated with active ingestion in liquid artificial diet. In addition, secretion of watery, enzymatic saliva was likely during E2. The active stylet movements and channel-cutting observed during the probing process indicate that E. vitis is a cell rupture feeder, not a salivary sheath feeder, as aphids and other leafhoppers. Thus, hopperburn damage to the tea plant is probably due to the cell rupture feeding strategy, similar to other hopperburning Empoasca species.  相似文献   

15.
25-Hydroxycholesterol (25-OH-chol) induces apoptosis in many cell types. The present study investigated the possible involvement of mitochondria-dependent apoptotic signalling molecules in the death of PC12 cells treated with 25-OH-chol. 25-OH-chol increased the production of reactive oxygen species and opened mitochondrial permeability transition pore, resulting in release of cytochrome c and subsequent activation of caspase-9 and -3. 25-OH-chol induced the activation of c-Jun N-terminal kinase (JNK) and glycogen synthase kinase-3β (GSK-3β). The JNK inhibitor SP600125 attenuated the activation of caspase-9 and -3 and reduced 25-OH-chol-induced cell death. GSK inhibitors SB415286 and SB216763 significantly down-regulated JNK activity and attenuated the cytotoxicity of 25-hydroxycholesterol. However, SP600125 did not alter the activity of GSK-3β. The results indicate that 25-OH-chol induces cell death via activation of GSK-3β and subsequent up-regulation of JNK. Pharmacological intervention of GSK-3β-JNK-caspase signalling pathway may be useful for the reduction of cytotoxicity of oxysterols.  相似文献   

16.
Lane  N.J.  Balbo  A.  Fukuyama  R.  Rapoport  S.I.  Galdzicki  Z. 《Brain Cell Biology》1998,27(10):707-718
Summary The fine structural features of cultured PC12 cells were investigated after treatment for 1, 3, or 5 days with different concentrations of the vascular form of β- 1–40 (β-AP). PC12 cells treated with β-AP showed time- and concentration-dependent lysosomal system activation and cell toxicity. We observed increases in the number and size of cytoplasmic lysosomes as indicated by increased acid phosphatase reactivity. Some lysosomes were in the form of multivesicular bodies or large residual bodies that appeared to arise by autophagia or by endocytotic uptake. Double-sided plasma membrane invaginations were observed to give rise to increasingly extensive intracytoplasmic vacuolization that was correlated with duration of β-AP treatment. Freeze-fracture studies of the intramembranous particle (IMP) population in the plasma membrane P-face showed that both control and β-AP treated cells had two major P-face IMP populations, small-diameter (4–8 nm) IMPs, and large-diameter (≤ 9nm) IMPs. The larger category of IMPs was found to possess a greater average diameter in the β-AP treated cells than in the control cells. These IMPs could represent modifications to existing transmembranous receptors, channels, or transducing molecules by the β-AP. These results demonstrate that β-AP can induce time- and concentration-dependent ultrastructural changes in PC12 cell membranes.  相似文献   

17.
18.
Neuroprotective agents have been in the focus of attention in the treatment of ischemic stroke. Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L., possessed a wide range of biological activities, especially neuroprotection. In an attempt to improve neuroprotective effects of new salidroside analogs for ischemic stroke, a series of novel aralkyl alcoholic 2-acetamido-2-deoxy-β-d-pyranosides were synthesized and their protective activities against the hypoglycemia and serum limitation induced cell death in rat pheochromocytoma cells (PC12 cells) were studied. Most compounds showed strong neuroprotective effects, especially for 4g and 4h, which exhibited a great potency superior to salidroside. MTT assay, Hoechst 33342 staining, and flow cytometry with annexin V/PI staining collectively showed that pretreatment with 4g and 4h attenuated cell viability loss and apoptotic cell death in cultured PC12 cells. Caspase-3 colorimetric assay and Rhodamine 123 staining revealed the changes in expression levels of caspase-3 and mitochondrial membrane potential in PC12 cells on exposure to hypoglycemia and serum limitation with and without 4g and 4h pretreatment, respectively. All the results suggested that 4g and 4h protects the PC12 cells against hypoglycemia and serum limitation induced apoptosis possibly by modulation of apoptosis-related gene expression and restoration of the mitochondrial membrane potential. Therefore, these novel findings may provided a new framework for the design of new aralkyl alcoholic 2-acetamido-2-deoxy-β-d-pyranosides as neuroprotective agents for treating cerebral ischemic stroke and neurodegenerative diseases.  相似文献   

19.
Salusin-α and salusin-β are expressed in many tissues including the central nervous system, vessels and kidneys; they have been shown to decrease endoplasmic reticulum stress during heart ischemia/reperfusion (I/R) and to decrease apoptosis. We investigated the relation of salusin-α and salusin-β levels to acute ischemic renal failure. We also investigated whether these peptides are protective against renal I/R damage. Fifty-three rats were divided into six groups: control, I/R, I/R + salusin-α1, I/R + salusin-α10, I/R + salusin-β1 and I/R + salusin-β10. After removing the right kidney, the left kidney was subjected to ischemia for 1 h and reperfusion for 23 h. The treatment groups were injected subcutaneously at the beginning of ischemia with 1 or 10 μg/kg salusin-α, and 1 or 10 μg/kg salusin-β. Histopathology was assessed at the end of the experiment. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX) activity and malondialdehyde (MDA) levels were measured in the kidney tissue. Serum levels of blood urea nitrogen (BUN), creatinine (Cre), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1 beta (IL-1β) also were measured. Levels of salusin-α and salusin-β were measured in the serum and kidney tissues of the control and I/R groups. SOD, CAT and GSH-PX activities were decreased and the levels of MDA, TNF-α, IL-6, IL-1β, BUN and Cre were increased in the I/R group compared to controls. Severe glomerular and tubular damage was apparent in the I/R group compared to controls. The level of salusin-β was decreased in the serum and kidney tissue of the I/R group compared to controls, whereas the level of salusin-α was decreased in the serum and increased in the kidney tissue. Salusin-α and salusin-β administration increased SOD and GSH-PX enzyme activation and decreased the levels of MDA, TNF-α, IL-6 and IL-1β compared to the I/R group. BUN and Cre levels were decreased in the I/R + salusin-α1 group and the level of Cre was decreased in I/R + salusin-β10 group compared to the I/R group. We demonstrated a protective effect of salusin-α and salusin-β against renal I/R damage. Changes in the levels of salusin-α and salusin-β in the I/R group suggest that these peptides may be associated with acute renal failure.  相似文献   

20.
Yerba maté (mate) tea, a herbal tea prepared from the leaves of Ilex paraguariensis, is widely consumed in southern Latin America, and is gaining popularity worldwide. We investigated effects of an aqueous extract of mate on metabolic syndrome features in a metabolic syndrome model Tsumura Suzuki obese diabetic (TSOD) mouse. Oral administration of mate (100 mg/kg) for 7 weeks induced significant decreases in body weight, body mass index, and food intake in TSOD. It significantly decreased the hyperglycemia by reducing fasting blood glucose level, and increasing glucose uptake in glucose tolerance test. It also showed significant improvement in insulin sensitivity by increasing glucose uptake in insulin tolerance test, increasing quantitative insulin sensitivity check index, and decreasing homeostasis model assessment of insulin resistance index. The results also showed significant effects of mate on hyperlipidemia by decreasing blood levels of triglycerides, non-esterified fatty acids, and total cholesterol. Moreover, mate significantly improved adiponectin (AD) level, and exhibited significant reduction in white adipose tissue weight, and adiposity index in TSOD. It also showed significant ameliorative effects on TSOD histopathology, by reducing adipocytes proliferation, and improving hepatic steatosis. Furthermore, mate administration induced a dose-dependent delay in gastric emptying. The current data suggest that mate ameliorates metabolic syndrome by mechanisms involving increase of peripheral insulin sensitivity and cellular glucose uptake, and by modulating the level of circulating lipid metabolites and AD. These results indicate that mate can induce protective and ameliorative effects on insulin resistance, diabesity, and dyslipidemia in metabolic syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号