首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has already been suggested that phosphatidic acids (PAs) play an important role in the regulation of signaling pathways involved in the production of reactive oxygen species (ROS) by human polymorphonuclear leukocytes (PMNs). The present study was performed to elucidate the effects of extracellularly added PA-- 1,2-distearoyl- (DSPA) and 1-stearoyl-2-arachidonoyl-sn-glycero-phosphate (SAPA)--on the ROS production and on the elastase release by human PMNs. ROS production was monitored by luminol-amplified chemiluminescence and the elastase activity was measured in the supernatant of the PA-stimulated human PMNs by colorimetric assay. Obtained effects were compared with those of cells stimulated by either a chemotactic tripeptide, phorbol ester or calcium ionophore. Our results show that long-chain PAs at concentrations higher than 3 x 10(-5) mol/l stimulate the ROS production by human PMNs, whereas they were ineffective in promoting the elastase release. The chemiluminescence pattern of the SAPA-stimulated cells exhibited a biphasic curve, whereas cell stimulation with DSPA resulted in a monophasic chemiluminescence curve. Stimulation of the ROS production by PAs in dependence of the fatty acid composition required the activity of protein kinases.  相似文献   

2.
A technique is described for the radiochemical assay of phosphatidic acid phosphohydrolase activity in rat brain. Radiochemically pure 32P-labeled phosphatidic acid of known specific radioactivity and structure, which was biosynthesized in vitro by the diacylglycerol kinase of E. coli, was used as the substrate. As little as 5 microgram of microsomal or mitochondrial protein can be used for the assay, and product formation in the picomole range can be determined accurately. This procedure should be useful in situations where only limited amounts of tissue are available.  相似文献   

3.
Phosphatidic acid phosphohydrolase (PAP) catalyzes the dephosphorylation of phosphatidic acid (PA) to diacylglycerol, the second messenger responsible for activation of protein kinase C. Despite the crucial role of PAP lipid signaling, there are no data on PAP signaling function in the human heart. Here we present a nonradioactive assay for the investigation of PAP activity in human myocardium using a fluorescent derivative of PA, 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphate (BODIPY-PA), as substrate in an in vitro PAP-catalyzed reaction. Unreacted BODIPY-PA was resolved from the PAP products by a binary gradient HPLC system and BODIPY-diacylglycerol was detected by fluorimetry. The reaction proceeded at a linear rate for up to 60 min and increased linearly with increasing amounts of cardiac protein in a range of 0.25 to 8.0 μg. This assay proved to be sensitive for accurate quantitation of total PAP activity, PAP-1 activity, and PAP-2 activity in human atrial tissue and right ventricular endomyocardial biopsies. Total PAP activity was approximately fourfold higher in ventricular myocardium than in atrial tissue. There was negligible PAP-1 activity in atrial myocardium compared with ventricular myocardium, indicating regional differences in activities and distribution pattern of PAP-1 and PAP-2 in the human heart.  相似文献   

4.
1. The developmental patterns of the phosphatidic acid phosphohydrolase activities in developing rabbit lung were determined using both aqueously dispersed phosphatidic acid (PAaq) and membrane-bound phosphatidic acid (PAmb) as the substrates. 2. The specific activities and the total activities of the PAmb-dependent phosphohydrolase activities in the microsomes and to a lesser extent in the homogenates increased between 26 and 30 days gestation (term 31), but decreased in the adult. The PAaq-dependent activities demonstrated a smaller increase during late gestation and a decrease in the adult. 3. There was little change in either the Paaq- or the Pamb-dependent activities in the cytosol between 25 and 30 days gestation. The total activities per g lung were increased in the adult. 4. Fractionation of adult cytosol on Bio-Gel A5m revealed PAaq-dependent activities in the void volume (Vo) (50% total), a peak with an apparent molecular mass (Mr) = 150 kdaltons (25% total) and a peak with Mr = 110 kdaltons (25% total). The PAaq-dependent peak with Mr = 150 kdaltons was not detected in the fetal cytosols. 5. Gel filtration revealed PAmb-dependent activity in the Vo (15% total), a major peak with an apparent Mr = 390 kdaltons (44% total) and minor peaks with Mr = 240 kdaltons (16% total) and Mr = 110 kdaltons (24% total). Little change was observed during development. 6. Thermal denaturation studies on he PAmb-dependent activities in the cytosols produced biphasic curves with a rapidly inactivated component and a relatively heat-stable component. The thermal denaturation profiles for the PAmb-dependent activities remained relatively unaltered throughout fetal development. The thermal denaturation profiles of the PAaq-dependent activities in the fetal cytosols were also biphasic. In contrast, the inactivation profiles of the PAaq-dependent activities in adult cytosol were monophasic.  相似文献   

5.
6.
Functional activity of enucleated human polymorphonuclear leukocytes   总被引:31,自引:2,他引:31       下载免费PDF全文
Enucleated human polymorphonuclear leukocytes (PMN) were prepared by centrifuging isolated, intact PMN over a discontinuous Ficoll gradient that contained 20 microM cytochalasin B. The enucleated cells (PMN cytoplasts) contained about one-third of the plasma membrane and about one-half of the cytoplasm present in intact PMN. The PMN cytoplasts contained no nucleus and hardly any granules. The volume of the PMN cytoplasts was about one-fourth of that of the original PMN. Greater than 90% of the PMN cytoplasts had an "outside-out" topography of the plasma membrane. Cytoplasts prepared from resting PMN did not generate superoxide radicals (O2-) or hydrogen peroxide. PMN cytoplasts incubated with opsonized zymosan particles or phorbol-myristate acetate induced a respiratory burst that was qualitatively (O2 consumption, O2- and H2O2 generation) and quantitatively (per unit area of plasma membrane) comparable with that of intact, stimulated PMN. Moreover, at low ratios of bacteria/cells, PMN cytoplasts ingested opsonized Staphylococcus aureus bacteria as well as did intact PMN. At higher ratios, the cytoplasts phagocytosed less well. The killing of these bacteria by PMN cytoplasts was slower than by intact cells. The chemotactic activity of PMN cytoplasts was very low. These results indicate that the PMN apparatus for phagocytosis, generation of bactericidal oxygen compounds, and killing of bacteria, as well as the mechanism for recognizing opsonins and activating PMN functions, are present in the plasma membrane and cytosol of these cells.  相似文献   

7.
The lung contains two distinct forms of phosphatidic acid phosphatase (PAP). PAP1 is a cytosolic enzyme that is activated through fatty acid-induced translocation to the endoplasmic reticulum, where it converts phosphatidic acid (PA) to diacylglycerol (DAG) for the biosynthesis of phospholipids and neutral lipids. PAP1 is Mg(2+) dependent and sulfhydryl reagent sensitive. PAP2 is a six-transmembrane-domain integral protein localized to the plasma membrane. Because PAP2 degrades sphingosine-1-phosphate (S1P) and ceramide-1-phosphate in addition to PA and lyso-PA, it has been renamed lipid phosphate phosphohydrolase (LPP). LPP is Mg(2+) independent and sulfhydryl reagent insensitive. This review describes LPP isoforms found in the lung and their location in signaling platforms (rafts/caveolae). Pulmonary LPPs likely function in the phospholipase D pathway, thereby controlling surfactant secretion. Through lowering the levels of lyso-PA and S1P, which serve as agonists for endothelial differentiation gene receptors, LPPs regulate cell division, differentiation, apoptosis, and mobility. LPP activity could also influence transdifferentiation of alveolar type II to type I cells. It is considered likely that these lipid phosphohydrolases have critical roles in lung morphogenesis and in acute lung injury and repair.  相似文献   

8.
The influence of the glutathione status of human polymorphonuclear leukocytes (PMN) on 5-lipoxygenase activity was studied by treating cells with increasing concentrations of 1-chloro-2,4-dinitrobenzene (Dnp-Cl) or azodicarboxylic acid bis(dimethylamide) (Diamide). Subsequent incubation with arachidonate resulted in an up to tenfold-stimulated formation of 5-hydroxyeicosatetraenoic acid, leukotriene B4, leukotriene B4 isomers and omega-hydroxyleukotriene B4. Higher concentrations of the GSH reagents were inhibitory. At maximal stimulation by Dnp-Cl, 5-hydroperoxyeicosatetraenoic acid started to be built up at the expense of 5-HETE at glutathione levels which were diminished by about 50% compared to resting cells. No increase in cytosolic Ca2+ could be measured under these conditions by the fura-2 method. In PMN homogenates Dnp-Cl and Diamide were without effect and even caused inhibition when 5-lipoxygenase was stimulated by Ca2+ and ATP. 15-Lipoxygenase was either unchanged in the case of Diamide, or even increased after pretreatment with Dnp-Cl. The results allow us to conclude that 5-lipoxygenase activity in intact PMN is regulated not only by Ca2+ but in a complex manner also by the glutathione redox status. Conditions of oxidative stress increase the activity which may reflect the in vivo situation under phagocytosis and oxidative burst.  相似文献   

9.
Synopsis Alkaline phosphatase has been localized ultracytochemically in PMN of man with normal and elevated levels of this enzyme. Contrary to guinea-pig PMN, no activity appears to be present in the specific granules. Instead, the plasma membrane and the membrane of the endocytic vacuoles show a strong staining. However, the demonstration of this activity depends on the preparatory procedure employed for PMN isolation. the use of dextran and Ficoll-Hypaque in the isolation procedure induces a marked increase in alkaline phosphatase staining of the PMN plasma membrane. Strongly increased activity at this site has been found in PMN from cancer patients. In most of them, additional staining has been observed in atypical vesicles and sometimes in the Golgi apparatus. These findings are discussed in the light of some previously reported controversial biochemical and cytochemical data on the distribution of alkaline phosphatase in human PMN.  相似文献   

10.
The titration of metal-freed bovine α-lactalbumin with Mg2+ ions causes a two-stepped decrease in the tryptophan fluorescence quantum yield and a pronounced spectral shift towards shorter wavelengths, which seems to be a result of the binding of two magnesium ions to the protein molecule. The magnesium binding constants evaluated from the fluorimetric Mg2+-titration are 2·103 and 2·102 M?1. Mg2+ ions in millimolar concentrations almost do not influence the binding of Ca2+ ions to the protein.  相似文献   

11.
The functional activity of the peripheral blood polymorphonuclear leukocytes (PML) was investigated by using the method of latex-stimulated luminol-dependent chemiluminescence (CL). The CL-intensity of PML taken from patients with acute myocardial infarction (MI) was found to be 20 times higher than that of normal individuals (NI). The change in activity of endogenous antioxidative enzyme systems may account for alteration of PML CL-parameters. It was established that the initial superoxide dismutase (SOD) activity of unstimulated PML from patients with MI exceeds that of NI, and that rapid increase in intercellular SOD activity (within 30 sec.) occurs in the process of PML stimulation. It was suggested that the change of SOD activity during PML stimulation was the result in the enzyme partial proteolysis in the cells. The positive correlation between initial level of SOD activity and CL-intensity of PML was observed. The investigation of the above parameters in MI dynamic showed a gradual normalization of PML CL-response and insignificant decrease in intracellular SOD activity in case of a favourable cause of the disease. Increased SOD activity in PMLs may be one of the factors contributing to a decrease in PML functional activity in the disease dynamic.  相似文献   

12.
Recent evidence indicates that a major fraction of diacylglycerol that is produced in hormonally stimulated cells arises by phosphatidylcholine hydrolysis via the sequential action of phospholipase D and phosphatidic acid phosphohydrolase (PAP). We have previously reported that sphingoid bases stimulate phospholipase D activity in NG108-15 cells. The evidence presented here demonstrates that in sphingosine-treated NG108-15 cells, elevated phosphatidic acid levels are accompanied by a parallel, time- and dose-dependent decrease in diacylglycerol levels. DL-propranolol, a known inhibitor of PAP, exerted similar effects, suggesting that the action of sphingosine may have been due to inhibition of PAP activity. This prediction was confirmed in in vitro experiments in which it was demonstrated that sphingosine is as potent an inhibitor of both cytosolic and membrane-associated PAP activity as propranolol. The hypothesis that sphingoid bases may exert a dual action in diacylglycerol signal termination is proposed.  相似文献   

13.
Incubations of [1-14C]arachidonic acid with unstimulated human polymorphonuclear leukocytes resulted in the formation of four new metabolites in a previously described reverse-phase HPLC system. Three of these metabolites were largely suppressed in a CO/O2 (80/20, by vol.) atmosphere indicating a cytochrome-P450-dependent monooxygenase reaction. In agreement with this assumption is their NADPH/O2-dependent formation in the microsomal fraction. One metabolite was identified by gas chromatography/mass spectrometry analysis as omega-hydroxy-arachidonic acid and the two others were secondary products identified as omega-carboxy-arachidonic acid and 5,20-dihydroxy-E,Z,Z,Z-6,8,11,14-eicosatetraenoic acid. Since the affinity for arachidonate of the omega-monooxygenase was quite low and the presence of LTB4 suppressed the omega-hydroxylation of arachidonate, we conclude that the known LTB4 omega-monooxygenase is responsible for the formation of omega-hydroxy-arachidonate. It is unlikely, however, that significant concentrations of these metabolites are formed by activated polymorphonuclear leukocytes in vivo. The fourth metabolite remains tightly associated with the leukocytes but has not been further characterized.  相似文献   

14.
Previous studies have demonstrated that [3H]arachidonic acid is released from prelabeled human neutrophil phospholipids when the cells are stimulated by calcium ionophore A23187 or by opsonized zymosan. Neither lysophospholipid generated by phospholipase A2 activity, diacylglycerol nor monoacylglycerol produced via phospholipase C/diacylglycerol lipase action have been identified following neutrophil challenge. The inability to detect any intermediates during the release of arachidonate is due to either rapid reacylation of lysophospholipid or conversion of diacylglycerol (monoacylglycerol) to cellular acylglycerols. The addition of exogenous [14C]fatty acid at the time of challenge was employed to determine the involvement of either phospholipase A2 or phospholipase C activities. Neutrophil stimulation with calcium ionophore A23187 resulted in an incorporation of exogenous [14C]arachidonate into phosphatidylinositol and phosphatidylcholine, those phospholipids which specifically release arachidonate. When the saturated fatty acid, [14C]stearate, replaced [14C]arachidonate, very little [14C]fatty acid was incorporated into any of the phospholipid species. Lipid phosphorus measurements revealed no significant mass change in any phospholipid class following ionophore challenge. Production of [14C]phosphatidic acid was not detected, as would be expected if diacylglycerol kinase and de novo phospholipid metabolism were significantly involved.  相似文献   

15.
Coordination of endomembrane biogenesis with cell cycle progression is considered to be important in maintaining cell function during growth and development. We previously showed that the disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) activity in Arabidopsis thaliana stimulates biosynthesis of the major phospholipid phosphatidylcholine (PC) and causes expansion of the endoplasmic reticulum. Here we show that PC biosynthesis is repressed by disruption of the core cell cycle regulator CYCLIN‐DEPENDENT KINASE A;1 (CDKA;1) and that this repression is reliant on PAH. Furthermore, we show that cyclin‐dependent kinases (CDKs) phosphorylate PAH1 at serine 162, which reduces both its activity and membrane association. Expression of a CDK‐insensitive version of PAH1 with a serine 162 to alanine substitution represses PC biosynthesis and also reduces the rate of cell division in early leaf development. Together our findings reveal a physiologically important mechanism that couples the rate of phospholipid biosynthesis and endomembrane biogenesis to cell cycle progression in Arabidopsis.  相似文献   

16.
It has recently been suggested that a single stimulus to the membrane of the polymorphonuclear neutrophil leukocyte (PMN) produces a sequential, stereotyped response involving motility, degranulation, and the oxidative metabolic burst, and conversely, that the chemotactic response is dependent upon the stimulation of the hexose monophosphate shunt (HMPS). We have used small, synthetic substances, known to cause either increased motility or the metabolic burst, to examine whether these events can be stimulated independently. Phorbol myristate acetate (PMA) is a surface active agent that causes marked stimulation of iodination, superoxide production, chemiluminescence, and the HMPS. Such stimulation by PMA did not alter random or directional motility of PMN in the chemotaxis-under-agarose assay. Also, preincubation of PMN with PMA did not deplete their energy source for chemotaxis as demonstrated by a normal chemotactic response to zymosan activated serum. N-formylmethionyl peptides (f-met-phe, f-met-leu-phe) caused a dose-related stimulation of random and directional motility of PMN, but only a very slight stimulation of the HMPS, protein iodination, superoxide production, or chemiluminescence, and this minimal response occurred at more than 1000 times the concentration needed for stimulation of motility. These results indicate that stimulation of motility in the metabolic burst may involve separate events at the membrane of the PMN and that the events are not necessarily interdependent.  相似文献   

17.
Phosphorylase kinase from human polymorphonuclear leukocytes was investigated in a gel filtered crude preparation (17,000 x g supernatant). It was found to exist in two forms, one (the phosphorylated form) more active than the other (the dephosphorylated form). Interconversion between the two forms was carried out by a cyclic AMP dependent protein kinase and phosphoprotein phosphatase, respectively. The ratio of activity measured at pH 8.0 and 6.0 was 0.36 for the non-activated and 0.83 for the activated form, which is in contrast to the behaviour of phosphorylase kinase from muscle. Km app for the substrate phosphorylase b was 650 U/ml and 85 U/ml for the non-activated and activated form, respectively, whereas Km app for ATP was 0.03 mM and identical for the two forms. The non-activated form of phosphorylase kinase was activated by Ca2+ in the range 10(-7)--5 . 10(-6) M, which may have physiological importance, whereas the activated form was insensitive to variations in Ca2+ concentration between 10(-9) and 10(-3) M.  相似文献   

18.
We recently demonstrated activation of 5-lipoxygenase activity in human polymorphonuclear leukocytes (PMN) on preincubation of the cells with glutathione-depleting agents, namely 1-chloro-2,4-dinitrobenzene (Dnp-C1) and azodicarboxylic acid bis[dimethylamide] (diamide). In this paper we show that Dnp-C1, but not diamide, impairs the reduction of added organic peroxides in whole PMN. Also, since co-incubation of fatty acid hydroperoxides with arachidonate caused activation of 5-lipoxygenase, we propose that Dnp-C1 increases the peroxide level in PMN which is required for the onset of lipoxygenase activity. This could be substantiated in PMN homogenates by a glutathione-dependent depression of arachidonate 5-lipoxygenation. At higher arachidonate concentrations and in the presence of Ca2+ the glutathione effect was not observed but additional glutathione peroxidase also blocked this maximally stimulated 5-lipoxygenase. Together with other experiments, it became obvious that the formation of leukotrienes, but also of 15-lipoxygenase products, requires a sharply defined threshold level of fatty acid hydroperoxides which are generated by the lipoxygenases and counteracted by glutathione-dependent peroxidase(s). Dnp-C1 influences this equilibrium by removing glutathione and thereby inhibiting glutathione-dependent peroxidase activity. From our data we conclude that it is the physiological function of the peroxidase activity in PMN to determine an efficiently regulated threshold level of hydroperoxide products, below which no activation of 5-lipoxygenase or 15-lipoxygenase can occur.  相似文献   

19.
20.
We have found that a novel dioxygenation product of arachidonic acid, 8(S),15(S)-dihydroxy-5,11-cis-9,13-trans-eicosatetraenoic acid (8,15-diHETE), possesses chemotactic activity for human polymorphonuclear leukocytes comparable to that of leukotriene B4. Authentic 8,15-diHETE, identified by gas chromatography-mass spectrometry, was prepared by treating arachidonic acid with soybean lipoxygenase and was purified by reverse-phase high performance liquid chromatography. Using a "leading front" assay, 8,15-diHETE exhibited significant chemotactic activity at a concentration of 5.0 ng/ml. Maximum chemotactic activity was observed at a concentration of 30 ng/ml. The 8,15-diHETE generated by mixed human leukocytes after stimulation with arachidonic acid and the calcium ionophore, A23187, exhibited quantitatively similar chemotactic activity. Two synthetic all-trans conjugated isomers of 8,15-diHETE, however, were not chemotactic at concentrations up to 500 ng/ml. In contrast to its potent chemotactic activity, 8,15-diHETE (at concentrations up to 10 micrograms/ml) was relatively inactive with respect to its ability to provoke either degranulation or generation of superoxide anion radicals by cytochalasin B-treated leukocytes. Both leukotriene B4 and 8,15-diHETE may be important mediators of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号