首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subcellular distribution, kinetic properties, and endogenous substrates of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) were examined in mouse kidney cortex. Protein kinase C associated with the particulate, mitochondrial, and brush border membrane fractions was assayed after solubilization in 0.2% Triton X-100 under conditions shown to be noninhibitory to catalytic activity. Of recovered activity, 52% was associated with the cytosolic fraction; mitochondrial and brush border membrane associated protein kinase C constituted 12 and 3%, respectively, of the activity recovered in the particulate fraction. Protein kinase C associated with brush border membranes exhibited a high affinity for ATP (apparent Km = 62 +/- 10 microM) and the highest apparent maximal velocity (1146 +/- 116 pmol P/(mg protein.min] of the renal fractions examined. Maximal stimulation of protein kinase C by diacylglycerol (in the presence of phosphatidylserine) was achieved at both 25 and 300 microM calcium in all renal fractions. These results are consistent with previous reports demonstrating that diacylglycerol increases the apparent affinity of protein kinase C for calcium. Phorbol 12-myristate 13-acetate, but not 4 alpha-phorbol, was able to substitute for diacylglycerol and stimulate cytosolic and particulate renal protein kinase C. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride, a specific inhibitor of protein kinase C, led to significant inhibition of catalytic activity in all renal subcellular fractions. Endogenous substrates for protein kinase C were demonstrated in renal cytosolic (26, 45, 63, and 105 kilodaltons (kDa], particulate (26, 33, 68, and 105 kDa), mitochondrial (43 kDa), and brush border membrane (26, 41, 52, 88, and 105 kDa) fractions. The possible physiological significance of protein kinase C in mammalian kidney is discussed.  相似文献   

2.
We have shown that platelet-activating factor (PAF), a weak primary stimulus for neutrophil superoxide generation, synergistically enhances neutrophil oxidative responses to the tumor promoter phorbol myristate acetate (PMA). Since PMA is known to cause cytosol-to-membrane shift of calcium-activated, phospholipid-dependent protein kinase (protein kinase c, PKC) in human neutrophils, we investigated the role of PAF in modifying PMA-induced PKC activation/translocation. Protein kinase activity was measured as the incorporation of 32P from gamma-32P-ATP into histone H1 induced by enzyme in cytosolic and particulate fractions from sonicated human neutrophils. PAF did not alter the sharp decrease in cytosolic PKC activity induced by PMA. However, in the presence of PAF and PMA, total particulate protein kinase activity increased markedly over that detected in the presence of PMA alone (144 +/- 9 pmoles 32P/10(7)PMN/minute in cells treated with 20 ng/ml PMA compared to 267 +/- 24 pmoles 32P in cells exposed to PMA and 10(-6)M PAF). The increase in total particulate protein kinase activity was synergistic for the two stimuli, required the presence of cytochalasin B during stimulation, and occurred at PAF concentrations of 10(-7) M and above. Both PKC and calcium-, phospholipid-independent protein kinase activities in whole particulate fractions were augmented by PAF as were both activities in detergent-extractable particulate subfractions. PAF did not directly activate PKC obtained from control or PMA-treated neutrophils. However, the PKC-enhancing effect of PAF was inhibited in the absence of calcium during cellular stimulation. PAF also increased particulate protein kinase activity in cells simultaneously exposed to FMLP but the effect was additive for these stimuli. These results suggest that PAF enhances PMA-induced particulate PKC activity by a calcium-dependent mechanism. The enhancing effect of PAF may be directly involved in the mechanism whereby the phospholipid "primes" neutrophils for augmented oxidative responses to PMA.  相似文献   

3.
Myocardial triacylglycerol hydrolysis is subject to product inhibition. After hydrolysis of endogenous triacylglycerols, the main proportion of the liberated fatty acids is re-esterified to triacylglycerol, indicating the importance of fatty acid re-esterification in the regulation of myocardial triacylglycerol homoeostasis. Therefore, we characterized phosphatidate phosphohydrolase (PAP) and diacylglycerol acyltransferase (DGAT) activities, enzymes catalysing the final steps in the re-esterification of fatty acids to triacylglycerols in the isolated rat heart. The PAP activity was mainly recovered in the microsomal and soluble cell fractions, with an apparent Km of 0.14 mM for both the microsomal and the soluble enzyme. PAP was stimulated by Mg2+ and oleic acid. Oleic acid, like a high concentration of KCl, stimulated the translocation of PAP activity from the soluble to the particulate (microsomal) fraction. Myocardial DGAT had an apparent Km of 3.8 microM and was predominantly recovered in the particulate (microsomal) fraction. Both enzyme activities were significantly increased after acute streptozotocin-induced diabetes, PAP from 15.6 +/- 1.1 to 28.1 +/- 3.6 m-units/g wet wt. (P less than 0.01) and DGAT from 2.23 +/- 0.11 to 3.01 +/- 0.11 m-units/g wet wt. (P less than 0.01). In contrast with diabetes, low-flow ischaemia during 30 min did not affect PAP and DGAT activity in rat hearts. Perfusion with glucagon (0.1 microM) during 30 min did not affect total PAP activity, but changed the subcellular distribution. More PAP activity was recovered in the particulate fraction. DGAT activity was lowered by glucagon treatment from 0.37 +/- 0.03 to 0.23 +/- 0.02 m-unit/mg of microsomal protein (P less than 0.05). The role of PAP and DGAT activity and PAP distribution in the myocardial glucose/fatty acid cycle is discussed.  相似文献   

4.
Confluent 3T3-L1 fibroblasts incubated for 72 h with methylisobutylxanthine, dexamethasone, and insulin differentiate and acquire phenotypic characteristics of mature adipocytes, including hormone-sensitive cAMP phosphodiesterase activity located in a particulate fraction of homogenates. About 10 days after initiating differentiation, a maximally effective concentration of insulin (100 pM) increased particulate cAMP phosphodiesterase activity 40 to 60% in 8 min; activation persisted for at least 30 min in the presence of insulin. Incubation of adipocytes for 6-8 min with agents that increased cAMP, e.g. 1 microM epinephrine, 0.1 microM isoproterenol, corticotropin (2 mu units/ml), or thyroid-stimulating hormone (15 ng/ml), also increased particulate phosphodiesterase activity 40-60%. Changes in phosphodiesterase activity produced by epinephrine tended to lag behind changes in cAMP. Insulin, epinephrine, and corticotropin increased Vmax, not Km (0.5 microM), for cAMP. Particulate phosphodiesterase activity, solubilized with detergent, eluted in a single peak from DEAE-Bio-Gel. Insulin and epinephrine increased the activity eluted in this peak. Neither insulin nor lipolytic hormones increased activity in soluble fractions from differentiated cells or particulate or soluble fractions from undifferentiated cells. Incubation of adipocytes for 48 h with 1 microM dexamethasone prevented insulin-induced activation of the particulate phosphodiesterase and did not alter basal activity. After incubation for 72 h with 0.1 microM dexamethasone, insulin and epinephrine activation were abolished. These effects of dexamethasone on hormonal regulation of particulate phosphodiesterase activity could account for some of the so-called permissive effects of glucocorticoids on cAMP-mediated processes as well as the "anti-insulin" effects of glucocorticoids.  相似文献   

5.
The N-formylated tripeptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) initiated the generation of immunoreactive C-6 sulfidopeptide leukotrienes and of leukotriene B4 (LTB4) in a dose-dependent manner from monolayers of human monocytes pretreated for 10 min with 5 micrograms/ml of cytochalasin B. The EC50 for the immunoreactive C-6 sulfidopeptide leukotrienes was 10(-8) M FMLP and for immunoreactive LTB4 was 5 X 10(-8) M FMLP. The maximal response to FMLP occurred within 10 min, and the sum of the two classes of leukotrienes generated was about 1/6 that obtained from monocytes stimulated with calcium ionophore A23187. The requirement for cytochalasin B in order for FMLP, but not the calcium ionophore, to stimulate leukotriene generation is compatible with the ability of cytochalasin B to augment in other cells certain stimulus-specific transmembrane responses that are not dependent on the integrity of the cytoskeleton. Resolution by reverse phase high performance liquid chromatography of the products released from monocytes pretreated with cytochalasin B and stimulated with FMLP or calcium ionophore yielded a single peak of immunoreactive LTB4 eluting at the same retention time as the synthetic standard; immunoreactive C-6 sulfidopeptide leukotrienes eluted at the retention times of leukotriene C4 (LTC4) and leukotriene D4 (LTD4). [3H]LTB4 was not metabolically altered by monocytes pretreated with cytochalasin B and activated with FMLP in comparison with cells treated with buffer alone, whereas [3H]LTC4 was partially converted to [3H]LTD4. The leukotriene-generating response of monolayers of human monocytes pretreated with cytochalasin B to FMLP is receptor-mediated, as indicated by the inactivity of the structural analog N-acetyl-methionyl-leucyl-phenylalanine and by the capacity of the FMLP receptor antagonist carbobenzoxyphenylalanyl-methionine to inhibit the agonist action of FMLP in a dose-response fashion.  相似文献   

6.
The aims of this study were (i) to investigate whether the contractile activity associated with running increases calcium-stimulated, calpastatin-inhibited protease activity (calpain-like) in a time-dependent manner and (ii) to determine whether the changes, if any, are proportionately distributed between soluble (cytosolic) and particulate (bound) fractions of striated muscle in vivo. Calcium-dependent, calpastatin-inhibited caseinolysis (i.e., calpain-like activity) was measured in control and exercised rats (25 m/min, 0% grade) at 2, 5, 15, 30, and 60 min. Total calpain-like activity in skeletal muscle increased by 26% (13.2 +/- 1.3 vs. 17.9 +/- 2.2 U/g wet wt.) (p < 0.05) after running (60 min), accompanied by an increased activity in the particulate fraction. In cardiac muscle, exercise (60 min) increased total calpain-like activity by 33% (p < 0.05), which was attributable to increases in both the cytosolic and particulate fractions. Both tissues responded with an early (2-5 min) activation of total calpain-like activity (p < 0.05), supported by early increases for particulate fractions from skeletal muscle; whereas for cardiac muscle, a noticeable early drop (p < 0.05) occurred in the particulate fraction. Minimal changes were observed for total, cytosolic, and particulate fractions of noncontracting tissue (i.e., liver). The results of this study support the hypothesis that the total calpain-like activity increases associated with level running occur early on with exercise and that the increases are accompanied by changes in the redistribution of soluble to particulate fractions. The changes would set the stage for enhanced rates of protein degradation known to occur in striated muscle with exercise.  相似文献   

7.
Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes   总被引:16,自引:0,他引:16  
We have studied the compartmentation of cyclic AMP action in purified ventricular cardiomyocytes prepared by collagenase perfusion of adult rabbit hearts. Incubation of purified adult myocytes with 1 microM isoproterenol causes rapid accumulation of intracellular cyclic AMP in both soluble (2.3 leads to 7.7 pmol/ mg of protein) and particulate (3.0 leads to 9.2) fractions of cell homogenates (3000 X g for 5 min), increases in the total activity and activity ratio of soluble cyclic AMP-dependent protein kinase (0.21 leads to 0.66), a decrease in protein kinase activity remaining in the particulate fraction (47 leads to 30%), and an increase in the activity ratio of glycogen phosphorylase (0.15 leads to 0.47). Incubation of myocytes with 10 microM prostaglandin E1 (PGE1) leads to a comparable increase in soluble cyclic AMP (2.3 leads to 5.8 pmol/mg of protein) and activation of soluble cyclic AMP-dependent protein kinase (0.21 leads to 0.39) but does not result in any change in cAMP or protein kinase in the particulate fraction and fails to cause an activation of glycogen phosphorylase. PGE1 does not inhibit the effects of isoproterenol; when myocytes are incubated with both isoproterenol and PGE1, the accumulation of cyclic AMP, activation of cAMP-dependent protein kinase and phosphorylase b leads to a conversion are equal to that achieved with isoproterenol alone. Perturbation of cellular calcium using the ionophore A23187, verapamil, or high or low extracellular calcium did not alter the ability of isoproterenol to cause activation of particulate cAMP-dependent protein kinase or influence the inability of PGE1 to do so. Activation of adenylate cyclase by forskolin (30 microM) caused immediate activation of both soluble and particulate cAMP-dependent protein kinase leading to rapid activation of phosphorylase. We conclude that the hormonally specific compartmentation of cyclic AMP and cAMP-dependent protein kinase that occurs in intact heart (Hayes, J. S., Brunton, L. L., Brown, J. H., Reese, J. B., and Mayer, S. E. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 1570-1574) is not explained on the basis of cellular heterogeneity but has a subcellular basis within the cardiomyocyte.  相似文献   

8.
Guanylate cyclase activities were identified in a soluble fraction and a particular fraction obtained from the Arteria coronaria of cattle. The Km-value was 1.0 +/- 0.7 - 10(-4) M for the enzyme substrate complex of the guanylate cyclase of the soluble fraction and 9.2 +/- 1.5 - 10(-4) M for the particular fraction. For the enzyme activity of the soluble fraction Mn++ cannot be replaced by Ca++ or Mg++, whereas for the enzyme activity of the particulate fraction Mn++ can be replaced by Mg++ but not by Ca++. The guanylate cyclase of the particulate fraction can be activated by acetylcholine. This activation can be cancelled by atropine. Acetylcholine exerts no influence on the guanylate cyclase activity of the soluble fraction. ATP inhibits the enzyme activities of both fractions whereas cAMP shows no influence on the guanylate cyclase activity.  相似文献   

9.
The synthesis and release of leukotriene B4 (LTB4) from canine polymorphonuclear leukocytes (PMNs) was characterized in terms of incubation time, temperature and effects of calcium ionophore A23187 concentrations. Maximal LTB4 concentrations were determined when canine PMNs were incubated with 10 microM A23187. Increasing LTB4 concentrations were determined through 10 min incubation. The maximal LTB4 concentrations (310 +/- 30 pg LTB4/2.5 x 10(5) cells) determined at 10 min did not change through a 55 min incubation period. Greater LTB4 concentrations were synthesized by canine PMNs at 37 degrees C (268 +/- 12 pg LTB4/2.5 x 10(5) cells) than at 25 degrees C (206 +/- 11 pg LTB4/2.5 x 10(5) cells) or 5 degrees C (59 +/- 3 pg LTB4/2.5 x 10(5) cells). The synthesis of LTB4 in canine PMNs was inhibited by incubation of the cells with either of two known lipoxygenase inhibitors, BWA4C or BW755C. BWA4C inhibited LTB4 synthesis with an approximate IC50 = 0.1 microM, whereas BW755C inhibited LTB4 synthesis with an approximate IC50 = 10 microM. These results indicate canine PMNs have the capability to synthesize large quantities of LTB4 when stimulated with calcium ionophore A23187. Furthermore, the 5-lipoxygenase inhibitors BWA4C, an acetohydroxyamic acid, and BW755C, a phenyl pyrazoline, can readily inhibit LTB4 synthesis in canine PMNs.  相似文献   

10.
A mixture of rabbit polymorphonuclear leukocytes (PMNs) and platelets at concentrations of 5 X 10(6) PMN and 3.5 X 10(8) platelets/ml Tyrode's solution was stimulated with the chemotactic peptide, formyl-methionyl-leucyl-phenylalanine (FMLP). A micromolar concentration of FMLP elicited an immediate weak aggregation, followed by a strong aggregation with a time lag of about 1 min. Microscopic examination showed that the immediate aggregation was due to PMNs and the delayed one was more complex and involved platelets. The delayed aggregation was dependent upon the concentrations of both the PMNs and FMLP. The delayed aggregation was completely blocked by pretreatment of the PMN-platelet mixture with 8 microM CV-3988, a specific receptor antagonist of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC), or by the application of platelets desensitized to AGEPC. The time course of AGEPC production by PMNs was well matched to that of the biphasic aggregation response. Furthermore, nordihydroguaiaretic acid inhibited both the AGEPC production by PMNs and the delayed aggregation in a similar dose-dependent manner. These result demonstrate that AGEPC, newly-generated by PMNs under FMLP-stimulation, is of primary importance in platelet aggregation in a PMN-platelet mixed system.  相似文献   

11.
In the present study the activities of three different protein kinase were determined in squamous cell carcinoma from the upper aero-digestive tract, and compared with the activities in normal oral mucosa. The protein kinases investigated are: a) cAMP-dependent protein kinase; b) cGMP-dependent protein kinase, and c) casein kinase II. The basal protein kinase activity, when histone IIa was used as substrate, was about 3-fold higher in tumors, as compared to normal mucosa, in the soluble fraction (32.0 +/- 4.2 and 10.9 +/- 2.4 pmol 32P/mg prot. X min, respectively). In the particulate fraction the basal protein kinase activity was about 9 times higher in tumors as compared to normal mucosa (19.4 +/- 5.2 and 2.1 +/- 0.3 pmol 32P/mg prot X min, respectively). The protein kinase activity in the presence of cyclic nucleotide (cAMP/cGMP) minus the basal protein kinase activity was taken as the cAMP- and the cGMP-dependent protein kinase activity, respectively. Maximal protein kinase activity was obtained in the presence of 0.5 microM of cyclic nucleotide both in squamous cell carcinoma and normal mucosa. In the cytosolic fraction the cAMP-dependent protein kinase activity was 33.9 +/- 13.0 pmol 32P/mg prot. X min in tumors, and 28.2 +/- 5.8 pmol 32P/mg prot. X min in normal tissue, after stimulation with 0.5 microM cAMP. The cGMP-dependent protein kinase activity was 5-10% of the cAMP-dependent protein kinase activity, and no concentration-dependent stimulation with cGMP was seen. The cGMP-dependent protein kinase activity in the presence of 0.5 microM cGMP was 2.4 +/- 1.3 and 1.8 +/- 0.6 pmol 32P/mg prot. X min in tumors and normal mucosa, respectively. Casein kinase II activity was determined only in the cytosolic fraction and was found to be 3-fold higher in tumors as compared to normal mucosa (31.8 +/- 5.2 and 8.6 +/- 3.5 pmol 32P/mg prot X min, respectively). This study shows a general increase in histone phosphorylation and casein kinase activity in neoplastic squamous epithelia compared to normal epithelia. No evidence for an increase in cyclic nucleotide dependent protein kinase activities in neoplastic squamous epithelia was found. This study thus supports the idea that phosphorylation/dephosphorylation reactions may play an important role in the control of cell growth, differentiation and proliferation.  相似文献   

12.
The kinetic properties and susceptibilities to various agents of intracellular (particulate and soluble) and extracellular phosphodiesterases [EC 3.1.4.17] of Dictyostelium discoideum induced by cyclic adenosine 3',5'-monophosphate (cyclic AMP) were studied and compared. Intracellular particulate phosphodiesterase was obtained by solubilization of the light mitochondrial fraction with Emulgen. The Michaelis constants of this enzyme were 4.5 +/- 0.7 and 10 +/- 0.7 microM, while those of the intracellular soluble phosphodiesterase were 4.6 +/- 0.3 and 13 +/- 2.8 microM. However, the Michaelis constant of the extracellular phosphodiesterase was 6.8 +/- 0.9 microM, differing from the values of the two intracellular enzymes. Susceptibilities of the enzyme activity to various agents (theophylline, caffeine, dithiothreitol, glutathione, etc.) were essentially the same among these three phosphodiesterases. In the presence of 10 mM ethylenediaminetetraacetate, the activities of the particulate and the soluble enzymes were both decreased to about 60%, while that of the extracellular enzyme remained at 90%. The inhibition constants of cyclic inosine monophosphate for the cellular enzymes (35 and 100 microM for the particulate enzyme, and 37 and 90 microM for the soluble one) were considerably different from the value for the extracellular enzyme (48 microM). These results suggest that the characteristics of these three phosphodiesterases are substantially similar, but that the affinity of the intracellular (particulate and soluble) enzymes for the substrate is somewhat different from that of the extracellular enzyme.  相似文献   

13.
Activated human polymorphonuclear leukocytes (PMN) isolated from peripheral blood specifically bind 125I-laminin after stimulation with phorbol 12-myristate 13-acetate (PMA) or f-Met-Leu-Phe (FMLP) at 37 degrees C. Changes in laminin receptor expression are stimulus dose dependent at both chemotactic (10(-10) M to 10(-6) M) concentrations of FMLP, and secretory (greater than 5 ng/ml) levels of PMA. In the presence of cytochalasin B (5 micrograms/ml), 10(-7) M FMLP activation stimulates specific laminin binding, with an apparent Kd = 3.9 X 10(-9) M and 6.47 X 10(5) binding sites/cell, reaching equilibrium within 10 min at 4 degrees C. This observed activation-dependent change in laminin receptor expression is not due to interference by endogenous laminin, because no fluorescein-visualized anti-laminin antibody bound to cells without added glycoprotein, regardless of the level of activation. Levels of neutrophil lysozyme release, which show a PMA dose dependence similar to that of receptor binding activity, suggest that granule-plasma membrane fusion may be significant during increases in receptor expression. A lack of receptor stimulation by PMA from a granule-deficient patient or in granule-depleted cytoplasts from normal donors additionally supports this hypothesis. Electroblot transfer and autoradiography of subcellular fractions from unstimulated PMN reveals the presence of a 68,000 dalton laminin-binding component in the secondary/tertiary granule (beta) fraction, which may represent an intracellular laminin receptor pool.  相似文献   

14.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) between cytosol and membrane fractions was examined in bovine adrenal glomerulosa cells treated with angiotensin II or potassium. Protein kinase C was isolated from cytosol and from detergent-solubilized particulate fractions by DEAE-cellulose chromatography. A major peak of activity for both the soluble and particulate forms of adrenal glomerulosa protein kinase C was eluted at 0.05-0.09 M NaCl. The soluble and particulate forms were found to constitute about 95 and 5%, respectively, of the total enzyme activity in unstimulated cells. A second peak of kinase activity was eluted with 0.15-0.19 M NaCl, which was not dependent on the presence of phospholipids. Exposure of isolated cells for 20 min to 10(-8) M angiotensin II resulted in a decrease in cytosolic activity to 30-40% of control values, and in a corresponding increase in protein kinase C activity associated with the particulate fraction. This hormone-induced redistribution was found to be dose-dependent with an ED50 of 2 nM for angiotensin II, and it occurred rapidly, reaching a plateau within 5-10 min. It was prevented by the specific antagonist [Sar1,Ala8]angiotensin II. By contrast, stimulation with 12 mM KCl did not change the subcellular distribution of protein kinase C activity. These results suggest that redistribution of protein kinase C represents an early step in the post-receptor activation cascade following angiotensin II, but not potassium stimulation of adrenal glomerulosa cells.  相似文献   

15.
The present study describes the enzymatic properties and molecular identification of 5'-nucleotidase in soluble and microsomal fractions from rat cardiac ventricles. Using AMP as a substrate, the results showed that the cation and the concentration required for maximal activity in the two fractions was magnesium at a final concentration of 1 mM. The pH optimum for both fractions was 9.5. The apparent K(m) (Michaelis constant) values calculated from the Eadie-Hofstee plot were 59.7+/-10.4 microM and 134.8+/-32.1 microM, with V(max) values of 6.7+/-0.4 and 143.8+/-23.8 nmol P(i)/min/mg of protein (means+/-S.D., n=4) from soluble and microsomal fractions respectively. Western blotting analysis of ecto-5'-nucleotidase revealed a 70 kDa protein in both fractions, with the major proportion present in the microsomal fraction. The presence of these enzymes in the heart probably has a physiological function in adenosine signalling. Furthermore, the presence of ecto-5'-nucleotidase in the microsomal fraction could have a role in the modulation of the excitation-contraction-coupling process through involvement of the Ca(2+) influx into the sarcoplasmic reticulum. The measurement of maximal enzyme activities in the two fractions highlights the potential capacity of the different pathways of purine metabolism in the heart.  相似文献   

16.
The effect of calcium (Ca2+) on the adenylate cyclase activity and calmodulin level of cerebral cortex was determined in pentobarbital dependent rats and age matched controls. Female Sprague-Dawley rats were made dependent and maintained on pentobarbital by eating a mixture of pentobarbital and rat chow (350 mg pentobarbital/30 g chow). Ca2+ activated then inhibited the adenylate cyclase activity associated with a 20,000 X g particulate fraction from pentobarbital dependent and age matched control rats. The values for one-half maximal stimulation and inhibition by Ca2+ did not differ significantly in either cortical preparation. However, the ability of Ca2+ to activate adenylate cyclase from pentobarbital dependent animals was significantly decreased (p less than 0.05) when compared to control animals. Pentobarbital (10(-4) - 10(-3) added to particulate fractions from naive control rats did not alter the ability of Ca2+ to activate adenylate cyclase. The calmodulin levels in the particulate fraction from pentobarbital dependent animals (30.2 +/- 6.7 ng calmodulin/mg protein) did not differ significantly when compared to control (33.0 +/- 4.7 ng/mg). By contrast, the calmodulin levels (37.9 +/- 5.9 ng/mg) in the 20,000 X g supernatant from cortex of pentobarbital dependent animals was significantly greater than the level in the supernatant from control animals (28.6 +/- 2.6 ng/mg). The ability of forskolin, dopamine, GTP or forskolin plus GTP (all at a concentration of 100 microM) to activate adenylate cyclase was significantly decreased in particulate preparations from pentobarbital dependent animals. In summary, our data show that alterations in calmodulin levels and a decreased responsivity of adenylate cyclase occur in animals physically dependent on pentobarbital.  相似文献   

17.
Arginase, which catalyzes the cleavage of l-arginine to urea and ornithine, was detected in both soluble and particulate fractions of mouse epidermis. In a typical experiment, about 75 and 25% of the total arginase activity was associated with the soluble (100 000 × g supernatant) and the washed particulate fraction, respectively. Both soluble and particulate enzymes required the presence of divalent Mn2+ for activity. Arginase activity was increased by about 50% in the particulate fraction, but not in the soluble fraction, by preheating the fractions at either 50 or 55°C in the presence of 15 mM MnCl2. Enzyme activity in both fractions, in the absence of 15 mM MnCl2, dropped precipitously during heating. A comparison of the nature of arginases in the soluble and particulate fractions revealed similar Km values (13 mM) and pH optima (9.5) and identical heat denaturation curves. Application of 10 nmol of 12-O-tetradecanoylphorbol-13-acetate to mouse skin did not increase arginase activity in either fraction over a period of 24 h. In contrast, there was a large increase in ornithine decarboxylase activity in the soluble fraction 4.5 h after treatment. Mouse epidermal ornithine decarboxylase activity was much less than arginase activity and was predominantly localized in the soluble fraction. These results indicate that the normal level of arginase activity is not a limiting factor for the stimulation of polyamine biosynthesis by TPA. High arginase activity in mouse epidermis may play a role in providing ornithine for polyamine biosynthesis and in the production of glutamate and proline as well as in the production of keratinous proteins.  相似文献   

18.
Changes in the movements of Na+, K+, and Ca+2 across rabbit neutrophils under conditions of lysosomal enzyme release have been studied. We have found that in the presence of cytochalasin B, the chemotactic factor formyl methionyl leucyl phenylalanine (FMLP) induces within 30 s large enhancements in the influxes of both 22Na+ and 45Ca+2 and an increase in the cellular pool of exchangeable calcium. The magnitude of the changes induced by cytochalasin B and FMLP exceeds that induced by FMLP or cytochalasin B alone, and cannot be explained on the basis of an additive effect of the two agents. However, these compounds either separately or together produce much smaller enhancements in 45Ca efflux. The divalent cation ionophore A23187 also produces a rapid and large increase in the influxes of both 22Na and 45Ca+2 in the presence and absence of cytochalasin B. We have also found an excellent correlation between calcium influx and lysosomal enzyme release. 42K influx is not significantly affected by any of these compounds. On the other hand, a large and rapid increase of 42K efflux is observed under conditions which give rise to lysosomal enzyme release. A flow diagram of the events that are thought to accompany the stimulation of polymorphonuclear leukocytes (PMNs) by chemotactic or degranulating stimuli is presented.  相似文献   

19.
In purified ventricular myocytes from adult rabbit, beta-adrenergic stimulation causes cyclic AMP accumulation and cyclic AMP-protein kinase activation in both particulate and soluble fractions of the cell, whereas prostaglandin E1 elevates cyclic AMP and cyclic AMP-protein kinase activity in the soluble fraction exclusively. Only activation of particulate cyclic AMP-protein kinase activity results in phosphorylase b----a conversion. Using radioligand binding technics, we have determined whether beta 1- and beta 2-receptor subtypes mediate beta-adrenergic effects in particulate and soluble subcellular compartments, respectively. The non-selective antagonist [125I]iodocyanopindolol binds to intact ventricular myocytes with KD of 25 pM and a Bmax of 2.6 X 10(5) receptors/myocyte. Competition for [125I]iodocyanopindolol binding to intact myocytes by the beta-receptor subtype-specific antagonists practolol (beta 1) and zinterol (beta 2) results in monophasic curves with antagonist KD values of 1 microM and 1.5 microM, respectively. We conclude that adult rabbit cardiac myocytes do not possess detectable beta 2 receptors. Further, the ability of isoproterenol to cause elevation of cyclic AMP in two functionally distinct regions within the myocyte must pertain to the actions of a single subtype of beta-receptor, the beta 1-receptor.  相似文献   

20.
BACKGROUND: Human polymorphonuclear granulocytes (PMN) are an essential component in the immunological defense network against a variety of harmful pathogens. We have studied the effects of the airborne pollutant sulfite on the calcium metabolism and respiratory burst of these cells simultaneously. METHODS: A flow cytometric method was developed using the fluochromes Indo-1 and DHR-123. This method allowed us to investigate the real-time kinetics of intracellular free calcium and reactive oxygen intermediates in viable cells with a temporal resolution of 1 s over a time course of 17 min. An additional feature was the possibility to discriminate between reacting and nonreacting cells after treatment with defined stimuli, thus gaining additional insight into the behavior of cell subpopulations. RESULTS: We analyzed the effects of sulfite on PMN before and after stimulation with formyl-Met-Leu-Phe (FMLP). Treatment with sulfite alone (0.001-1 mM) caused a small, nontransient increase in intracellular calcium. Preincubation with sulfite reduced the maximal calcium response elicited by FMLP. A significant increase in steady-state calcium levels after stimulation with FMLP was observed after treatment with sulfite in concentrations of 10 and 100 mM. Regarding the respiratory burst, treatment with sulfite alone in concentrations of 0.001-1 mM induced a significant increase in DHR-123-derived fluorescence, whereas concentrations of 5 and 10 mM caused a significant depression of this fluorescence below baseline values. Sulfite caused a maximal twofold increase of DHR-123-derived fluorescence compared with the FMLP response. Similar results were obtained after preincubation with sulfite before treatment with FMLP, showing that the effect of sulfite on the respiratory burst was additive to the FMLP response. Regarding the fractions of responding cells, treatment with sulfite up to 1 mM induced a concentration-dependent increase of burst-reactive PMN, whereas preincubation before stimulation with FMLP showed no correlation between sulfite concentration and fraction of burst-reacting cells. CONCLUSIONS: By simultaneous registration of [Ca(2+)](i) and [H(2)O(2)](i) of PMN after treatment with FMLP and sulfite, the essential responses were already observed within a short time interval (15 min). Striking differences were found in the response of calcium as second messenger and respiratory burst in PMN treated with sulfite. Until a critical concentration (0. 5-1 mM), sulfite caused a concentration-dependent increase of [H(2)O(2)](i), in addition to the FMLP-induced response. The [Ca(2+)](i) changes induced by sulfite alone, however, were found to be small and showed no correlation with the respiratory burst response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号