首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated human erythrocyte spectrin, ankyrin, and protein 4.1 have been labeled with the maleimide spin label, 3-maleimido-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl, and studied by saturation transfer electron paramagnetic resonance spectroscopy. The presence of the labels does not affect the reassociation of these proteins with erythrocyte membranes selectively depleted of either spectrin-actin or of all the extrinsic proteins. When maleimide spin-labeled spectrin is reassociated with the erythrocyte membrane in presence of all the cytoskeleton components, including endogeneous or purified muscle actin, spectrin still preserves its flexible character. The rotational mobilities of maleimide spin-labeled ankyrin and maleimide spin-labeled protein 4.1 are of the same order of magnitude (tau c (L"/L) approximately 5 X 10(-5) and 8 X 10(-5) s, respectively, at 2 degrees C), while protein 4.1 is almost three times smaller in size than ankyrin. This result indicates that the movements of membrane-bound maleimide spin-labeled protein 4.1 are more restricted than those of ankyrin. This suggests that their respective binding sites have different structural properties. The rotational movements of both proteins are slowed down on the addition of spectrin indicating that protein 4.1 as well as ankyrin also represents one of the links of the cytoskeleton to the membrane.  相似文献   

2.
We studied the binding of actin to the erythrocyte membrane by a novel application of falling ball viscometry. Our approach is based on the notion that if membranes have multiple binding sites for F-actin they will be able to cross-link and increase the viscosity of actin. Spectrin- and actin-depleted inside-out vesicles reconstituted with purified spectrin dimer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out vesicles plus heat-denatured spectrin dimmer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out plus heat denatured spectrin, ghosts, or ghosts plus spectrin have no effect on the viscosity of actin. Centrifugation experiments show that the amount of actin bound to the inside-out vesicles is enhanced in the presence of spectrin. The interactions detected by low-shear viscometry reflect actin interaction with membrane- bound spectrin because (a) prior removal of band 4.1 and ankyrin (band 2.1, the high- affinity membrane attachment site for spectrin) reduces both spectrin binding to the inside-out vesicles and their capacity to stimulate increase in viscosity of actin in the presence of spectrin + actin are inhibited by the addition of the water-soluble 72,000- dalton fragment of ankyrin, which is known to inhibit spectrin reassociation to the membrane. The increases in viscosity of actin induced by inside-out vesicles reconstituted with purified spectrin dimer or tetramer are not observed when samples are incubated at 0 degrees C. This temperature dependence may be related to the temperature-dependent associations we observe in solution studies with purified proteins: addition of ankyrin inhibits actin cross-linking by spectrin tetramer plus band 4.1 at 0 degrees C, and enhances it at 32 degrees C. We conclude (a) that falling ball viscometry can be used to assay actin binding to membranes and (b) that spectrin is involved in attaching actin filaments or oligomers to the cytoplasmic surface of the erythrocyte membrane.  相似文献   

3.
Brain membranes contain an actin-binding protein closely related in structure and function to erythrocyte spectrin. The proteins that attach brain spectrin to membranes are not established, but, by analogy with the erythrocyte membrane, may include ankyrin and protein 4.1. In support of this idea, proteins closely related to ankyrin and 4.1 have been purified from brain and have been demonstrated to associate with brain spectrin. Brain ankyrin binds with high affinity to the spectrin beta subunit at the midregion of spectrin tetramers. Brain ankyrin also has binding sites for the cytoplasmic domain of the erythrocyte anion channel (band 3), as well as for tubulin. Ankyrins from brain and erythrocytes have a similar domain structure with protease-resistant domains of Mr = 72,000 that contain spectrin-binding activity, and domains of Mr = 95,000 (brain ankyrin) or 90,000 (erythrocyte ankyrin) that contain binding sites for both tubulin and the anion channel. Brain ankyrin is present at about 100 pmol/mg membrane protein, or about twice the number of copies of spectrum beta chains. Brain ankyrin thus is present in sufficient amounts to attach spectrin to membranes, and it has the potential to attach microtubules to membranes as well as to interconnect microtubules with spectrin-associated actin filaments. Another spectrin-binding protein has been purified from brain membranes, and this protein cross-reacts with erythrocyte 4.1. Brain 4.1 is identical to the membrane protein synapsin, which is one of the brain's major substrates for cAMP-dependent and Ca/calmodulin-dependent protein kinases with equivalent physical properties, immunological cross-reaction, and peptide maps. Synapsin (4.1) is present at about 60 pmol/mg membrane protein, and thus is a logical candidate to regulate certain protein linkages involving spectrin.  相似文献   

4.
A population of band 3 proteins in the human erythrocyte membrane is known to have restricted rotational mobility due to interaction with cytoskeletal proteins. We have further investigated the cause of this restriction by measuring the effects on band 3 rotational mobility of rebinding ankyrin and band 4.1 to ghosts stripped of these proteins as well as spectrin and actin. Rebinding either ankyrin or 4.1 alone has no detectable effect on band 3 mobility. Rebinding both these proteins together does, however, reimpose a restriction on band 3 rotation. The effect on band 3 rotational mobility of rebinding ankyrin and 4.1 are similar irrespective of whether or not band 4.2 is removed from the membrane. We suggest that ankyrin and 4.1 together promote the formation of slowly rotating clusters of band 3.  相似文献   

5.
Brain spectrin reassociates in in vitro binding assays with protein(s) in highly extracted brain membranes quantitatively depleted of ankyrin and spectrin. These newly described membrane sites for spectrin are biologically significant and involve a protein since (a) binding occurs optimally at physiological pH (6.7-6.9) and salt concentrations (50 mM), (b) binding is abolished by digestion of membranes with alpha-chymotrypsin, (c) Scatchard analysis is consistent with a binding capacity of at least 50 pmol/mg total membrane protein, and highest affinity of 3 nM. The major ankyrin-independent binding activity of brain spectrin is localized to the beta subunit of spectrin. Brain membranes also contain high affinity binding sites for erythrocyte spectrin, but a 3-4 fold lower capacity than for brain spectrin. Some spectrin-binding sites associate preferentially with brain spectrin, some with erythrocyte spectrin, and some associate with both types of spectrin. Erythrocyte spectrin contains distinct binding domains for ankyrin and brain membrane protein sites, since the Mr = 72,000 spectrin-binding fragment of ankyrin does not compete for binding of spectrin to brain membranes. Spectrin binds to a small number of ankyrin-independent sites in erythrocyte membranes present in about 10,000-15,000 copies/cell or 10% of the number of sites for ankyrin. Brain spectrin binds to these sites better than erythrocyte spectrin suggesting that erythrocytes have residual binding sites for nonerythroid spectrin. Ankyrin-independent-binding proteins that selectively bind to certain isoforms of spectrin provide a potentially important flexibility in cellular localization and time of synthesis of proteins involved in spectrin-membrane interactions. This flexibility has implications for assembly of the membrane skeleton and targeting of spectrin isoforms to specialized regions of cells.  相似文献   

6.
Brain spectrin, through its beta subunit, binds with high affinity to protein-binding sites on brain membranes quantitatively depleted of ankyrin (Steiner, J., and Bennett, V. (1988) J. Biol. Chem. 263, 14417-14425). In this study, calmodulin is demonstrated to inhibit binding of brain spectrin to synaptosomal membranes. Submicromolar concentrations of calcium are required for inhibition of binding, with half-maximal effects at pCa = 6.5. Calmodulin competitively inhibits binding of spectrin to protein(s) in stripped synaptosomal membranes, with Ki = 1.3 microM in the presence of 10 microM calcium. A reversible receptor-mediated process, and not proteolysis, is responsible for inhibition since the effect of calcium/calmodulin is reversed by the calmodulin antagonist trifluoperazine and by chelation of calcium with sodium [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. The target of calmodulin is most likely the spectrin attachment protein(s) rather than spectrin itself since: (a) membrane binding of the brain spectrin beta subunit, which does not associate with calmodulin, is inhibited by calcium/calmodulin, and (b) red cell spectrin which binds calmodulin very weakly, is inhibited from interacting with membrane receptors in the presence of calcium/calmodulin. Ca2+/calmodulin inhibited association of erythrocyte spectrin with synaptosomal membranes but had no effect on binding of erythrocyte or brain spectrin to ankyrin in erythrocyte membranes. These experiments demonstrate the potential for differential regulation of spectrin-membrane protein interactions, with the consequence that Ca2+/calmodulin can dissociate direct spectrin-membrane interactions locally or regionally without disassembly of the areas of the membrane skeleton stabilized by linkage of spectrin to ankyrin. A membrane protein of Mr = 88,000 has been identified that is dissociated from spectrin affinity columns by calcium/calmodulin and is a candidate for the calmodulin-sensitive spectrin-binding site in brain.  相似文献   

7.
Kidney Na+,K(+)-ATPase has been recently shown to bind erythroid ankyrin and to colocalize with ankyrin at the basolateral cell surface of kidney epithelial cells. These observations suggest that Na+,K(+)-ATPase is linked via ankyrin to the spectrin/actin-based membrane cytoskeleton. In the present study we show that Na+,K(+)-ATPase and analogs of spectrin, ankyrin and actin copurify from detergent extracts of pig kidney and parotid gland membranes. Actin, spectrin and ankyrin were extracted from purified Na+,K(+)-ATPase microsomes at virtually identical conditions as their counterparts from the erythrocyte membrane, i.e., 1 mM EDTA (spectrin, actin) and 1 M KCl (ankyrin). Visualization of the stripped proteins by rotary shadowing revealed numerous elongated spectrin-like dimers (100 nm) and tetramers (215 nm), a fraction of which (17%) was associated with globular (10 nm) ankyrin-like particles. Like erythrocyte ankyrin, kidney ankyrin was cleaved into a soluble 72 kDa fragment and a membrane-bound 90 kDa fragment. Consistent with our previous immunocytochemical findings on the pig kidney, Na+,K(+)-ATPase and ankyrin were found to be colocalized at the basolateral plasma membrane of striated ducts and acini of the pig parotid gland. The present findings confirm and extend the recently proposed concept that in polarized epithelial cells Na+,K(+)-ATPase may serve as major attachment site for the spectrin-based membrane cytoskeleton to the basolateral cell domain. Connections of integral membrane proteins to the cytoskeleton may help to place these proteins at specialized domains of the cell surface and to prevent them from endocytosis.  相似文献   

8.
Chemically tritiated actin from rabbit skeletal muscle was used to investigate the association of G-actin with the red cell membrane. The tritiated actin was shown to be identical to unmodified actin in its ability to polymerize and to activate heavy meromyosin ATPase. Using sealed and unsealed red cell ghosts we have shown that G-actin binds to the cytoplasmic but not the extracellular membrane surface of ghosts. Inside-out vesicles which have been stripped of endogenous actin and spectrin by low-ionic-strength incubation bind little G-actin. However, when a crude spectrin extract containing primarily spectrin, actin, and band 4.1 is added back to stripped vesicles, subsequent binding of G-actin can be increased up to 40-fold. Further, this crude spectrin extract can compete for and abolish G-actin binding to unsealed ghosts. Actin binding to ghosts increases linearly with added G-actin and requires the presence of magnesium. In addition, actin binding is inhibited by cytochalasin B and DNAase I. Negative staining reveals an abundance of actin filaments formed when G-actin is added to reconstituted inside-out vesicles but none when it is added to unreconstituted vesicles. These observations indicate that added G-actin binds to the red cell membrane via filament formation nucleated by some membrane component at the cytoplasmic surface.  相似文献   

9.
Several workers have identified molecular abnormalities associated with inherited blood disorders. The present work examines how these alterations in molecular structure affect the viscoelastic properties of the red blood cell membrane. Changes in the membrane shear modulus, the membrane viscosity, and the apparent membrane bending stiffness were observed in cells of eight patients having a variety of disorders: Two had reductions in the number of high-affinity ankyrin binding sites, two had abnormalities associated with the protein band 4.1, and six were known to be deficient in spectrin. The data suggest that the membrane shear modulus is proportional to the density of spectrin on the membrane and support the view that spectrin is primarily responsible for membrane shear elasticity. Although membranes having abnormalities associated with the function of ankyrin or band 4.1 exhibited reduced elasticity, the degree of mechanical dysfunction was quantitatively inconsistent with the extent of the molecular abnormality. This indicates that these skeletal components do not play a primary role in determining membrane shear elasticity. The membrane viscosity was reduced in seven of the eight patients studied. The reduction in viscosity was usually greater than the reduction in shear modulus, but the degree of reduction in viscosity was variable and did not correlate well with the degree of molecular abnormality.  相似文献   

10.
We have characterized the association of the intermediate filament protein, vimentin, with the plasma membrane, using radioiodinated lens vimentin and various preparations of human erythrocyte membrane vesicles. Inside-out membrane vesicles (IOVs), depleted of spectrin and actin, bind I125-vimentin in a saturable manner unlike resealed, right-side-out membranes which bind negligible amounts of vimentin in an unsaturable fashion. The binding of vimentin to IOVs is abolished by trypsin or acid treatment of the vesicles. Extraction of protein 4.1 or reconstitution of the membranes with purified spectrin do not basically affect the association. However, removal of ankyrin (band 2.1) significantly lowers the binding. Upon reconstitution of depleted vesicles with purified ankyrin, the vimentin binding function is restored. If ankyrin is added in excess the binding of vimentin to IOVs is quantitatively inhibited, whereas protein 4.1, the cytoplasmic fragment of band 3, band 6, band 4.5 (catalase), or bovine serum albumin do not influence it. Preincubation of the IOVs with a polyclonal anti-ankyrin antibody blocks 90% of the binding. Preimmune sera and antibodies against spectrin, protein 4.1, glycophorin A, and band 3 exhibit no effect. On the basis of these data, we propose that vimentin is able to associate specifically with the erythrocyte membrane skeleton and that ankyrin constitutes its major attachment site.  相似文献   

11.
Brain ankyrin was purified from pig brain membranes in milligram quantities by a procedure involving affinity chromatography on erythrocyte spectrinagarose. Brain ankyrin included two polypeptides of Mr = 210,000 and 220,000 that were nearly identical by peptide mapping and were monomers in solution. Brain ankyrin and erythrocyte ankyrin are closely related proteins with the following properties in common: 1) shared antigenic sites, 2) high-affinity binding to the spectrin beta subunit at the midregion of spectrin tetramers, 3) a binding site for the cytoplasmic domain of the erythrocyte anion channel, 4) a binding site for tubulin, 5) a similar domain structure with a protease-resistant domain of Mr = 72,000 that contains the spectrin-binding activity and domains of Mr = 95,000 (brain ankyrin) or 90,000 (erythrocyte ankyrin) that contain binding sites for both tubulin and the anion channel. Brain ankyrin is present at about 100 pmol/mg of membrane protein in demyelinated membranes based on radioimmunoassay with antibody raised against brain ankyrin and affinity purified on brain ankyrin-agarose. Brain spectrin tetramers are present at 30 pmol/mg of membrane protein. Brain ankyrin thus is present in sufficient amounts to attach spectrin to membranes. Brain ankyrin also may attach microtubules to membranes independently of spectrin and has the potential to interconnect microtubules and spectrin-associated actin filaments.  相似文献   

12.
The Ca2(+)-dependent regulation of the erythroid membrane cytoskeleton was investigated. The low-salt extract of erythroid membranes, which is mainly composed of spectrin, protein 4.1, and actin, confers a Ca2+ sensitivity on its interaction with F-actin. This Ca2+ sensitivity is fortified by calmodulin and antagonized by trifluoperazine, a potent calmodulin inhibitor. Additionally, calmodulin is detected in the low-salt extract. These results suggest that calmodulin is the sole Ca2(+)-sensitive factor in the low-salt extract. The main target of calmodulin in the erythroid membrane cytoskeleton was further examined. Under native conditions, calmodulin forms a stable and equivalent complex with protein 4.1 as determined by calmodulin affinity chromatography, cross-linking experiments, and fluorescence binding assays with an apparent Kd of 5.5 x 10(-7) M irrespective of the free Ca2+ concentration. Domain mapping with chymotryptic digestion reveals that the calmodulin-binding site resides within the N-terminal 30-kDa fragment of protein 4.1. In contrast, the interaction of calmodulin with spectrin is unexpectedly weak (Kd = 1.2 x 10(-4) M). Given the content of calmodulin in erythrocytes (2-5 microM), these results imply that the major target for calmodulin in the erythroid membrane cytoskeleton is protein 4.1. Low- and high-shear viscometry and binding assays reveal that an equivalent complex of calmodulin with protein 4.1 regulates the spectrin/actin interaction in a Ca2(+)-dependent manner. At a low Ca2+ concentration, protein 4.1 potentiates the actin cross-linking and the actin binding activities of spectrin. At a high Ca2+ concentration, the protein 4.1-potentiated actin cross-linking activity but not the actin binding activity of spectrin is suppressed by Ca2+/calmodulin. The Ca2(+)-dependent regulation of the spectrin/protein 4.1/calmodulin/actin interaction is discussed.  相似文献   

13.
It has been demonstrated by our laboratory that the irreversibly sickled cell (ISC) spectrin-4.1-actin complex dissociates slowly as compared to ternary complexes formed out of control (AA) and reversibly sickle cell (RSCs) core skeletons. These studies indicated that the molecular basis for the inability of irreversibly sickled cells (ISCs) to change shape is a skeleton that disassembles, and therefore reassembles, very slowly. The present study is based on the following observations: a) alpha-spectrin repeats 20 and 21 contain ubiquitination sites, and b) The spectrin repeats beta-1 and beta-2 are in direct contact with spectrin repeats alpha-20 and alpha-21 during spectrin heterodimer formation, and contain the protein 4.1 binding domain. We demonstrate here that alpha-spectrin ubiquitination at repeats 20 and 21 increases the dissociation of the spectrin-protein-4.1-actin ternary complex thereby regulating protein 4.1's ability to stimulate the spectrin-actin interaction. Performing in vitro ternary complex dissociation assays with AA control and sickle cell SS spectrin (isolated from high-density sickle cells), we further demonstrate that reduced ubiquitination of alpha-spectrin is, in part, responsible for the locked membrane skeleton in sickle cell disease.  相似文献   

14.
Two mechanisms have been proposed for maintenance of transbilayer phospholipid asymmetry in the erythrocyte plasma membrane, one involving specific interactions between the aminophospholipids of the inner leaflet of the bilayer and the cytoskeleton, particularly spectrin, and the other involving the aminophospholipid translocase. If the former mechanism is correct, then erythrocytes which have lost their asymmetric distribution of phospholipids should display altered bilayer/cytoskeleton interactions. To test this possibility, normal erythrocytes, erythrocytes from patients with chronic myelogenous leukemia or sickle disease, and lipid-symmetric and -asymmetric erythrocyte ghosts were labeled with the radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitrobenzoyl)-1-acyl-sn-glycero-3-phospho[14C]ethanolamine ([14C]AzPE), previously shown to label cytoskeletal proteins from the bilayer. The labeling pattern of cytoskeletal proteins in pathologic erythrocytes and lipid-asymmetric erythrocyte ghosts was indistinguishable from normal erythrocytes, indicating that the probe detects no differences in bilayer/cytoskeleton interactions in these cells. In contrast, in lipid-symmetric erythrocyte ghosts, labeling of bands 4.1 and 4.2 and actin, and to a lesser extent ankyrin, by [14C]AzPE was considerably reduced. Significantly, however, labeling of spectrin was unaltered in the lipid-symmetric ghosts, suggesting that its relationship with the bilayer is normal in these lipid-symmetric cells. These results do not support a model in which spectrin is involved in the maintenance of an asymmetric distribution of phospholipids in erythrocytes.  相似文献   

15.
Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and differential mRNA splicing. Finally, the spectrum of interactions of the 4.1 proteins overlaps with that of another membrane-cytoskeleton linker, ankyrin. Both ankyrin and 4.1 link to the actin cytoskeleton via spectrin, and we hypothesize that differential regulation of 4.1 proteins and ankyrins allows highly selective control of cell surface protein accumulation and, hence, function. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé  相似文献   

16.
V. Bennett  J. Steiner  J. Davis 《Protoplasma》1988,145(2-3):89-94
Summary The purpose of this review is to summarize recent progress in understanding interactions of spectrin with membranes from brain and other tissues. Spectrin has at least two choices in linkages with the membrane, one through ankyrin, which in turn is associated with integral membrane proteins, and another linkage directly with integral membrane sites identified recently in brain membranes. Some of the integral membrane protein sites in brain bind preferentially with one spectrin isoform, while some can interact with both erythroid and the general isoform of spectrin. Ankyrin also has different isoforms, and these exhibit specificity in binding to spectrin isoforms and associate with distinct integral membrane proteins. The membrane binding sites for ankyrin include several integral membrane proteins, which are differentially expressed in different cells: the anion exchanger of intercalated cells of mammalian kidney, the sodium/potassium ATPase of kidney, and the voltage-dependent sodium channel of neurons. Ankyrin is present in many other cell types and it is likely that additional ankyrin-binding proteins will be identified. Each of the proteins that now are candidates for ankyrin binding proteins are ion channels or transporters and are localized in specialized cellular domains. The polarized localization of the ankyrin-associated membrane proteins is an essential aspect of their function at a physiological level. Spectrin and ankyrin thus exhibit an unsuspected diversity in protein linkages and have the potential for cell domain-specific interactions with a variety of membrane proteins.  相似文献   

17.
Human plasma contains naturally occurring autoantibodies to the predominant components of the erythrocyte membrane: band 3 and spectrin bands 1 and 2 of the cytoskeleton. The titer of cytoskeletal plasma autoantibodies increases in various hemolytic conditions, suggesting that opsonization of the cytoskeleton may play an important role in the clearance of hemolyzed (not senescent) erythrocytes from the circulation. In this study, we use Alexa Fluor 488 goat anti-human IgG conjugate (Molecular Probes, Eugene, OR, USA), to characterize plasma immunoglobulin binding to erythrocyte membranes from osmotically hemolyzed cells ('ghosts'). The results show that exposure of ghosts to plasma results in 4-fold more immunoglobulin binding to the cytoskeleton than is bound to the proteins contained within the lipid bilayer. Preincubation of the ghosts at 37 degrees C causes 8-fold more immunoglobulin binding to the cytoskeleton compared to bilayer proteins. This temperature-induced change resulted from selective immunoglobulin binding to the cytoskeleton, with no change in immunoglobulin binding to bilayer proteins. However, the rate of increase in cytoskeletal antigenicity at 37 degrees C did correlate with the rate of a conformational change in band 3, a transmembrane protein which serves as a major membrane attachment site for the cytoskeleton. The results of this study suggest that the cytoskeleton is the primary target in the opsonization of hemolyzed erythrocyte membranes by naturally occurring plasma autoantibodies. The conformational changes which occur in ghosts at 37 degrees C are associated with selective exposure of new immunoglobulin binding sites on the cytoskeleton, and with a change in the structure of band 3. We propose a model suggesting that opsonization of the cytoskeleton occurs prior to the decomposition of hemolyzed erythrocytes at 37 degrees C.  相似文献   

18.
Ankyrin mediates the primary attachment between beta spectrin and protein 3. Ankyrin and spectrin interact in a positively cooperative fashion such that ankyrin binding increases the extent of spectrin tetramer and oligomer formation (Giorgi and Morrow: submitted, 1988). This cooperative interaction is enhanced by the cytoplasmic domain of protein 3, which is prepared as a 45-41-kDa fragment generated by chymotryptic digestion of erythrocyte membranes. Using sensitive isotope-ratio methods and nondenaturing PAGE, we now demonstrate directly (1) the enhanced affinity of ankyrin for spectrin oligomers compared to spectrin dimers; (2) a selective stimulation of the affinity of ankyrin for spectrin oligomer by the 43-kDa cytoplasmic domain of protein 3; and (3) a selective reduction in the affinity of ankyrin for spectrin tetramer and oligomer after its phosphorylation by the erythrocyte cAMP-independent membrane kinase. The phosphorylation of ankyrin does not affect its binding to spectrin dimer. Ankyrin also enhances the rate of interconversion between dimer-tetramer-oligomer by 2-3-fold at 30 degrees C, and in the presence of the 43-kDa fragment, ankyrin stimulates the rate of oligomer interconversions by nearly 40-fold at this temperature. These results demonstrate a long-range cooperative interaction between an integral membrane protein and the peripheral cytoskeleton and indicate that this linkage may be regulated by covalent protein phosphorylation. Such interactions may be of general importance in nonerythroid cells.  相似文献   

19.
Expression of the L1 family cell adhesion molecule neuroglian in Drosophila S2 cells leads to cell aggregation and polarized ankyrin accumulation at sites of cell-cell contact. Thus neuroglian adhesion generates a spatial cue for polarized assembly of ankyrin and the spectrin cytoskeleton. Here we characterized a chimera of the extracellular and transmembrane domains of rat CD2 fused to the cytoplasmic domain of neuroglian. The chimera was used to test the hypothesis that clustering of neuroglian at sites of adhesion generates the signal that activates ankyrin binding. Abundant expression of the chimera at the plasma membrane was not a sufficient cue to drive ankyrin assembly, since ankyrin remained diffusely distributed throughout the cytoplasm of CD2-neuroglian-expressing cells. However, ankyrin became highly enriched at sites of antibody-induced capping of CD2-neuroglian. Spectrin codistributed with ankyrin at capped sites. A green fluorescent protein-tagged ankyrin was used to monitor ankyrin distribution in living cells. Enhanced green fluorescent protein-ankyrin behaved identically to antibody-stained endogenous ankyrin, proving that the polarized accumulation of ankyrin was not an artifact of fixing and staining cells. We propose a model in which clustering of neuroglian induces a conformational change in the cytoplasmic domain that drives polarized assembly of the spectrin cytoskeleton.  相似文献   

20.
1. In whole ghosts, ankyrin, protein 4.1, protein band 3 and spectrin are lysed by purified calpain I in the presence of calcium. 2. Limited calpain lysis of purified ankyrin results in several peptides, including a 85 kD peptide bearing the ankyrin interaction site for the protein band 3 internal fragment (43 kD), and a 55 kD peptide carrying the ankyrin-spectrin interaction site. 3. These peptides are differently phosphorylated: the 85 kD by cytosol casein kinase, and the 55 kD by membrane casein kinase. 4. Protein 4.1 lysis mainly produces a 30 kD peptide resistant to proteolysis. 5. The spectrin beta-chain is more sensitive to calpain cleavage than the alpha chain; both chains seem to be cleaved in a similar sequential manner. 6. Limited proteolysis of spectrin dimer does not impede tetramerization in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号