首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal response of pallid sturgeon Scaphirhynchus albus and shovelnose sturgeon S. platorynchus embryos was determined at incubation temperatures from 8 to 26°C and 8 to 28°C, respectively. The upper and lower temperatures with 100% (LT100) embryo mortality were 8 and 26°C for pallid sturgeon and 8 and 28°C for shovelnose sturgeon. It was concluded that 12–24°C is the approximate thermal niche for embryos of both species. Generalized additive and additive‐mixed models were used to analyze survival, developmental rate and dry weight data, and predict an optimal temperature for embryo incubation. Pallid sturgeon and shovelnose sturgeon embryo survival rates were different in intermediate and extreme temperatures. The estimated optimal temperature for embryo survival was 17–18°C for both species. A significant interaction between rate of development and temperature was found in each species. No evidence was found for a difference in timing of blastopore, neural tube closure, or formation of an S‐shaped heart between species at similar temperatures. The estimated effects of temperature on developmental rate ranged from linear to exponential shapes. The relationship for rate of development to temperature was relatively linear from 12°C to 20°C and increasingly curvilinear at temperatures exceeding 20°C, suggesting an optimal temperature near 20°C. Though significant differences in mean dry weights between species were observed, both predicted maximum weights occurred at approximately 18°C, suggesting a temperature optimum near 18°C for metabolic processes. Using thermal optimums and tolerances of embryos as a proxy to estimate spawning distributions of adults in a river with a naturally vernalized thermal regime, it is predicted that pallid sturgeon and shovelnose sturgeon spawn in the wild from 12°C to 24°C, with mass spawning likely occurring from 16°C to 20°C and with fewer individuals spawning from 12 to 15°C and 21 to 24°C. Hypolimnetic releases from Missouri River dams were examined; it was concluded that the cooler water has the potential to inhibit and delay sturgeon spawning and impede embryo incubation in areas downstream of the dams. Further investigations into this area, including potential mitigative solutions, are warranted.  相似文献   

2.
The abundance of Ceriodaphnia reticulata (Jurine) in Lake Kinneret is restricted every year to the period March to June with a peak in May. The most constant parameter accompanying the peak is temperature with a range of 20–22° C. An attempt was made to clarify whether the estival high average temperatures observed in the epilimnion of this lake (27–28° C) could explain the decrease of the Ceriodaphnia population. Three physiological parameters: food intake, ammonia excretion and respiration rates, were measured experimentally at three temperatures (15, 22 and 27° C). The dry weight of individuals of the winter and summer populations were measured, and the percentages of egg-bearing females in the populations were calculated. It was found that temperature increase accelerates the rates of ammonia excretion and food ingestion. The acceleration was greater in the lower temperature range (15–22° C) than in the higher one (22–27° C). Conversely, the enhancing of respiration rate is higher in the upper temperature range. The resulting deficit of energy at high temperatures causes a reduction in body size and a significant diminution of egg production, which leads to a progressive decline of the population.  相似文献   

3.
The effects of light and temperature on the germination and growth of Luffa aegyptiaca were investigated both in the laboratory and in the field. The seeds germinated in both darkness and light but germination was better in the light. At constant temperatures germination was best at 21°C, while alternating temperatures of 21 and 31°C and 15 and 41°C caused higher germination than the most favourable constant temperature. Constant temperatures of 15 and 31°C and alternating temperatures of 21 and 41°C resulted in very low germination, whereas no germination occurred at 41°C and at alternating temperatures of 31 and 41°C. Soil depth caused only a delay in seed germination, as it did not affect the total germination. High temperature and high light intensity resulted in good seedling growth in terms of dry weight, leaf area and relative growth rate. High temperature and low light intensity caused increased plant height and high shoot weight ratio, both of which manifested in seedling etiolation. They also caused high leaf area ratio. Under low temperatures, irrespective of light intensity, growth was generally poor, but it was significantly poorer under low light intensity, which also caused high root weight ratio. High light intensity was principally responsible for high leaf weight ratio. The results help to explain the abundance of the species in newly cleared areas in Lagos and its environs.  相似文献   

4.
The effects of egg storage duration (ESD) and brooding temperature (BT) on BW, intestine development and nutrient transporters of broiler chicks were investigated. A total of 396 chicks obtained from eggs stored at 18°C for 3 days (ESD3-18°C) or at 14°C for 14 days (ESD14-14°C) before incubation were exposed to three BTs. Temperatures were initially set at 32°C, 34°C and 30°C for control (BT-Cont), high (BT-High) and low (BT-Low) BTs, respectively. Brooding temperatures were decreased by 2°C each at days 2, 7, 14 and 21. Body weight was measured at the day of hatch, 2, 7, 14, 21, 28 and 42. Cloacal temperatures of broilers were recorded from 1 to 14 days. Intestinal morphology and gene expression levels of H+-dependent peptide transporter (PepT1) and Na-dependent glucose (SGLT1) were evaluated on the day of hatch and 14. Cloacal temperatures of chicks were affected by BTs from days 1 to 8, being the lowest for BT-Low chicks. BT-High resulted in the heaviest BWs at 7 days, especially for ESD14-14°C chicks. This result was consistent with longer villus and larger villus area of ESD14-14°C chicks at BT-High conditions. From 14 days to slaughter age, BT had no effect on broiler weight. ESD3-18°C chicks were heavier than ESD14-14°C chicks up to 28 days. The PepT1 and SGLT1 expression levels were significantly higher in ESD3-18°C chicks than ESD14-14°C on the day of hatch. There was significant egg storage by BT interaction for PepT1 and SGLT1 transporters at day 14. ESD14-14°C chicks had significantly higher expression of PepT1 and SGLT1 at BT-Low than those at BT-Cont. ESD14-14°C chicks upregulated PepT1 gene expression 1.15 and 1.57-fold at BT-High and BT-Low, respectively, compared with BT-Cont, whereas PepT1 expression was downregulated 0.67 and 0.62-fold in ESD3-18°C chicks at BT-High and BT-Low. These results indicated that pre-incubation egg storage conditions and BTs affected intestine morphology and PepT1 and SGLT1 nutrient transporters expression in broiler chicks.  相似文献   

5.
The suspension-feeding Manila clam Ruditapes philippinarum is a native species of the western Pacific that is now widely distributed around the globe because of its commercial importance. To determine the adaptive physiological responses to changing thermal and nutritional conditions, clearance, filtration, feces production, ammonium excretion, respiration rates, and scope for growth (SFG) were measured in adult clams. The clams were exposed to 24 treatments involving the combination of four water temperatures (8, 13, 18, and 23°C) and six concentrations of suspended particulate matter (SPM: 9.5 to 350.5 mg L–1). Physiological rates were standardized by using the mean (480 mg) of tissue dry weights of experimental clams using allometric equations between physiological variables and tissue dry weight. Higher clearance rates were recorded at higher temperatures and lower SPM concentrations, and these rates decreased with increasing SPM concentration at individual temperatures. Consumed energy increased with increasing temperature and SPM concentration, peaking at around 100–200 mg L–1 at 18–23°C. Whereas fecal energy was largely determined by SPM concentration, ammonia excretion was mainly governed by temperature. Respiration rate studies revealed a predominant quadratic effect of temperature on the metabolism, indicating a lack of acclimatory adjustment of metabolic rate to rising temperature. SFG values were positive under almost all the treatment conditions and were much higher at higher SPM concentrations (> 45 mg L–1), with the highest level being recorded at 18°C and 100–200 mg L–1 SPM. Increased filtration rate offset the increased metabolic cost at warm temperatures. Our holistic findings suggest that a high degree of physiological plasticity allows R. philippinarum to tolerate the wide range of temperatures and SPM concentrations that are found in tidal flats, accounting in part for the successful distribution of this species over a wide variety of geographical areas.  相似文献   

6.
Biomass (CHN), respiration rate and food uptake were estimated for the larval development ofElminius modestus at three temperatures (12, 18, 24°C). Mean values of dry weight, elemental composition and energy equivalents increased exponentially with the development from nauplius II to VI. Dry weight, elemental composition and energy content exhibited the highest values at 18°C. Respiration rates increased with the larval stages expressed by a power function, but increased logarithmically with the dry weight of the larvae. The cypris larvae showed a reduced respiration rate compared with nauplius VI. The ingestion rate was measured at a concentration of 100 cells ofSkeletonema costatum μl−1. At 12 and 18°C ingestion rates increased exponentially and at 24°C by a logarithmic function. The fittings were used to estimate the energy budget ofE. modestus during larval development. The energy content of the larvae increased during the development from nauplius II to VI by a factor of 21 at 12°C, 25 at 24°C and 31 at 18°C. The estimated energy content of the freshly metamorphosed barnacle is 100 mJ (12°C), 130 mJ (24°C) and 150 mJ (18°C). The assimilation- (A/I) and gross growth efficiencies (K1) increased strongly during the development from nauplius II to VI (A/I: 6–14% in nauplius II to 50–90% in nauplius VI; K1: 4% in nauplius II to 75% in nauplius VI). The net growth efficiency (K2) showed a relatively constant level ranging between 57 and 83%.  相似文献   

7.
The engorged larvae of Haemaphysalis longicornis, Ixodes holocyclus and Rhipicephalus sanguineus were exposed to a range of temperatures and humidities to see whether the nature of their requirements in the laboratory were similar to the climate within the geographic range of each species. The response of H. longicornis and I. holocyclus to changes in humidity was also studied. Moulting of I. holocyclus larvae occurred from 18 to 28°C and at a saturation deficit of 4 mm Hg or less. The larvae of R. sanguineus moulted between 18 and 38°C and tolerated saturation deficits up to 35 mm Hg. The larvae of H. longicornis moulted between 15 and 38°C at saturation deficits up to 8 mm Hg. When engorged larvae of H. longicornis and I. holocyclus were exposed to very dry conditions for different periods of time and then transferred to moist conditions, the minimum pre-moult period and mortality was increased in comparison with larvae kept continuously under moist conditions. On the other hand, mortality of H. longicornis larvae was reduced in very dry conditions provided that they had been exposed to a moist environment for about 5 days previously. The larvae of I. holocyclus required at least 12 days exposure to a moist environment before any survived to moult in moderately dry conditions. The engorged larvae of both H. longicornis and I. holocyclus lost weight rapidly in dry air, whereas weight loss from R. sanguineus larvae was much slower. The rate of development was fastest in R. sanguineus and slowest in I. holocyclus.  相似文献   

8.
Larvae of Sarcophaga crassipalpis destined for pupal diapause (light:dark 12:12, 20°C) contain nearly twice as much lipid and twice the haemolymph protein concentration as larvae that will not enter diapause (light:dark 15:9, 20°C). This conspicuous difference in metabolic reserves provides the earliest indication of the developmental fate of the larva. Lipid reserves are utilized rapidly during the first half of diapause and then remain stable until adult eclosion. In contrast, residual dry weight changes very little early in diapause but drops sharply late in diapause, thus implying a transition from lipid utilization to protein or carbohydrate utilization in mid-diapause. We suggest that this metabolic transition marks the end of the “fixed latency period”: pupae readily respond to environmental or hormonal stimulation after this point. Diapause-destined larvae did not accumulate more glycogen than nondiapause-destined larvae, but an 80% decrease in glycogen at the onset of diapause and its elevation at the end of diapause suggests the utilization of glycerol or related compounds as cryoprotectants during diapause. Profiles of water content are very similar in short-day and long-day flies, thus suggesting that dehydration is not a mechanism exploited by the flesh fly to achieve cold hardiness. Adult flies that have experienced pupal diapause emerge from the puparium with lipid, glycogen, and water content nearly identical to flies that have not experienced diapause, but the residual dry weight is much lower. The severe depletion of protein may account for the reduced fecundity of flies that have experienced diapause.  相似文献   

9.
Macropetasma africanus (Balss) has been successfully spawned and its larvae reared under controlled laboratory conditions. The relationship between egg number (E) and female total length (L) was E = 18.59 L2.11. An experiment was designed to test the effect of temperature on larval development, survival and growth. Temperature effected larval development time, from 13–15 days at 25°C, to 25 days at 15°C (nauplius 1 to post-larva). Mortality was low for the naupliar stages at 25, 22 and 18°C, while at 15°C only 52% of the larvae reached nauplius 6. Mortality was highest from nauplius 6 to protozoea 1 (17, 21, and 18% at 25, 22, and 18°C, respectively), but decreased considerably for all temperatures once the mysis stage was reached. Overall survival rates from nauplius 1 to post-larva decreased with decreasing temperature (65, 54, 48, and 39% at 25, 22, 18, and 15°C respectively). Temperature also significantly affected larval growth. At 25°C mean total length was significantly (P < 0.05) larger than at 15°C (protozoea 2 to post-larva), while from protozoea 3 to post-larva total length differences were significantly different (P < 0.05) between 18 and 25°C. M. africanus has a major spawning peak in summer, suggesting that there may be a selective advantage to reproducing during the warmer months.  相似文献   

10.
 Effects of fluctuating and constant temperatures on budburst time, and respiration in winter buds were studied in Betula pubescens Ehrh. Dormant seedlings were chilled at 0°C for 4 months and then allowed to sprout in long days (LD, 24 h) at constant temperatures of 6, 9, 12, 15, 18 and 21°C, and at diurnally fluctuating temperatures (12/12 h, LD 24 h) with means of 9, 12, 15 and 18°C. No difference in thermal time requirements for budburst was found between plants receiving constant and fluctuating temperatures. The base temperature for thermal time accumulation was estimated to 1°C. Respiration in post-dormant (dormancy fully released) excised winter buds from an adult tree increased exponentially with temperature and was 20 times as high at 30°C than at 0°C. However, respiration in buds without scales was 30% higher at 0°C, and it was 2.7 times higher at 24°C than in intact buds. Thus, the tight bud scales probably constrain respiration and growth and are likely to delay budburst in spring. Arrhenius plots of the respiration data were biphasic with breaks at 13–15°C. However, this phase transition is unlikely to be associated with chilling sensitivity since the present species is hardy and adapted to a boreal climate. Received: 10 January 1997 / Accepted: 23 June 1997  相似文献   

11.
Larvae of an estuarine grapsid crabChasmagnathus granulata Dana 1851, from temperate and subtropical regions of South America, were reared in seawater (32/%.) at five different constant temperatures (12, 15, 18, 21, 24 °C). Complete larval development from hatching (Zoea I) to metamorphosis (Crab I) occurred in a range from 15 to 24 °C. Highest survival (60% to the first juvenile stage) was observed at 18 °C, while all larvae reared at 12 °C died before metamorphosis. The duration of development (D) decreased with increasing temperature (T). This relationship is described for all larval stages as a power function (linear regressions after logarithmic transformation of bothD andT). The temperature-dependence of the instantaneous developmental rate (D −1) is compared among larval stages and temperatures using the Q10 coefficient (van't Hoff's equation). Through all four zoeal stages, this index tends to increase during development and to decrease with increasingT (comparing ranges 12–18, 15–21, 18–24 °C). In the Megalopa, low Q10 values were found in the range from 15 to 24 °C. In another series of experiments, larvae were reared at constant 18 °C, and their dry weight (W) and respiratory response to changes inT were measured in all successive stages during the intermoult period (stage C) of the moulting cycle. Both individual and weight-specific respiration (R, QO 2) increased exponentially with increasingT. At each temperature,R increased significantly during growth and development through successive larval stages. No significantly differentQO 2 values were found in the first three zoeal stages, while a significant decrease with increasingW occurred in the Zoea IV and Megalopa. As in the temperature-dependence ofD, the respiratory response to changes in temperature (Q10) depends on both the temperature range and the developmental stage, however, with different patterns. In the zoeal stages, the respiratory Q10 was minimum (1.7–2.2) at low temperatures (12–18 °C), but maximum (2.2–3.0) at 18–24 °C. The Megalopa, in contrast, showed a stronger metabolic response in the lower than in the upper temperature range (Q10=2.8 and 1.7, respectively). We interpret this pattern as an adaptation to a sequence of temperature conditions that should typically be encountered byC. granulata larvae during their ontogenetic migrations: hatching in and subsequent export from shallow estuarine lagoons, zoeal development in coastal marine waters, which are on average cooler, return in the Megalopa stage to warm lagoons. We thus propose that high metabolic sensitivity to changes in temperature may serve as a signal stimulating larval migration, so that the zoeae should tend to leave warm estuaries and lagoons, whereas the Megalopa should avoid remaining in the cooler marine waters and initiate its migration to wards shallow coastal lagoons.  相似文献   

12.
The combined effects of temperature and salinity on both immune responses and survival in air of the clam, Ruditapes philippinarum, were evaluated for the first time. The animals were kept for 7 days at three differing temperature (5 °C, 15 °C, 30 °C) and salinity values (18 psu, 28 psu, 38 psu), and effects of the resulting 9 experimental conditions on total haemocyte count (THC), Neutral Red uptake (NRU), haemolymph protein concentration, and lysozyme activity in both haemocyte lysate (HL) and cell-free haemolymph (CFH) were evaluated. The survival-in-air test was also performed. Two-way ANOVA analysis revealed that temperature influenced significantly THC and NRU, whereas salinity and temperature/salinity interaction affected NRU only. Temperature and salinity did not influence significantly HL and CFH lysozyme activity, as well as haemolymph total protein content. Survival-in-air test is widely used to evaluate general stress conditions in clams. In the present study, temperature and salinity were shown to influence the resistance to air exposure of R. philippinarum. The highest LT50 (air exposure time resulting in 50% mortality) value was recorded in clams kept at 18 psu and 15 °C, whereas the lowest value was observed in clams kept at 28 psu and 30 °C. Overall, results obtained demonstrated that temperature and salinity can affect some functional responses of haemocytes from R. philippinarum, and suggested a better physiological condition for animals kept at 15 °C temperature and 18 psu salinity.  相似文献   

13.
The courtship, mating and ovipositional behavior ofA. matricariae Haliday were studied. UsingMyzus persicae (Sulzer) as the host, the production of progeny per female parasite and survival from mummy stage to the adult were studied at constant temperatures of 10°, 12.8°, 15.6°, 18.3°, 21°, 24°, 26.7°, 29.5° and 32°C. The longevity of male and female parasites was determined at temperatures of 7°, 10°, 15.6°, 21°, 26.7°, 29.5° and 32°C. The greatest number of progeny (392) was produced at 21°C. The optimal temperatures for production of progeny and survival of the parasites during the mummy stage were from 12.8°C to 21°C. The longevity of male and female adult parasites decreased as temperatures increased and male parasites lived significantly (P<0.05) longer than females at 10° and 15.6°C.  相似文献   

14.
Tomato seedlings were grown in a 12-hour day at constant andalternating day and night temperatures ranging from 10°to 30° C. The pattern of results was similar at light intensitiesof 400 and 800 f.c. The maximum rate of dryweight accumulationoccurred at a constant temperature close to 25° C. The effectsof day and night temperatures on total dry weight showed a considerabledegree of independence. The optimum day temperature was 25°C irrespective of the night temperature; the optimum night temperatureincreased from 18° to 25° C over the whole range ofday temperature. On average, day temperature affected totaldry weight twice as much as night temperature. High night temperaturesto some extent compensated for low day temperatures. The optimumday and night temperatures for leaf growth were both 25°C. On average day temperature affected leaf growth one and ahalf times as much as night temperature. By 12-hourly sampling it was shown that the cotyledons and leavesgrow throughout both day and night and that high night temperatureaccelerates nocturnal growth (cotyledons by cell expansion,young leaves by cell multiplication). Plants having receivedonly one night at 25° C, as compared with 15° C, showa slightly greater assimilation during the following light period,apparently as a consequence of increased photosynthetic surface.The respiratory loss in dry weight during darkness was not significantlyaffected by temperature over the range 15–25° C.  相似文献   

15.
Interaction of the photoperiodic conditions of development of maternal females (day lengths of 2 to 22 h at 20°C) with the thermal regime of development of their progeny (temperature of 12 to 15°C at day length of 12 h) in determination of prepupal diapause in Trichogramma piceum was studied under laboratory conditions. At 15°C the diapause was practically absent. At lower temperatures, the proportion of diapausing prepupae was maximal (25% of larvae at 14°C, 70% of larvae at 13°, and 80% of larvae at 12°C) if the maternal females developed under short day conditions (10–12 h). When maternal females developed at day lengths of 18–20 h, diapause was rarely recorded at all temperatures, while ultra-short (less than 8–10 h) days also caused a decrease in the proportion of diapausing progeny. The right (ecologically important) threshold of this maternal long-day photoperiodic response was about 14–15 h independently of the temperature during the progeny development. These results make it possible to clarify the mechanism of the “maternal photoperiodic correction of the progeny thermal response.” Although the impact of the maternal photoperiodic response can be revealed only within a very narrow thermal range, the relative strength of the diapause-inducing effect of different day lengths is independent of the temperature regimen of the progeny development.  相似文献   

16.
Dry bulbs of the cvs. ‘Apeldoorn’ and ‘Paul Richter’ at stage G of flower development were stored at 5° or 21°C for 2, 4, 6, 8, 10, 12, and 14 weeks, respectively before being planted and forced at 18°C. Samples from each treatment were taken for carbohydrate analysis. The low temperature treatment (5°C) was necessary to obtain satisfactory shoot growth and flowering after planting. The rate of shoot growth and the percentage of flowering bulbs increased with increasing duration of the 5°C treatment. Time of flowering was also precipitated. 12–14 weeks of low temperature treatment seemed optimal. High temperature (21°C), or a short period at 5°C (2–6 weeks), resulted in many non-flowering bulbs, and a very slow shoot elongation when flowering occurred. In the latter case the tips or large areas of the perianths became white, the red pigmentation being prevented. Paper chromatographic analysis of oligosaccharides revealed a substantially increased content of sucrose and fructosyl sucrose (DP ≤ 5) during the first 2–4 weeks of cooling. At the end of 12 weeks at 5°C, the content of oligosaccharides decreased. The increase in the oligosaccharide content was accompanied by a corresponding starch decrease. High temperature storage (21°) led to comparatively slight changes in the sucrose and fructosyl sucrose content of the bulbs. The significance of carbohydrate metabolism in relation to shoot elongation and flowering is discussed.  相似文献   

17.
Cotton seed (Gossypium hirsutum L. cv. “Stoneville 825”), treated with 0, 0.2, 1.0, and 2.0 g active ingredient (a.i.) mepiquat chloride (MC) kg?1, was evaluated for the effect of MC on early plant growth. Emergence rate and total emergence of MC-treated seed and control were similar regardless of germination temperature. However, the number of leaves and squares and the dry weight of leaves, stems, and roots for hydroponically grown cotton plants were significantly lower at lower germination temperatures (15°C for 3 day/30°C for 1 day and 15°C for 4 days) than at higher germination temperatures (30°C for 4 days and 30°C for 3 days/15°C for 1 day). All MC treatments significantly decreased the number of nodes, leaves, and squares, as well as dry weight of leaves, stems, and roots, as compared to control plants at 28 days after emergence. MC seed treatments also significantly reduced plant height and total leaf area compared to controls. Water-use efficiency (WUE) was significantly lower for the 1.0 g a.i. MC treatment than for control plants. In general, the highest rate of MC seed treatment resulted in greater concentrations of calcium, phosphorus, and nitrogen in plant leaves and stems and also in greater concentrations of magnesium, phosphorus, and nitrogen in roots than in controls.  相似文献   

18.
The survival and oxygen uptake of the supralittoral amphipod Chroestia lota Marsden & Fenwick were investigated in humid air and sea water between 15 and 35°C. Seven-day exposure experiments were made on three size groups of amphipods at 6 constant temperatures (15, 20, 25, 30, 35, 40 °C) and three cyclic temperatures (15–25, 20–30, 25–35°C) in air and in sea water at 34 and 17%. salinity. Neither size, treatment nor temperature affected survival between 15 and 30°C. Mortality increased > 30°C with large individuals being consistently less tolerant than medium and small amphipods. While amphipods exposed to cyclic temperatures during submersion had reduced survival compared with constant temperatures, those individuals exposed to cyclic conditions in humid air showed the greatest resistance. Oxygen uptake of Chroestia increased with dry body wt and, over the range 15–35°C, this semi-terrestrial beach flea could maintain its aerial VO2 following submersion. Oxygen uptake increased directly in proportion to gill area and the weight specific gill area was low, consistent with the need to reduce desiccation. It is suggested that total gill area does not limit oxygen uptake in Chroestia and that cutaneous respiration may be important especially in aquatic conditions.  相似文献   

19.
Many insects in temperate zones withstand the adverse conditions of winter through entering diapause and the two most important environmental stimuli that induce diapause are photoperiod and ambient temperature. The Large Copper butterfly, Lycaena dispar Haworth (Lepidoptera: Lycaenidae), is a Palearctic butterfly that hibernates as larvae. Since this butterfly is a near threatened species in some regions, there has been a growing need for a standardized protocol for mass rearing of this butterfly based on the adequate knowledge of its ecology. In the present study, we first identified that L. dispar larvae were sensitive to the photoperiodic induction of diapause during their first larval instar. We then investigated to what extent the diapause-inducing effects of photoperiod could be modified by ambient temperatures in L. dispar larvae by exposing them to the range of day-lengths (L:D 14:10, 12:12, 10:14 and 8:16) at three different temperatures (15, 20 and 25 °C). All larvae were induced to enter diapause at low ambient temperature (15 °C) regardless of photoperiod, whereas most of them (86 %) exhibited direct development when temperature was high (25 °C). The photoperiodic induction of diapause was evident when day-length was shorter than 14 h at intermediate temperature (20 °C). Pre-diapause development was prolonged at low temperatures. Finally, we found that post-diapause development of L. dispar larvae was determined by both the chilling temperature experienced by diapausing larvae and the duration of larval diapause. Adult emergence was enhanced when larvae were chilled at 8 °C and when they had been under the state of diapause for 20 days before they were treated to terminate diapause.  相似文献   

20.
C. Stenseth 《BioControl》1979,24(3):311-317
The development ofPhytoseiulus persimilis Athias-Henriot and the effectiveness of it as a predator ofTetranychus urticae (Koch) were studied at constant temperatures of 15°, 18°, 21°, 24° and 27°C (humidity fluctuations from 60% to 90% R.H.) and at constant humidities of 40% and 80% R.H. at the temperatures 21° and 27°. Optimal temperature for time of development was 27° (at 60%–85% R.H.). A high reduction in egg vitality was recorded at 40% R. H. and 27% At 21° the egg vitality was only slightly lower at 40% R.H. than at 80% R.H. The predator gave control ofT. urticae at temperatures from 15° to 27° (humidity fluctuation from 60%–90% R.H.), and the most rapid and efficient control was obtained at 27° (60%–85% R.H.). The predator did not give sufficient control ofT. urticae at 27° and 40% R.H. At 21° control ofT. urticae was obtained at both 40% and 80% R.H., but the prey population was reduced faster at 80% R.H. than at 40% R.H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号