首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygen consumption of temperature acclimated mummichogs, Fundulus heteroclitus (L.) weighing ≈0.1–10.0 g, was measured at 5, 13, 21, and 29 C. Between 13 and 21°C and 21 and 29°C, the values of Q10 were 1.55 and 1.04, respectively, indicating relative thermal independence of respiratory metabolic rate over this 16°C range (Q10 = 1.27). This range encompasses the normal late spring, summer, and early fall range of habitat temperature in Maine estuaries, so that mummichogs are able to grow and reproduce relatively independent of environmental temperature. Between 5 and 13°C, respiratory metabolism is very temperature sensitive (Q10 = 4.42) indicating a substantial reduction of metabolic processes at low temperatures. This enables mummichogs to conserve any metabolic reserves during the coldest months. The regression of log weight-specific oxygen consumption on log body weight was determined at each experimental temperature. All had significantly negative slopes indicating the importance of body size in mummichog respiration.  相似文献   

2.
The American lobster is a poikilotherm that inhabits a marine environment where temperature varies over a 25°C range and depends on the winds, the tides and the seasons. To determine how cardiac performance depends on the water temperature to which the lobsters are acclimated we measured lobster heart rates in vivo. The upper limit for cardiac function in lobsters acclimated to 20°C is approximately 29°C, 5°C warmer than that measured in lobsters acclimated to 4°C. Warm acclimation also slows the lobster heart rate within the temperature range from 4 to 12°C. Both effects are apparent after relatively short periods of warm acclimation (3–14 days). However, warm acclimation impairs cardiac function at cold temperatures: following several hours exposure to frigid (<5°C) temperatures heart rates become slow and arrhythmic in warm acclimated, but not cold acclimated, lobsters. Thus, acclimation temperature determines the thermal limits for cardiac function at both extremes of the 25°C temperature range lobsters inhabit in the wild. These observations suggest that regulation of cardiac thermal tolerance by the prevailing environmental temperature protects against the possibility of cardiac failure due to thermal stress.  相似文献   

3.
The consumption, production and respiration of Amoeba proteus were measured in the laboratory for cells cultured over a range of Tetrahymena pyriformis concentrations (125–4 000 cells/0.5 ml) at 10, 15 and 20 °C. Differences were attributed to both temperature and prey availability. A series of generation energy budgets were constructed for amoebae grown under the above conditions. The biological efficiencies linking the parameters of the budget equation were calculated. Assimilation efficiencies ranged from 22–59% regardless of temperature. Net production efficiencies were high at 15 and 20 °C (65–82%) but low at 10 °C (11–49%). Gross production efficiencies were also higher at 15 and 20 °C (16–47%) than at 10 °C (4–29%). The ecological implications of this investigation are discussed.  相似文献   

4.
Temperature influences the geographic range, physiology, and behavior of many ectothermic species, including the invasive lionfish Pterois sp. Thermal parameters were experimentally determined for wild-caught lionfish at different acclimation temperatures (13, 20, 25 and 32 °C). Preferences and avoidance were evaluated using a videographic shuttlebox system, while critical thermal methodology evaluated tolerance. The lionfish thermal niche was compared experimentally to two co-occurring reef fishes (graysby Cephalopholis cruentata and schoolmaster Lutjanus apodus) also acclimated to 25 °C. The physiologically optimal temperature for lionfish is likely 28.7 ± 1 °C. Lionfish behavioral thermoregulation was generally linked to acclimation history; tolerance and avoidance increased significantly at higher acclimation temperatures, but final preference did not. The tolerance polygon of lionfish shows a strong correlation between thermal limits and acclimation temperature, with the highest CTmax at 39.5 °C and the lowest CTmin at 9.5 °C. The tolerance range of invasive lionfish (24.61 °C) is narrower than those of native graysby (25.25 °C) and schoolmaster (26.87 °C), mostly because of lower thermal maxima in the former. Results show that lionfish display “acquired” thermal tolerance at higher and lower acclimation temperatures, but are no more eurythermal than other tropical fishes. Collectively, these results suggest that while lionfish range expansion in the western Atlantic is likely over the next century from rising winter sea temperatures due to climate change, the magnitude of poleward radiation of this invasive species is limited and will likely be equivalent to native tropical and subtropical fishes with similar thermal minima.  相似文献   

5.
Soluble proteins, esterases 2C, acid phosphatases of the digestive gland and foot muscle of Cyclonassa neritea, were compared using polyacrylamide gradient gels. α-Glucosidases, alkaline phosphatases, l-leucine aminopeptidase and peptidase were studied from digestive gland extracts. Molecular weights of isoenzymes were evaluated with 5000 d accuracy. Variation in activity of the most important isoenzymes of each enzyme under the influence of acclimation temperature was measured. In both muscle and digestive gland, the concentration of soluble proteins is stable. Through the whole acclimation temperature range, esterase activity per mg protein decreased with increased temperature. l-Leucine aminopeptidase activity decreases steadily from 10 to 25°, even though the two alkaline phosphatase isoenzyme activities increase. The other enzymes have their maximum activities at 20°.  相似文献   

6.
The occurrence of sub-optimal temperatures during development of immature parasitoids can have important consequences on adult fitness. We investigated the impact of different regimes of low temperature on emergence, differential mortality, longevity and fecundity in Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae). The host-feeding behaviour of adult females was also measured as an indicator of energy reserve at emergence. Acclimation of 30 days at 10 °C or 24 days at 13 °C allowed T. brassicae immatures to develop with a lower mortality than those exposed directly at 5 °C. Longevity and fecundity of females decreased at a lower rate with acclimation at 10 °C suggesting that acclimation at 13 °C may have depleted the energy reserves of individuals more than acclimation at 10 °C. Short photoperiod exposure during the maternal generation had no effect on progeny’s fitness. We found no difference among the treatments in females’ host-feeding behaviours, in differential mortality at emergence, in female’s mobility and in F1 sex ratio.  相似文献   

7.
As extreme climate events become more frequent and intense, short-term temperature responses of ectothermic organisms can lead to decreased performance and survival. However, organisms may acclimate to these conditions through behavioural and physiological mechanisms as exposure time increases. We used a reciprocal temperature (16  °C and 24  °C) transplant experiment to determine how feeding rate and body size of an apex soil mite predator (Stratiolaelaps scimitus) (formerly Hypoaspis miles) consuming prey (Carpoglyphus lactis) (dried-fruit-mite) changed along a gradient of acclimation time (1, 3, and 7 days, with control). In the control treatments, mites reared at 24  °C fed more, but were smaller than mites reared at 16  °C. When transferred to new temperature conditions, predators that experienced cooling events had reduced feeding efficiencies driven by decreased feeding performance, despite an absence of metabolic costs, while under warming events, predators also had reduced feeding activity, but feeding increased with acclimation time. Yet predators lost more weight the longer they were exposed to warming, and continued to experience reduced feeding efficiencies (i.e., lack of weight gain after feeding); this result suggests increased metabolic costs at higher temperatures and provides a mechanism for community downsizing under warming. Overall, our results suggest that ectothermic predators can acclimate to warming events with increased exposure time, but both warming and cooling events decrease overall performance.  相似文献   

8.
Glutamate dehydrogenase (GDH) from the abdominal muscle of the shrimp Palaemon serratus displays a complex cooperatively pattern with respect to the cofactor (NAD) and substrate (glutamate) concentrations: at low concentrations negative cooperativitiy is predominant whereas positive cooperativity prevails at high concentrations. GDH is sensitive to thermal variations of the environment and to conditions of thermal acclimation. The maximum cooperativity indexes (positive and negative) are obtained at 13° for NAD irrespective of the acclimation temperature (13 or 18°). In contrast, for glutamate, positive cooperativity is only observed at temperatures near the acclimation temperature. At 13° for animals adapted at 18° and at 27° for animals adapted at 13° a complete loss of subunit cooperativity and a Michaelian kinetic pattern are observed.  相似文献   

9.
Dacus tryoni has exceptional powers of acclimation for an insect. Thresholds for cold-torpor change up to a maximum of 0.5°C per 1°C change of acclimation temperature—an order of adaptation approaching the best in vertebrate poikilotherms. Developmental acclimation can take place quickly; the critical period for this process corresponds to the last sixth of development in the puparium. Post-teneral flies have a constant torpor threshold if maintained in the temperature regime of their developmental period. If changed to another regime their threshold changes at a logarithmically declining rate towards the value that would be caused by developmental acclimation in that regime. The rate of post-teneral acclimation depends upon both the current threshold and on the prevailing temperature but there is a maximum limit to the rate of cold-acclimation that can be induced. Post-teneral acclimation to cold can therefore be slow but this is no handicap in the field as it is induced at maximal rates by temperatures up to 13°C above the lowest attainable threshold. Acclimatization for winter conditions therefore starts 2 to 3 months before they occur. Changes in threshold and maintenance of constant thresholds in both constant and fluctuating conditions can be predicted by the same acclimation model, provided a modification is made to account for the fact that cold-acclimation at certain temperatures is faster when these are experienced intermittently than when they are experienced constantly.  相似文献   

10.
Fast-start predator-escape performance of mummichogs Fundulus heteroclitus was tested across field-informed variation in temperature (24, 30 and 36°C) and salinity (2, 12 and 32 ppt). Performance was similar across temperatures and salinities when fish were allowed to acclimate to these conditions. However, when mummichogs experienced acute temperature changes, performance exhibited thermal dependence in two contrasting ways. Fast-start turning rates and linear speeds varied directly with the temperature at which the manoeuvre was executed, but these aspects of performance varied inversely with acclimation temperature, with cool-acclimated fish exhibiting faster starts across test temperatures. Temperature effects were consistent across salinities. These results suggest that while mummichogs increase performance with acute temperature increases, long-term rises in sea temperature may cause these fish to become more susceptible to predation during abrupt cooling events, such as when storm events flood shallow water estuaries with cool rainwater.  相似文献   

11.
The effects of temperature acclimation and acute temperature change were investigated in postprandial green shore crabs, Carcinus maenas. Oxygen uptake, gut contractions and transit rates and digestive efficiencies were measured for crabs acclimated to either 10 °C or 20 °C and subsequently exposed to treatment temperatures of 5, 15, or 25 °C. Temperature acclimation resulted in a partial metabolic compensation in unfed crabs, with higher oxygen uptake rates measured for the 10 °C acclimated group exposed to acute test temperatures. The Q10 values were higher than normal, probably because the acute temperature change prevented crabs from fully adjusting to the new temperature. Both the acclimation and treatment temperature altered the characteristics of the specific dynamic action (SDA). The duration of the response was longer for 20 °C acclimated crabs and was inversely related to the treatment temperature. The scope (peak oxygen consumption) was also higher for 20 °C acclimated crabs with a trend towards an inverse relationship with treatment temperature. Since the overall SDA (energy expenditure) is a function of both duration and scope, it was also higher for 20 °C acclimated crabs, with the highest value measured at the treatment temperature of 15 °C. The decline in total SDA after acute exposure to 5 and 25 °C suggests that both cold stress and limitations to oxygen supply at the temperature extremes could be affecting the SDA response. The contractions of the pyloric sac of the foregut region function to propel digesta through the gut, and contraction rates increased with increasing treatment temperature. This translated into faster transit rates with increasing treatment temperatures. Although pyloric sac contractions were higher for 20 °C acclimated crabs, temperature acclimation had no effect on transit rates. This suggests that a threshold level in pyloric sac contraction rates needs to be reached before it manifests itself on transit rates. Although there was a correlation between faster transit times and the shorter duration of the SDA response with increasing treatment temperature, transit rates do not make a good proxy for calculating the SDA characteristics. The digestive efficiency showed a trend towards a decreasing efficiency with increasing treatment temperature; the slower transit rates at the lower treatment temperatures allowing for more efficient nutrient absorption. Even though metabolic rates of 10 °C acclimated crabs were higher, there was no effect of acclimation temperature on digestive efficiency. This probably occurred because intracellular enzymes and digestive enzymes are modulated through different control pathways. These results give an insight into the metabolic and digestive physiology of Carcinus maenas as it makes feeding excursions between the subtidal and intertidal zones.  相似文献   

12.
The study of thermal tolerance and acclimation capacity in Jack Beardsley mealybug, Pseudococcus jackbeardsleyi Gimpel and Miller is the crucial step in determining their abilities to cope with climate change. Thus, the aim of this research was to determine the effects of acclimation temperatures on the changes in thermal tolerance of P. jackbeardsleyi. The influences of acclimation temperature at moderate (25?°C) and high (35?°C) temperatures on their lower and upper thermal limits were measured composed of critical thermal minimum (CTmin), maximum (CTmax), chill coma temperature (CCT) and heat coma temperature (HCT) for first instar nymphs and adults. The important information derived from this study revealed that the upper thermal limits of adults are constrained to a relative narrow range that will make them sensitive to relative small changes in temperatures, whilst all mean upper thermal indices at 35?°C were significantly higher than at 25?°C for nymphs. For this highlight notice, nymphs have more potential to change their upper thermal limits which will allow them to withstand high temperatures in the field. These results are a sign to warn us that P. jackbeardsleyi could become highly noxious which cause severe outbreaks damage to the crops in the tropics under global warming.  相似文献   

13.
In ectotherms, an increase in body temperature increases metabolic rate and may increase rates of digestive processes. We measured the thermal dependence of the apparent digestive and apparent assimilation efficiencies (ADE and AAE), gut passage time (GP) and appetite in Cordylus melanotus melanotus, a medium sized Crag Lizard, which is endemic to South Africa. Trials were conducted at 20, 22, 25, 30, 32 and 35 °C under controlled conditions. Trials lasted 14 days, during which, lizards were fed ca. 1 g mealworms per day. Glass beads were used as markers to determine GP at the beginning and end of trials. Faeces and urates were collected daily and oven dried at 50 °C. The energy content of egested matter was then measured using bomb calorimetry. ADE and AAE were not affected by temperature for either males or females. The mean±SE ADE and AAE were 94.4±0.3% and 87.2±0.6%, respectively. GP was not significantly different between males and females at any temperature, but decreased significantly with increasing temperature. Appetite was significantly different between the different temperatures measured. The decrease of gut passage time with increasing temperature was expected, since the digestive and assimilation efficiencies are similar over the range of temperatures tested. Lizards are thus assimilating a similar proportion of ingested energy, but at faster rates at higher temperatures. The results indicate that the digestive physiology of this species results in maximum energy gain per meal in environments where food is scarce.Abbreviations AAE apparent assimilation efficiency - ADE apparent digestive efficiency - AE assimilation efficiency - DE digestive efficiency - GP gut passage rate - NEA net energy absorbed through gut - NER net usable energy retained - SVL snout-vent length - T b body temperature Communicated by G. Heldmaier  相似文献   

14.
We studied the thermophilic response to feeding of a typical desert adapted anuran from the Monte Desert. Our aim was to evaluate thermal changes in the selected body temperature of adult frogs of Pleurodema nebulosum, and measure the intestinal passage time, and food digestion. Our results show that after feeding, they selected higher micro-environmental temperatures ~ + 2 °C than frogs that remained starved. Pleurodema nebulosum would present a postprandial thermophilic response. The time of retention of food in the digestive tract was thermo-dependent, being lower in those individuals who were incubated at high temperatures (25 °C) compared to those subjected to lower temperatures (20 °C). Although we did not detect effects of temperature on digestive efficiency, the mass of faecal material indicates an increase at temperatures closer to the selected ones, suggesting that the defecation rate is influenced by temperature. Laiuoperinae frogs are characterized by explosive breeding behavior and fast growing rate. The digestive efficiency is essential for acquiring energy necessary for growth, reproduction and refuge-seeking, among others. In this framework, the differential selection of temperatures between moments of fasting and feeding allows the frogs to maintain a high digestive efficiency, maximizing the absorption of nutrients.  相似文献   

15.
Notothenioid fishes of the Southern Ocean have evolved under cold and stable temperatures for millions of years. Due to rising temperatures in the Southern Ocean, investigating thermal limits and the capacities for inducing a temperature acclimation response in notothenioids has become of increasing interest. Here, we investigated effects of temperature acclimation on cardiorespiratory responses and cardiac and skeletal muscle energy metabolism in a benthic Antarctic notothenioid, Trematomus bernacchii. We acclimated specimens to ?1, 2 and 4.5 °C for 14 days and quantified heart rates and ventilation rates during an acute increase in temperature. Ventilation rates showed an effect of acclimation both at initial steady-state acclimation conditions and during an acute temperature increase, suggesting a partial thermal compensatory response. However, acclimation did not affect heart rates at steady-state acclimation conditions and the temperatures at which onset of cardiac arrhythmia occurred, suggesting lack of inducible thermal tolerance in cardiac performance. Citrate synthase (CS), lactate dehydrogenase (LDH) and 3-hydroxyacyl dehydrogenase activities in skeletal muscle tissues suggested acclimation-induced shifts in metabolic fuel preferences, and a marked increase in LDH activity with acclimation to 4.5 °C showed an increase in anaerobic metabolism. In heart tissue, CS and LDH activities decreased with acclimation to 4.5 °C, suggesting reduced cardiac ATP production. Overall, the data suggest a partial acclimatory response to temperature by T. bernacchii and support the hypothesis that reduced cardiac acclimatory capacity may play a role in limiting the thermal plasticity of T. bernacchii.  相似文献   

16.
We reared shortnose and Atlantic sturgeons at different temperatures after hatch and measured yolk utilization rate and efficiency (YUE), maximum standard length, survival and development of escape response. Newly hatched Atlantic sturgeon, were smaller in size, more efficient at utilizing yolk (incorporating yolk to body tissue) and reached developmental stages sooner than shortnose sturgeon reared at the same temperatures (13–15°C). Within each species, decreasing temperature delayed yolk absorption, escape initiation, time to reach maximum size, and time to 100% mortality. However, YUEs and the size of the larvae at these 'stages' were independent of rearing temperature for both species. These results suggest that even as temperature drives metabolic processes to speed up development, these two species are still extremely efficient at transferring yolk energy to body tissues. The lower efficiencies experienced by larval shortnose may reflect difference in yolk quality between the two species and/or the Atlantic sturgeon's higher conversion efficiency. The ability of these two sturgeon species to develop successfully and efficiently under a wide range in temperatures may provide a competitive advantage over more stenothermic species and explain their persistence through evolutionary time.  相似文献   

17.
  • 1 Aphids, similar to all insects, are ectothermic and, consequently, are greatly affected by environmental conditions. The peach potato aphid Myzus persicae (Sulzer) has a global distribution, although it is not known whether populations display regional adaptations to distinct climatic zones along its distribution and vary in their ability to withstand and acclimate to temperature extremes. In the present study, lethal temperatures were measured in nine anholocyclic clones of M. persicae collected along a latitudinal cline of its European distribution from Sweden to Spain. The effects of collection origin and intra‐ and intergenerational acclimation on cold and heat tolerance, as determined by upper and lower lethal temperatures (ULT50 and LLT50, respectively), were investigated.
  • 2 Lethal temperatures of M. persicae were shown to be plastic and could be altered after acclimation over just one generation. Lower lethal temperatures were significantly depressed in eight of nine clones after acclimation for one generation at 10°C (range: ?13.3 to ?16.2°C) and raised after acclimation at 25°C (range: ?10.7 to ?11.6°C) compared with constant 20°C (range: ?11.9 to ?12.9°C). Upper lethal temperatures were less plastic, although significantly increased after one generation at 25°C (range: 41.8–42.4°C) and in five of nine clones after acclimation at 10°C. There was no evidence of intergenerational acclimation over three generations.
  • 3 Thermal tolerance ranges were expanded after acclimation at 10 and 25°C compared with constant 20°C, resulting in aphids reared at 10°C surviving over a temperature range that was approximately 2–6°C greater than those reared at 25°C.
  • 4 There was no clear relationship between lethal temperatures and latitude. Large scale mixing of clones may occur across Europe, thus limiting local adaption in thermal tolerance. Clonal type, as identified by microsatellite analysis, did show a relationship with thermal tolerance, notably with Type O clones being the most thermal tolerant. Clonal types may respond independently to climate change, affecting the relative proportions of clones within populations, with consequent implications for biodiversity and agriculture.
  相似文献   

18.
SUMMARY. 1. The chief objective was to construct a thermal tolerance polygon for juvenile Atlantic salmon, Salmo salar L., using fish from four groups and two populations: two age groups from one population (0+, 1+ parr from River Leven), two size groups from the other population (slow and Fast growing 1+ parr from River Lune). 2. Fish were acclimated to constant temperatures of 5, 10, 15, 20, 25 and 27°C; then the temperature was raised or lowered at 1°C h?1 to determine the upper and lower limits for feeding and survival over 10 min, 100 min, 1000 min and 7 days. As they were not significantly different between the four groups of fish, values at each acclimation temperature were pooled to provide arithmetic means (with SE) for the thermal tolerance polygon. 3. Incipient lethal levels (survival over 7 days) defined a tolerance zone within which salmon lived for a considerable time; upper mean incipient values increased with increasing acclimation temperature to reach a maximum of 27.8±0.2°C, lower mean incipient values were below 0°C and were therefore undetermined at acclimation temperatures <20°C but increased at higher acclimation temperatures to 2.2±0.4°C. Resistance to thermal stress outside the tolerance zone was a function of time; the ultimate lethal level (survival for 10 min) increased with acclimation temperature to a maximum of 33°C whilst the minimum value remained close to 0°C. Temperature limits for feeding increased slightly with acclimation temperature to upper and lower mean values of 22.5±0.3°C and 7.0±0.3°C. 4. In spite of different methodologies, values in the present investigation are similar to those obtained in previous, less comprehensive studies in the laboratory. They also agree with field observations on the temperature limits for feeding and survival. Thermal tolerance polygons are now available for eight species of salmonids and show that the highest temperature limits for feeding and survival are those recorded for juvenile Atlantic salmon.  相似文献   

19.
Activity thresholds were measured in nine anholocyclic clones of the peach‐potato aphid Myzus persicae collected along a latitudinal cline of its European distribution from Sweden to Spain. The effects of collection origin and intra‐ and intergenerational acclimation on these thresholds were investigated. Low‐temperature (10°C) acclimation for one generation depressed the movement threshold and chill coma temperatures, with the largest reduction in movement threshold recorded for clone UK 1 (8.8–2.5°C) and in chill coma for UK 2 (4.8–2.0°C). High‐temperature (25°C) acclimation for one generation increased the heat movement threshold and heat coma temperature with the largest increase in the movement threshold (40.1–41.1°C) and heat coma (41.4–42.3°C) recorded for clone Swed 1. There was no further intergenerational acclimation over three generations. High‐temperature activity thresholds were less plastic than low‐temperature thresholds, and, consequently, thermal activity ranges were expanded following low‐temperature acclimation. No constant affect of acclimation was observed on chill coma recovery, although clonal differences were observed with Swed 1 and 3 requiring some of the longest complete recovery times. There was no relationship between latitude and activity thresholds with the exception of heat coma data where Scandinavian clones Swed 2 and 3 consistently displayed some of the lowest heat coma temperatures (e.g. 41.3°C for both clones at 20°C) and Mediterranean clones Span 1, 2 and 3 displayed some of the highest (e.g. 42.1, 41.9 and 42.5°C, respectively, at 20°C). These data suggest that clonal mixing could occur over a large scale across Europe, limiting local adaptation to areas where conditions enable long‐term persistence of populations, e.g. adaptation to higher temperatures in the Mediterranean region. It is suggested that aphid thermal tolerance could be governed more by clonal type than the latitudinal origin.  相似文献   

20.
Tropical species are predicted to have limited capacity for acclimation to global warming. This study investigated the potential for developmental thermal acclimation by the tropical damselfish Pomacentrus moluccensis to ocean temperatures predicted to occur over the next 50–100 years. Newly settled juveniles were reared for 4 months in four temperature treatments, consisting of the current-day summer average (28.5 °C) and up to 3 °C above the average (29.5, 30.5 and 31.5 °C). Resting metabolic rate (RMR) of fish reared at 29.5 and 31.5 °C was significantly higher than the control group reared at 28.5 °C. In contrast, RMR of fish reared at 30.5 °C was not significantly different from the control group, indicating these fish had acclimated to their rearing temperature. Furthermore, fish that developed in 30.5 and 31.5 °C exhibited an enhanced ability to deal with acute temperature increases. These findings illustrate that developmental acclimation may help coral reef fish cope with warming ocean temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号