首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Michael Barton 《Hydrobiologia》1985,120(2):151-157
The temperature regime of the intertidal microhabitat of two species of co-existing amphibious stichaeoid fishes, Anoplarchus purpurescens and Pholis ornata, were compared with experimentally determined tolerances to elevated temperatures. Studies of the critical thermal maxima of the two species revealed only slight differences in temperature tolerance but exposure to a cycled pattern of high temperatures sharply differentiated the resistance times of the two species with P. ornata capable of tolerating greater cumulative exposure to thermal stress when administered in a cycled program of temperature fluctuations with peak temperature at 27 °C. While the experimentally determined temperature tolerances exceeded those measured in the field, the greater tolerance of P. ornata may facilitate habitation of intertidal mudflats during summer months.  相似文献   

2.
Variations in environmental temperature have both direct and indirect effects that affect organisms at levels ranging from intra-cellular physiological processes to ecological patterns. These variations are especially important for intertidal marine ectotherms such as littorinids since they alternate between periods of immersion in seawater, and must also experience long periods of emersion. In central Chile, Echinolittorina peruviana is one of the most conspicuous species on rocky intertidal shores, occurring at high tidal levels and in the splash zone. The species is known to resist direct exposure to the sun for long periods, although juveniles tend to be restricted to protected microhabitats. Adults show seasonal variations in abundance and vertical distribution and may form aggregations that have been shown to help reduce water loss and body temperature. In this study, we evaluate the relationship between daily thermal variations throughout the vertical distribution of this species and how these affect the patterns of density and aggregation. Our results suggest that one of the leading determinants of the spatio-temporal variation of density in E. peruviana may be operative temperature (TO: the amount of stored heat resulting from the balance between heat fluxes into and out of the body, measured with taxidermic mounts mimicking heat transfer properties of the snail). TO showed a strong negative relationship with density and a strong positive relationship with aggregation in the highest intertidal level monitored. The strength of these relationships decreased in importance at lower levels. While TO alone cannot explain the abundance of E. peruviana throughout its range of distribution, our results show that it does have a strong influence that should be considered in addition to other ecological factors affecting the density of intertidal littorinids.  相似文献   

3.
Seedlings of Schima superba were exposed to both ambient (375 ppm) and 720 ppm levels of CO2 in combination with two incubation temperatures (25/20, 30/25°C, day/night) for a six-month period. Net height growth of seedlings was enhanced in the early period of exposure to high levels of CO2. However, when seedlings were exposed for a longer period of time to this high concentration, net height growth was inhibited. Decreased photosynthetic rate with elevated CO2 was observed when measured in the ambient CO2 over a long-term exposure of 6 months. In contrast, a significant increase in photosynthesis was noted for seedlings exposed to higher incubation temperature in either ambient or 720 ppm CO2 concentrations. The response of CO2 assimilation to internal Ci was indicated by the lower sensitivity in seedlings grown in elevated CO2 concentration. Though this response could also be found in a higher sensitivity in seedlings grown at higher temperature, the seedlings grown in normal conditions (ambient CO2 and temperature) were still more sensitive to CO2 assimilation response to internal Ci. This experiment suggests that: (1) exposure of seedlings to higher CO2 levels for longer periods may lead to a decrease in seedling height growth and photosynthetic rate, as well as decreasing sensitivity to changing internal CO2 concentrations; (2) the optimum temperature for photosynthesis of seedlings grown in an elevated CO2 concentration was higher than that for seedlings grown in ambient concentration.  相似文献   

4.
Temperature influences almost all life-history traits. For a period of 3 mo, we placed four groups of snakes under four contrasted thermal treatments: (1) a natural regime (NR), based on daily variations (24-h cycle); (2) an accelerated regime (AR), where the thermoperiod fluctuated rapidly (12-h cycle); (3) a slow regime (SR; 48-h cycle); and (4) a cool stable regime (ZR; no fluctuation). The mean temperature, set at 23°C, was identical for the four groups. For the first three groups (NR, AR, SR), ambient temperature fluctuated between 18°C and 28°C. Relative humidity and photoperiod were constant. We recorded feeding success, digestion efficiency, growth rate, activity, and ecdysis events. Differences between groups were expected because of varied exposure to the optimal temperatures, most notably in the ZR group, where the preferred body temperature for digestion (approximately 30°C) would not be reached. Surprisingly, there was no significant effect of the experimental treatment on feeding rate, digestion, body mass increase, and growth rate. Our results do not conform to the paradigm stipulating that maximal body temperature selected by ectotherms necessarily corresponds to the most efficient for resource assimilation and that temperature fluctuations are essential. We propose that increasing the digestive tract's performance through body-temperature elevation trades off against elevated (parasite) energy expenditure from the rest of the body. The main advantage of high body temperatures would be to reduce the amount of time necessary to assimilate prey rather than to improve the net mass gain during digestion.  相似文献   

5.
6.
Although most upwelling regions are marked by strong fluctuations in water temperature, few studies have examined how episodic cold-water events affect the physiology and ecology of benthic marine invertebrates. I tested the hypothesis that upwelling-related variation in water temperature regulates the feeding, growth, and energetics of two rocky intertidal predators, the sea star Pisaster ochraceus (Brandt, 1835) and the whelk Nucella canaliculata (Duclos, 1832). Sea stars and whelks were maintained in laboratory tanks at a constant 9 °C, a constant 12 °C, and a treatment that simulated the Oregon coast upwelling regime by cycling between 14-day periods of 12 and 9 °C. Early in the experiments, sea stars and whelks held at 9 °C consumed about 30% fewer mussels (Mytilus trossulus) than those in warmer tanks. Despite lower consumption by whelks in colder tanks, 9 and 12 °C individuals attained the same final size. Similarly, sea stars in 9 °C tanks showed greater growth per gram of mussel tissue consumed than individuals held at 12 °C. These results suggest that reduced consumption under colder conditions was balanced by reduced metabolic costs. Moreover, there appeared to be an energetic advantage to living in the temperature regime characteristic of intermittent upwelling. Sea stars alternately exposed to 12 and 9 °C had a significantly higher growth rate, conversion efficiency, and storage of reserves in the pyloric caeca than individuals in the constant 12 °C tanks. Whelks maintained under fluctuating temperatures tended to grow faster than those held at constant 12 or 9 °C, although this trend was not statistically significant (p=0.069). These results suggest that benthic consumers experiencing cyclic temperatures may feed intensely during periods of warmer water while benefiting from reduced metabolic costs during cold-water intrusions. Because the fecundity of Pisaster and Nucella is a function of energy stored during the upwelling season, interannual variability in upwelling patterns could alter the reproductive output of these species.  相似文献   

7.
Intertidal organisms must episodically contend with the rigors of both the terrestrial and the marine environments. While body temperatures during high tide are driven primarily by water temperature, aerial body temperatures are driven by multiple environmental factors such that temperature of an organism during low tide is usually quite different from air temperature. Thus, whereas decades of research have investigated the effects of water temperature on intertidal species, considerably less is known about the physiological impacts of temperature during aerial exposure at low tide, especially with regard to the interaction of aerial body temperature with other stressors. We examined the interactive effects of aerial body temperature and food supply on the survival of two intertidal blue mussels, Mytilus galloprovincialis and Mytilus trossulus. Survival was monitored for nine weeks using a simulated tidal cycle, with two levels of food and three levels of aerial body temperature (30, 25, and 20 °C). Decreased food supply significantly reduced the survival of mussels, but only under the 30 °C treatment. In the other two thermal regimes there were no significant effect of food on survival. When aerial body temperatures are high, food availability may have a greater effect on intertidal organisms. Decreases in ocean productivity have been linked to increased in ocean temperatures, thus intertidal organisms may become more susceptible to thermal stress as climates shift.  相似文献   

8.
Physiological adaptation ofMytilus edulis to cyclic temperatures   总被引:3,自引:0,他引:3  
Summary Mytilus edulis adapted to cyclic temperatures by reducing the amplitude of response of oxygen consumption and filtration rate over a period of approximately two weeks, and thereby increasing their independence of temperature within the range of the fluctuating regime. When acclimated to cyclic temperature regimes within the range from 6 to 20°C, the metabolic and feeding rates, measured at different temperatures in the cycle, were not significantly different from the adapted response to equivalent constant temperatures.Physiological adaptation ofMytilus edulis to different thermal environments was reflected in their metabolic and feeding rate-temperature curves. Animals subjected to marked diel fluctuations in environmental temperature showed an appropriate region of temperature-independence, whereas animals from a population not experiencing large diel temperature fluctuations showed no region of temperature-independence.In a fluctuating thermal environment which extended above the normal environmental maxima, respiratory adaptation occurred at higher temperatures than was possible in a constant thermal environment. The feeding rate was also maintained at higher temperatures in a cyclic regime than was possible under constant thermal conditions. This represented a shortterm extension of the zone of activity in a fluctuating thermal environment. The net result of these physiological responses to high cyclic and constant temperatures has been assessed in terms of scope for growth. Animals acclimated to cyclic temperatures between 21 and 29°C had a higher scope for growth at 29°C and were less severely stressed than those maintained at the constant temperature of 29°C.  相似文献   

9.
The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH) and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of pargyline in elevating the levels of serotonin and CHH on thermal stress in the blue swimmer crab, P. pelagicus.  相似文献   

10.
Most fish species are regularly subjected to periods of starvation during which a reduction of energy turnover might be favourable for the animal. This reduction of energy flux may be achieved by changes in thermal behaviour and/or swimming activity. We investigated such behavioural changes during starvation and subsequent refeeding in roach, Rutilus rutilus, with respect to energetic benefits and growth maximisation. Roach, acclimated to a wide range of temperatures (4, 12, 20, 24, 27 and 30 °C), were fed to excess, subjected to 3 weeks of starvation and subsequently refed in order to determine the temperature dependence of feeding rates, growth rates and conversion efficiency (K1) under control conditions and during compensatory growth. When exposed to a thermal gradient, control animals preferentially selected a temperature of 26.8ǂ.9 °C, which is in the range of the optimal temperatures for feeding, growth and conversion efficiency. Starving fish showed a distinct circadian pattern of the mean selected temperature (MST). They migrated to cooler water in the dark (MSTdark=22.8ǃ.1 °C) but returned to warmer water during daytime. This behaviour may be regarded as a trade-off between the potentially higher food density in warmer water areas and the energetic benefit of selecting cooler water patches. The circadian pattern of MST was gradually abandoned upon refeeding and control values were reached again after 3 weeks. Energetically more effective than behavioural hypothermia was the reduction of swimming activity. During starvation, activity peaks were slightly lower than under control conditions and mean daily activity decreased by about 50%. Swimming velocity, however, was not affected by feeding regime. After a period of starvation fish showed compensatory growth at all temperatures, even below 12 °C, where these animals normally do not grow. This suggests that after a period of starvation the critical temperature for growth shifts to lower values.  相似文献   

11.
Abstract. 1. Consumption, production and assimilation rates were determined for two age groups of Crypropygus antarcticus to give an estimate of energy utilization, and to investigate low temperature adaptation in its energy partitioning.
2. Feeding selectivity shown in laboratory preference tests was supported by gut analysis of field animals from contrasting sites. Although moulting rate was not significantly affected by food type, rates of growth were slowest and mortality highest when fed on a non-preferred substrate.
3. Both a radio labelling and a more direct method for measuring dry weight consumed gave similar results for Cvpropygus feeding on algae. The consuniption rate for animals when feeding on algae was lower than that on moss peat. The assimilation efficiency for immature animals feeding on algae was 46% and for mature animals was 19%; the values when feeding on moss peat were 7% and lo%, respectively, The net production efficiency ranged from 35%(inimatures) to 13% (matures) and was similar on both substrates.
4. Food consumption exceeded assimilation over the range 2.5–10°C, but the two converged from 2.5 to 0°C. Immature Cryptopygus maintained a net positive energy balance over 0–10°C, whilst below 1S°C respiration exceeded assimilation for mature individuals.
5. An estimate of the annual dry matter consumption (7 g m-1 y-1) by Ctypropygus in a moss turf at Signy Island agrees with one based on respiration data alone (Davis, 1981). The consumption at an alga-dominated site was c . 26 g m-2 y-l, and Crypropygus may have a locally limiting effect on net priniary production at such sites.  相似文献   

12.
Energy budgets were computed from data obtained for Daphnia pulex cultured under nine light intensities, polarized light and four wavelength ranges. The percent assimilation of preadult animals is highest at intensities above 7 ft-c. Net efficiency of growth was highest (> 50%) and the net efficiency of respiration was lowest ( < 49%) at intensities less than 28 ft-c. The percent assimilation of adult animals was highest ( > 10%) at 110, 55 and 14 ft-c. Under the nine intensities the gross efficiencies of growth were less than 1 % and net efficiencies of growth varied from 3.9 to 7.3%. Gross efficiencies of respiration were highest above 7 ft-c. The net efficiency of respiration usually varied between 20 and 30% and the lowest was 9.8% at 1.7 ft-c. and the highest was 50.1% at 110 ft-c. Gross efficiency of reproduction varied from 2.6% at 3.5 ft-c to 12.6% at 14 ft-c and generally varied between 4 and 7.5%. Net efficiency of reproduction varied from 45.9% at 110 ft-c to 84.3% at 1.7 ft-c and usually varied from 62 to 75% at other light intensities. The ratio of energy of respiration to energy of growth and reproduction ranged from 12% to 1.7 ft-c to 105.3% at 110 ft-c. This ratio usually varied from 25 to 34% at 14 ft-c or less and exceeded 37% at intensities above 14 ft-c. The percent assimilation (3.5%), gross (2.0%), and net (56.3%) efficiencies of respiration of preadult animals raised under polarized light were higher than for those at a similar, nonpolarized, intensity. The net efficiency of growth (43.7%) was lower under polarized light. The percent assimilation, gross efficiencies of growth, reproduction and respiration, net efficiencies of growth and reproduction of adult animals under polarized light (6.6 ft-c) were lower than for those under 7 ft-c. For preadult animals assimilation efficiencies were lower in wavelength treatments than in white light or darkness. The gross efficiencies of growth and respiration were lowest under red wavelengths and the net efficiencies of growth were lowest and respiration highest under green wavelengths. For adult animals, the assimilation efficiencies were lower in the wavelength treatments than those obtained in other light treatments. While the gross efficiencies of growth, reproduction and respiration were generally lower, the net efficiencies of growth and reproduction were generally within the range of values for other light conditions. The net efficiencies of respiration, except for red wavelengths, were lower than those for other light conditions except at 1.7 ft-c. The ratio of energy of respiration to energy of growth and reproduction showed similar trends. The effects of wavelength are generally separable from the effects of light intensity.  相似文献   

13.
The effects of temperature on two important biological rate processes, whole-body rates of oxygen uptake (M dot o2) and protein synthesis (k(s)), were investigated in the temperate intertidal isopod Ligia oceanica at two different times of the year. Animals were collected in January (winter) and June (summer) and either subjected to an acute temperature change after 24 h (acclimatized) or acclimated to various temperatures for 4 wk. In both cases, M dot o2 increased with temperature, with a Q(10) of 2.2 between 5 degrees and 20 degrees C, but increased in thermal sensitivity at 25 degrees C. Winter isopods were characterized by significantly higher M dot o2 levels, greater thermal sensitivities, and lower thermal tolerances than summer animals. Seasonal differences in M dot o2 persisted after acclimation, indicating that temperature alone was not responsible for the changes. In sharp contrast, whole-body k(s) showed no variation with temperature, although overall rates decreased upon acclimation. In acclimatized animals, k(s) was higher in the summer than in the winter. After acclimation, a compensatory increase in RNA capacity in winter animals reversed this situation. The temperature independence of whole-body k(s) in L. oceanica could ensure survival in a highly liable thermal environment, as thermal tolerances of intertidal invertebrates are thought to be more closely related to protein than to energy metabolism.  相似文献   

14.
Physical constraints on the foraging ecology of a predatory snail   总被引:1,自引:0,他引:1  
We studied the effects of aerial exposure and high summer temperatures on the southern oyster drill ( Stramonita haemastoma ), feeding on the American oyster, Crassostrea virginica . In the laboratory, oyster drill feeding rates and growth were highest at 25 and 30°C, some mortality occurred at 35°C, all snails died at 40 and 45°C, and the 28-day LC 50 was 35.7°C. In a second experiment where both water temperature (25 vs . 33°C) and aerial exposure were varied, only simulated tidal exposure lowered oyster drill feeding and growth rates. In field cage experiments, oyster drills had reduced feeding rates and growth at intertidal sites, but snail growth rates increased in late summer with warmer water temperature. We therefore conclude that aerial exposure, not high temperature, is the major factor limiting oyster drill feeding and growth in intertidal oyster reefs. Field experiments with partial cages also suggested that ambient predation rates were much higher at a subtidal than at a nearby intertidal site. Because southern oyster drills have depressed feeding, growth, and possibly lower fitness in intertidal oyster reefs during the summer, this reduced predation risk may provide a refuge for intertidal oysters.  相似文献   

15.
The effects of water temperature and food level on absorption efficiency, rate of oxygen consumption, molting rate, reproductive condition, energy content, and total production have been studied in the stalked barnacle, Pollicipes polymerus Sowerby. Absorption efficiency measured gravimetrically was high (≈94%) and unaffected by water temperature or food level. Absorption efficiency measured using an ash-ratio method was substantially less than that determined gravimetrically. The rate of oxygen consumption increased in the high food treatments and decreased in the starved treatment after 40 days. Molting rate, energy content, and total production were highest in the high food treatments. Reproduction was inhibited at warm water temperatures. The greater influence of food level than water temperature on production is probably related to the thermal regime experienced by these animals in the field.  相似文献   

16.
Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour(-1), the upper lethal temperature range of intertidal ectotherms was 41-52°C, but this range was narrower and reduced to 37-41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2-3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.  相似文献   

17.
Tropical intertidal gastropods that experience extreme and highly variable daily temperatures have evolved significant and complex heat tolerance plasticity, comprising components that respond to different timescales of temperature variation. An earlier study showed different plasticity attributes in snails from differently-heated coastlines, suggesting lifelong irreversible responses that matched habitat thermal regimes. To determine whether heat tolerance plasticity varied at a finer, within-shore spatial scale, we compared the responses of supratidal (predominantly shade-dwelling) and intertidal (frequently solar-exposed) populations of the tropical thermophilic gastropod, Echinolittorina malaccana. Snails modified lethal temperature (LT50) under warm or cool laboratory acclimation, with the overall variation in LT50 being greater in the supratidal (56.0–58.0 °C) than in the intertidal population (57.1–58.1 °C). Similar maximum LT50s expressed by the populations after warm acclimation suggest a capacity limitation under these temperature conditons. The different minimum LT50s after cool acclimation corresponded with microhabitat temperature and field acclimatization of the snails. Different responses to the same laboratory acclimation treatment imply long-term (and possibly lifelong) thermal acclimatization, which could benefit sedentary organisms that are randomly recruited as larvae from a common thermally-stable aquatic environment to thermally-unpredictable intertidal microhabitats. These findings provide another example of thermal tolerance plasticity operating at microhabitat scales, suggesting the importance of considering microhabitat thermal responses when assessing broad-scale environmental change.  相似文献   

18.
Temperature is one of the key environmental factors affecting the eco-physiological responses of living organisms and is considered one of the utmost crucial factors in shaping the fundamental niche of a species. The purpose of the present study is to delineate the physiological response and changes in energy allocation strategy of Bellamya bengalensis, a freshwater gastropod in the anticipated summer elevated temperature in the future by measuring the growth, body conditions (change in total weight, change in organ to flesh weight ratio), physiological energetics (ingestion rate, absorption rate, respiration rate, excretion rate and Scope for Growth) and thermal performance, Arrhenius breakpoint temperature (ABT), thermal critical maxima (CTmax), warming tolerance (WT) as well as thermal safety margin (TSM) through a mesocosm experiment. We exposed the animals to three different temperatures, 25 °C (average habitat temperature for this animal) and elevated temperatures 30 °C, 35 °C for 30 days and changes in energy budget were measured twice (on 15th and 30th day). Significant changes were observed in body conditions as well as physiological energetics. The total body weight as well as the organ/flesh weight ratio, ingestion followed by absorption rate decreased whereas, respiration and excretion rate increased with elevated temperature treatments resulting in a negative Scope for Growth in adverse conditions. Though no profound impact was found on ABT/CTmax, the peak of thermal curve was considerably declined for animals that were reared in higher temperature treatments. Our data reflects that thermal stress greatly impact the physiological functioning and growth patterns of B. bengalensis which might jeopardize the freshwater ecosystem functioning in future climate change scenario.  相似文献   

19.
Organisms inhabiting the intertidal zone have been used to study natural ecophysiological responses and adaptations to thermal stress because these organisms are routinely exposed to high‐temperature conditions for hours at a time. While intertidal organisms may be inherently better at withstanding temperature stress due to regular exposure and acclimation, they could be more vulnerable to temperature stress, already living near the edge of their thermal limits. Strong gradients in thermal stress across the intertidal zone present an opportunity to test whether thermal tolerance is a plastic or canalized trait in intertidal organisms. Here, we studied the intertidal pool‐dwelling calcified alga, Ellisolandia elongata, under near‐future temperature regimes, and the dependence of its thermal acclimatization response on environmental history. Two timescales of environmental history were tested during this experiment. The intertidal pool of origin was representative of long‐term environmental history over the alga's life (including settlement and development), while the pool it was transplanted into accounted for recent environmental history (acclimation over many months). Unexpectedly, neither long‐term nor short‐term environmental history, nor ambient conditions, affected photosynthetic rates in E. elongata. Individuals were plastic in their photosynthetic response to laboratory temperature treatments (mean 13.2°C, 15.7°C, and 17.7°C). Further, replicate ramets from the same individual were not always consistent in their photosynthetic performance from one experimental time point to another or between treatments and exhibited no clear trend in variability over experimental time. High variability in climate change responses between individuals may indicate the potential for resilience to future conditions and, thus, may play a compensatory role at the population or species level over time.  相似文献   

20.
Loss of aerobic scope at high and low temperatures is a physiological mechanism proposed to limit the thermal performance and tolerance of organisms, a theory known as oxygen- and capacity-limited thermal tolerance (OCLTT). Eurythermal organisms maintain aerobic scope over wide ranges of temperatures, but it is unknown whether acclimation is necessary to maintain this breadth. The objective of this study was to examine changes in aerobic scope in Fundulus heteroclitus, a eurythermal fish, after acclimation and acute exposure to temperatures from 5° to 33°C. The range of temperatures over which aerobic scope was nonzero was similar in acclimated and acutely exposed fish, suggesting that acclimation has modest effects on the thermal breadth of aerobic scope. However, in acclimated fish, there was a clear optimum temperature range for aerobic scope between 25° and 30°C, whereas aerobic scope was relatively constant across the entire temperature range with acute temperature exposure. Therefore, the primary effect of acclimation was to increase aerobic scope between 25° and 30°C, which paradoxically resulted in a narrower temperature range of optimal performance in acclimated fish compared to acutely exposed fish. There was only weak evidence for correlations between the thermal optimum of aerobic scope and the thermal optimum of measures of performance (specific growth rate and gonadosomatic index), and indicators of anaerobic metabolism (lactate accumulation and lactate dehydrogenase activity) only increased at high temperatures. Together these data fit many, but not all, of the predictions made by OCLTT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号