首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure for the partial purification of a non-specific alkaline phosphatase (EC 3.1.3.1.) from the embryonic axes of chick-pea seeds is described. Ammonium sulphate precipitation, DEAE-cellulase chromatography, Sephacryl S-200 chroma-tography and polyacrylamide gel electrophoresis are the most important steps. The molecular weight of this non-specific enzyme, as determined by Sephacryl S–200 gel filtration and SDS–polyacrylamide gel electrophoresis, was estimated as being 68 and 78 kDa respectively; the optimum pH for p-nitrophenylphosphate hydrolysis was 7.5, and the Km for this artificial substrate was 0.5 mM. The enzyme catalyzes the hydrolysis of a variety of organic phosphate esters. The best substrates are: phos-phoenolpymvate (Km= 2.4 m M ), NADP+ (Km= 4.0 m M ), 5'-AMP (Km= 4.5 m M ), 5'-ADP (Km= 6.1 m M ) and ribose-5P (Km= 5.8 m M ); but it is unable to hydrolyze 5'-ATP, phosphocreatine and tripolyphosptiate. Phospate was a competitive inhibitor. Zn2+, K+, Hg2+ and Mo6+ were strong inhibitors, whereas F and Ca2+ inhibited weakly; Co2+ and Ni2+ were activators.  相似文献   

2.
Hydrogen metabolism was studied in three Casuarina species, C, equisetifolia Forst., C. glauca Sieb. ex. Spreng. and C. obesa Miq., either inoculated with the pure Frankia culture HFP CcI3 or inoculated with a crushed nodule inoculum made from C. glauca nodules. Nitrogenase (EC 1.7.99.2) activity and hydrogen evolution was measured on intact plants, while hydrogen uptake was measured on excised nodules and in nodule homogenates.
Nitrogenase activity was highest in C. glauca inoculated with C. glauca nodules, while no hydrogen evolution was detected. Hydrogen evolution was highest in the symbiosis between C. equisetifolia and HFP CcI3, but the nitrogenase activity showed intermediate values compared to the other symbioses. Measured at a concentration of 93 μ M H2, H2 uptake was highest in C. glauca inoculated with the C. glauca inoculum. H2 uptake activity in homogenates was 83% of the intact nodule rate. With phenazinemethosulfate as the electron acceptor, H2 uptake by nodule homogenates showed typical Michaelis-Menten kinetics with a Km of 21.3 μ M for H2.
The data presented here indicate a host plant effect on the endobiont which alters the hydrogen metabolism.  相似文献   

3.
Abstract. Oxygen uptake characteristics of the roots of three Rumex species were compared, and related to kinetics of the respiratory system and to root anatomy. The observed differences could not be explained by differences in fundamental characteristics of the oxygen uptake system: with all three species, cytochrome-mediated respiration contributed 70% and cyanide-insensitive (alternative) respiration 30% of the total respiration rate, and apparent Km values of cytochrome oxidase were lower than those obtained for the alternative oxidase in all cases. However, differences in critical oxygen pressure for respiration (COPR) and in apparent Km for oxygen, were strongly correlated with differences in root porosity and root diameter. Km(O2) values at high and low temperatures were determined, and from Arrhenius plots of oxygen uptake rates between 11 and 32°C, the role of diffusional impedance could be estimated. Root respiration of Rumex maritimus and R. crispus , both with high root porosity, but differing in root diameter, had a low Km for oxygen (3–7 mmol m−3). In contrast with this were the responses of R. thvrsiflorus , which has thin roots but low root porosity: a high Km (10-20 mmol m−3) was found at all temperatures. The role of diffusional impedance as a function of temperature in oxygen uptake rate by the three species is discussed and related to the differential resistance of the species towards flooding.  相似文献   

4.
lndole-3-acetaldehyde reductase (lAAld reductase EC 1.2.3.1) from Phycomyces blakesleeanus Bgff., a 38 kDa polypeptide as determined by gel filtration, is probably localized in the cytoplasm. The formation of indole-3-ethanol (lEt) is dependent on the presence of NAD(P)H. The enzymatic reduction of IAAId shows a pH optimum between 6 and 8 and a temperature optimum at 30°C. Enzyme activity follows Michaelis Menten kinetic (Km= 200 μ M for IAAId; Km= 24 μ M for NADPH). The isoelectric point of the IAAId reductase is at pH 5.4. Phenylacetaldehyde and benzaldehyde are competitive substrates. Hydroxymeihylindole promotes the reductive IEt formation, whereas NADP+ is a non-competitive inhibitor. Changes in lAAJd reductase activity correlate with certain developmental stages of the fungus.  相似文献   

5.
The synthesis of homoglutathione (hGSH) by several plants of the tribe Phaseoleae is shown to be catalysed by a β-alanine-specific hGSH synthetase, Properties of the enzyme from Phaseolus coccineus L. cv. Preisgewinner were studied, using ammonium sulfate precipitates of primary leaf extracts. The hGSH synthetase showed a broad pH optimum at pH 8–9, an absolute requirement for Mg2+, a stimulation by K+, and a high affinity for γ-glutamylcysteine [Km(app.) 73 μ M ]. The enzyme exhibited a high specificity for β-alanine [Km(app.) 1.34 m M ] compared to glycine [Km(app.) 98 m M ]. Chloroplasts, isolated from the leaves of Phaseolus coccineus , contained about 17% of the hGSH synthetase activity in the leaf cells.  相似文献   

6.
Activity and biochemical characteristic of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase from pear ( Pyrus communis cv. Blanquilla) was determined. The enzyme showed a low Km (57.5 μM) for ACC and was dependent on O2 (Km 0.44% in atmosphere). It had an absolute requirement for Fe2+, ascorbate and CO2 and was inhibited by α-aminoisobutyric acid (AIB: K1 4.2 m M ) and cobalt. ACC oxidase has an optimum pH of 6.7 and temperature maxima at 28 and 38°C and it is concluded that the activity of ACC oxidase from pear resembles authentic in vivo activity.  相似文献   

7.
Atlantic salmon ( Salmo salar L.) fry hatched from eggs transferred from high-Na to low-Na water during the eyed stage of development had a significantly higher Vmax and lower Km (P <0.01) of the sodium uptake mechanism than fry hatched from eggs incubated entirely in low-Na or high-Na water.
Fry hatched from eggs transferred to acid, high aluminium water during the eyed stage of development had a similar Vmax and Km to fry hatched from eggs incubated entirely in high- or low-Na water. Eggs incubated continuously in acid, high aluminium (low-Na) water produced fry with significantly lower Km and Vmax values than fry hatched from eggs incubated continuously in low-Na water. Eggs and fry in acid, high aluminium water continually lost sodium and mortality was 100% at 5 5 M O degree-days (2–3 weeks after hatching).
The results are discussed with respect to the influence of perivitelline fluid ion activities in eggs in acid, high aluminium water on the kinetic characteristics of sodium uptake in yolk-sac fry. A possible mechanism for the long-term adaptation of teleosts in acidified natural waters is also proposed.  相似文献   

8.
Hydrolysis of Inositol Trisphosphate by Purified Rat Brain Myelin   总被引:1,自引:0,他引:1  
Abstract: Highly purified rat brain myelin was found to hydrolyze inositol 1,4,5-trisphosphate to inositol 1.4-bisphosphate, but subsequent hydrolysis of the latter, characteristic of whole brainstem, did not occur. Inositol 1,4,5-trisphosphate 5-phosphatase in myelin was ∼ 33% of the level in microsomes and 127% that of the cytosolic fraction from brainstem. The myelin and microsomal enzymes had similar properties, as follows: activation by saponin, requirement for Mg2+ and similar Kact (0.16 and 0.13 mM), Km (8.7 ± 2.5 and 7.0 ± 1.0 μM), and pH optima (6.6-6.8). Vmax values were 11.2 ± 1.0 and 26.3 ± 2.0 nmol/mg/min for myelin and microsomes, respectively. A possible role for this enzyme in phosphoinositide-mediated signal transduction within myelin and its subcompartments is discussed.  相似文献   

9.
Abstract— Uptake kinetics of l -glutamate in cultured, normal glia cells obtained from the brain hemispheres of newborn mice were measured together with the activities of the glutamate metabolizing enzymes, glutamic-oxaloacetate-transaminase, glutamate dehydrogenase and glutamine synthetase. During 3 weeks of culturing, the activities of the enzymes rose from low neonatal values toward the levels in the adult brain (206, 12.3 and 25.9 nmol. min−1. mg−1 cell protein for the three enzymes, respectively). The uptake kinetics indicated an unsaturable component together with an uptake following Michaelis-Menten kinetics with a Km of 220 μ m and a V max of 7.9 nmol. min−1. mg−1 cell protein. The saturable glutamate uptake was inhibited by d -glutamate, l -aspartate and α-aminoadipate whereas l -glutamine, GABA and glutarate had no effect. The uptake which was Ca2+-independent had a Km for sodium of 18m m and it was stimulated by an increase in the external potassium concentration from 5 to 10 and 25 m m. The results suggest that glia cells are important for the uptake of glutamate from synaptic clefts and for the subsequent metabolism of glutamate.  相似文献   

10.
Adenine phosphoribosyltransferase (APRT; EC 2. 4,2. 7) from Arabidopsis thaliana was purified approximately 3800-fold, to apparent homogeneity. The purification procedure involved subjecting a leaf extract to heat denaturation, (NH4)2SO4 precipitation, Sephadex G-25 salt separation, ultracentrifugation and liquid chromatography on Diethylaminoethyl Sephacel, Phenyl Sepharose CL-4B, Blue Sepharose CL-6B and adenosine 5'-monophosphate-Agarose. The purified APRT was a homodimer of approximately 54 kDa and it had a specific activity of approximately 300 μmol (mg total protein)-1 min-1. Under standard assay conditions, the temperature optimum for APRT activity was 65°C and the pH optimum was temperature dependent. High enzyme activity was dependent upon the presence of divalent cations (Mn2+ or Mg2+). In the presence of MnCl2+ other divalent cations (Mg2+, Ca2+, Ba2+, Hg2+ and Cd2+) inhibited the APRT reaction. Kinetic studies indicated that 5-phosphoribose-1-pyrophosphate (PRPP) caused substrate inhibition whereas adenine did not. The Km for adenine was 4.5±1.5 μ M , the Km for PRPP was 0.29±0.06 m M and the Ki for PRPP was 1.96±0.45 m M . Assays using radiolabelled cytokinins showed that purified APRT can also catalyze the phosphoribosylation of isopentenyladenine and benzyladenine. The Km for benzyladenine was approximately 0.73±0.06 m M  相似文献   

11.
Byssochlamys fulva was found to produce a glucoamylase (EC 3.2.1.3) that exhibited its maximal activity at 50°C and had a broad optimum pH range of 4.0–5.2. The Km and Vmax values of the crude enzyme for amylopectin were 0.15% and 17.9 mg glucose l-1 min--1, respectively. The molecular weight of the enzyme as estimated by the gel-filtration method was 34 kDa.  相似文献   

12.
Adenine phosphoribosyltransferase (APT; EC 2.4.2.7) is a constitutively expressed enzyme involved in the one-step salvage of adenine to AMP. The Arabidopsis thaliana genome contains five sequences annotated as encoding APT or APT-like enzymes. Three of these have now been cloned, over-expressed and compared using kinetic analyses. At a cytosolic pH, all bind adenine efficiently based on their Km values (0.8–2.6 µ M ), although APT1 metabolizes adenine at a rate 31–53 times faster than APT2 and APT3, respectively. Since APT also has a possible role in the interconversion of cytokinin bases to nucleotides, we characterized the activity of each isoform on zeatin, isopentenyladenine and benzyladenine. Based on their Km values, APT2 and APT3 had much higher affinities than APT1 for all three cytokinins (15–440 µ M for APT2 and 3 vs. 1.8–2.5 m M for APT1); conversely the Vmax values for APT2 and APT3 on these CK substrates showed the opposite trend, being 4- to 19-fold lower than those of APT1. Anti-peptide antibodies for APT1, APT2, and APT3 were prepared and used to examine the subcellular localization of each isoform. Based on these results, APT1 and APT3 appear to be cytosolic, while the localization of APT2 was inconclusive although sequence analysis implies that APT2 is also cytosolic. Each isoform was modelled against the crystal structure of APT from Leishmania donovani , and structural differences in substrate specificity-determining domains have been found. The estimated kinetic activities of these APTs suggest that they contribute primarily to adenine recycling, although an involvement in cytokinin interconversion cannot be discounted.  相似文献   

13.
NADP-dependent glutamate dehydrogenase (EC 1.4.1.4) extracted from Sphaerostilbe repens was purified to homogeneity by using ammonium sullate fractionation hydroxyapatite and DEAE-cellulose column chromatography and, finally, preparative polyacrylamide gel electrophoresis. The turnover number of the enzyme for the amination reaction was about 66000 mol substrate transformed min-1 (molecule of GDH)-1. Molecular weight of the native enzyme was estimated to be 280000 dalton by polyacrylamide gradient gel electrophoresis. The same technique in the presence of sodium dodecyl sulfatc gave a single protein band that corresponded to the subunit molecular weight of 48000 dalton. Thus, it is concluded that NADP-GDH is composed of six identical polypeptidic chains.
The pH optimums were 6.9 and 8.4 for the forward and reverse reactions respectively. The NADP-GDH lost practically none of its activity for ten days at 4°C and for 15 h at room temperature, but was inactivated by higher temperatures. Thiol compounds such as 2-mercaptoethanol and dithiolhrcitol protected the enzyme from rapid inactivation. The Michaelis constants for GDH were 0.64, 0.049. 0.043 and 5.5 m M for α-ketoglutaratc. NADPH, NADP and glutamate, respectively. The enzyme had a negative cooperativity for ammonium (Hill number of 0.66), and its Km value increased from 2.6 to 21.2 m M when the ammonium concentration exceeded 16 m M . The deamination reaction was highly sensitive to inhibition by ammonium, while the amination reaction was only slightly inhibited by glutamate. These results, considered together with the Km values, indicate that the NADP-GDH in Sphaerostilbe repens is primarily concerned with glutamate biosynthesis.  相似文献   

14.
Shikimate dehydrogenase (SKDH, EC 1.1.1.25) was extracted from seedlings of pepper ( Capsicum annuum L.) and purified 347-fold. The purification procedure included precipitation with ammonium sulphate and chromatography in columns of Reactive Red-agarose, Q-Sepharose and Sephadex G-100. Pepper SKDH isozymes are separable only using PAGE. The purified enzyme has a relative molecular mass of 67 000 as estimated by gel filtration. The optimum pH of enzyme activity is 10.5 and the optimum temperature is 50°C, but the enzyme is quickly inactivated at temperatures higher than 40°C. The purified enzyme exhibited typical Michaelis-Menten kinetics and Km values are 0.087 m M for shikimic acid and 0.017 m M for NADP. The mechanism of reaction is sequential considering NADP as a cosubstrate. Ions such as Ca2+, Mg2+ and Mn2+ activate the enzyme, but Zn2+ and Cu2+ are strong inhibitors. Some phenolic compounds such as guaiacol, protocatechuic acid and 2,4-D are competitive inhibitors of pepper SKDH, showing Ki values of 0.38 m M , 0.27 m M and 0.16 m M , respectively.  相似文献   

15.
Plasma membrane vesicles were isolated from the roots of 7-day-old rice plants ( Oryza sativa L. cv. Bahía) by utilizing an aqueous polymer two-phase system with 6.2%:6.2% (w/w) Dextran T500 and polyethylene glycol 3350 (PEG) at pH 7.6. Plasmalemma vesicles of high purity were obtained as indicated by the vanadate-sensitive K+, Mg2+-ATPase activity that was 18 times higher in the upper (PEG-rich) phase than in the lower (Dextran-rich) phase and by specific staining with sodium silicotungstate. Two peaks of ATPase activity were found. One showed a pH optimum at 6.0 in the presence of 150 m M KCl and 3 m M ATP with apparent Km (ATP) and Vmax of 0.75 m M and 79 μmol (mg protein)−1 h−1, respectively. With 50 m M KCl and 7 m M ATP a pH optimum of 6.5, an apparent Km (ATP) of 6.3 m M and Vmax of 159 μmol (mg protein)−1 h−1 were determined. Both activities were specific for ATP, unspecific for monovalent cations, sensitive to sodium vanadate and Ca2+ but insensitive to azide and nitrate.  相似文献   

16.
Submitochondrial particles (SMP) were isolated from potato ( Solanum tuberosum L. cv. Bintje) tubers. The SMP were 91% inside-out and they were able to form a membrane potential, as monitored by oxonol VI, with succinate, NADH and NADPH. The pH dependence and kinetics of NADH and NADPH oxidation by these SMP was studied using three different electron acceptors – O2, duroquinone and ferricyanide. In addition, the SMP were solubilized, fractionated by non-denaturing polyacrylamide gel electrophoresis, and the gels were stained for NAD(P)H dehydrogenase activity and specificity at different pH using Nitro Blue Tetrazolium. From the results we conclude that there are at least two distinct NAD(P)H dehydrogenases on the inner surface of the inner membrane: (1) Complex 1 which oxidizes NADH and deamino-NADH in a rotenone-sensitive manner, (O2 as acceptor) with optimum activity at pH 8 and a very low Km(NADH) of 3 μ M . It also oxidizes NADPH and deamino-NADPH in a rotenone-sensitive manner, but with a pH optimum at pH 5.8 and a very high Km(NADPH) of more than 1 m M . This complex is found as a broad, diffuse band at the top of the gels. (2) A second dehydrogenase which oxidizes NADH in a rotenone-insensitive manner with optimum activity at pH 6.2 and a higher Km(NADH) of 14 μ M . It also oxidizes NADPH in a rotenone-insensitive manner with an activity optimum at pH 6.8 and low Km(NADPH) of 25 μ M . This dehydrogenase does not oxidize deamino-NAD(P)H. One of the sharp bands around the middle of the native gels may be caused by this dehydrogenase indicating that it has a relatively low molecular mass compared to Complex I. Several other NAD(P)H dehydrogenase bands were observed on the gels which we cannot yet assign.  相似文献   

17.
NADP+-dependent malic enzyme (L-malate : NADP+ oxidoreductase, decarboxylating, EC 1.1.1.40) was extracted from the leaves of yellow lupine. The purification procedure included fractionation with (NH4)2SO4 and Sephadex G-25 chromatography, followed by purification on DEAE-cellulose and Sephadex G-200 columns. The enzyme was purified 122-fold. The enzyme affinity towards L-malate was found to be significantly higher with Mn2+ than with Mg2+. The Hill coefficient for Mg2+ depended on concentration and was 1.6 for the lower and 3.9 for the higher concentrations. The dependence of the enzyme activity on NADP+ followed a hyperbolic curve. Km values and Hill coefficients for NADP+ were similar with both Mn2+ and Mg2+. The enzyme activity was strictly dependent on divalent cations and followed a sigmoidal curve at least for Mg2+. The enzyme had 4-fold higher affinity towards Mn2+ than towards Mg2+, the Km values being 0.3 and 1.15 m M respectively. Of several tested organic acids, oxalate was the most effective inhibitor followed by oxaloacetate while succinate was the strongest activator.  相似文献   

18.
Abstract— When suboesophageal ganglia of the snail Helix comalia were incubated at 25°C in a medium containing [3H]choline, tissue: medium ratios of about 14:1 were obtained after 20 min incubation, and only 15°, of the accumulated choline was metabolized to form [3H]acetylcholine. The uptake of [3H]choline showed saturation kinetics and was dependent upon temperature and sodium ions. Kinetic analysis suggested the existence of a high affinity uptake process (Km= 1.7 μM, Vmax= 0.21 nmol/g/min) and a low affinity process (Km= 100 μM, Vmax= 1.2 nmol/g/min). The high affinity uptake differed from the low affinity system in that it was sensitive to various metabolic inhibitors and was competitively inhibited by low concentrations of hemicholinium- and acetylcholine. Neither uptake system was greatly influenced by the absence of calcium, potassium or magnesium ions or by the presence of low concentrations of 5-HT, dopamine. tetrabenazine, chlorpromazine, decamethonium, nalaxone or imipramine. The high affinity uptake process may be important in supplying choline for the biosynthesis of acetylcholine in cholinergic neurons.  相似文献   

19.
Abstract— —The uptake of taurine into tissue slices of specific regions of the rat central nervous system (CNS) was compared with the uptake of taurine into synaptosomal fractions prepared from the corresponding regions. Two different techniques for performing control experiments were also compared: procedure I, correction for the uptake of taurine obtained from duplicate incubations but at 2°c and procedure II, correction of taurine uptake into extracellular or extrasynaptosomal space measured by inulin uptake experiments plus correction for diffusion (non-saturable) processes.
Kinetic analyses of the uptake data in tissue slices utilizing the procedure I correction technique indicate that six regions of the rat CNS (spinal cord, diencephalon, cortex, striatum, hippocampus, and midbrain) possess high affinity uptake systems (Km values approx 60 μM or less). The Km value for the cerebellum (105.4 ± 15.7 μM) is intermediate between a high and low affinity uptake system while the Km value for the pons-medulla (210.0 12.4 μM) is considered to be low affinity. When procedure II techniques were utilized for correcting the uptake data all eight regions demonstrated high affinity uptake systems (11.8–73.2μM).
Synaptosomal fractions prepared from the spinal cord, pons-medulla, diencephalon, and midbrain demonstrate high affinity uptake systems (procedure I) for taurine (10.3–47.2 μM) while the hippocampus, cortex, striatum, and cerebellum have intermediate (but still high affinity) values (59.4–96.4 μM). High affinity uptake systems (8.2–79.8 μM) were obtained for all eight regions of the rat CNS when procedure II was utilized for correction of the data.  相似文献   

20.
Abstract: Rat brain was found to enzymatically methylate phospholipids to form phosphatidylcholine with S -adenosyl- l -methionine serving as the methyl donor. Methyltransferase activity was localized in the microsomes and synaptosomes. In synaptosomes, at least two enzymes were found to be involved in the formation of phosphatidylcholine. The first methyltransferase which catalyzes the methylation of phosphatidylethanolamine to form phosphatidyl- N -monomethylethanolamine was found to have a pH optimum of 7.5, a low Km for 5-adenosyl- l -methionine and a partial requirement for Mg2. Methyltransferase I is tightly bound to membranes. The second methyltransferase (II) catalyzes the successive methylations of phosphatidyl- N -monomethylethanolamine to phosphatidyl- N , N -dimethylethanolamine and then to phosphatidylcholine. In contrast to methyltransferase I, methyltransferase II has a pH optimum of 10.5, a high apparent Km for S -adenosyl- l -methionine and no requirement for Mg2. Methyltransferase II is easily solubilized by sonication. The highest specific activity for both enzymes was found in the synaptosomal plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号