首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knee osteoarthritis (OA) is a multifactoral, progressive disease process of the musculoskeletal system. Mechanical factors have been implicated in the progression of knee OA, but the role of altered joint mechanics and neuromuscular control strategies in progressive mechanisms of the disease have not been fully explored. Previous biomechanical studies of knee OA have characterized changes in joint kinematics and kinetics with the disease, but it has been difficult to determine if these biomechanical changes are involved in the development of disease, are in response to degenerative changes in the joint, or are compensatory mechanisms in response to these degenerative changes or other related factors as joint pain. The goal of this study was to explore the association between biomechanical changes and knee OA severity in an effort to understand the changing role of biomechanical factors in the progression of knee OA. A three-group cross-sectional model was used that included asymptomatic subjects, subjects clinically diagnosed with moderate knee OA and severe knee OA subjects just prior to total joint replacement surgery. Principal component analysis and discriminant analysis were used to determine the combinations of electromyography, kinematic and kinetic waveform pattern changes at the knee, hip and ankle joints during gait that optimally separated the three levels of severity. Different biomechanical mechanisms were important in discriminating between severity levels. Changes in knee and hip kinetic patterns and rectus femoris activation were important in separating the asymptomatic and moderate OA gait patterns. In contrast, changes in knee kinematics, hip and ankle kinetics and medial gastrocnemius activity were important in discriminating between the moderate and severe OA gait patterns.  相似文献   

2.
Pain is a cardinal symptom in musculoskeletal diseases involving the knee joint, and aberrant movement patterns and motor control strategies are often present in these patients. However, the underlying neuromuscular mechanisms linking pain to movement and motor control are unclear. To investigate the functional significance of muscle pain on knee joint control during walking, three-dimensional gait analyses were performed before, during, and after experimentally induced muscle pain by means of intramuscular injections of hypertonic saline (5.8%) into vastus medialis (VM) muscle of 20 healthy subjects. Isotonic saline (0.9%) was used as control. Surface electromyography (EMG) recordings of VM, vastus lateralis (VL), biceps femoris, and semitendinosus muscles were synchronized with the gait analyses. During experimental muscle pain, the loading response phase peak knee extensor moments were attenuated, and EMG activity in the VM and VL muscles was reduced. Compressive forces, adduction moments, knee joint kinematics, and hamstring EMG activity were unaffected by pain. Interestingly, the observed changes persisted when the pain had vanished. The results demonstrate that muscle pain modulated the function of the quadriceps muscle, resulting in impaired knee joint control and joint instability during walking. The changes are similar to those observed in patients with knee pain. The loss of joint control during and after pain may leave the knee joint prone to injury and potentially participate in the chronicity of musculoskeletal problems, and it may have clinically important implications for rehabilitation and training of patients with knee pain of musculoskeletal origin.  相似文献   

3.
PurposeTo determine whether alterations in knee joint muscle activation patterns during gait were related to structural severity determined by Kellgren–Lawrence (KL) radiographic grades, for those with a moderate knee OA classification.ScopeEighty-two individuals with knee OA, classified as moderate using a functional and clinical criterion were stratified on KL-grade (KL II, KL III and KL IV). Thirty-five asymptomatic individuals were matched for age and walking velocity. Lower limb motion and surface electromyograms from rectus femoris plus lateral and medial sites for the gastrocnemii, vastii and hamstring muscles were recorded during self-selected walking. Gait velocity and characteristics from sagittal plane knee angular displacement waveforms were calculated. Principal component analysis extracted amplitude and temporal features from electromyographic waveform. Analysis of variance models tested for main effects (group, muscle) and interactions (α = 0.05) for these features. No differences in anthropometrics, velocity, knee muscle strength and symptoms were found among the three OA groups (p > 0.05). Specific features from medial gastrocnemius, lateral hamstring and quadriceps amplitude and temporal patterns were significantly different among OA groups (p < 0.05).ConclusionsSystematic alterations in specific knee joint muscle activation patterns were associated with increasing structural severity based on KL-grades whereas other alterations were associated with the presence of OA.  相似文献   

4.
Hip and knee functions are intimately connected and reduced hip abductor function might play a role in development of knee osteoarthritis (OA) by increasing the external knee adduction moment during walking. The purpose of this study was to test the hypothesis that reduced function of the gluteus medius (GM) muscle would lead to increased external knee adduction moment during level walking in healthy subjects. Reduced GM muscle function was induced experimentally, by means of intramuscular injections of hypertonic saline that produced an intense short-term muscle pain and reduced muscle function. Isotonic saline injections were used as non-painful control. Fifteen healthy subjects performed walking trials at their self-selected walking speed before and immediately after injections, and again after 20 min of rest, to ensure pain recovery. Standard gait analyses were used to calculate three-dimensional trunk and lower extremity joint kinematics and kinetics. Surface electromyography (EMG) of the glutei, quadriceps, and hamstring muscles were also measured. The peak GM EMG activity had temporal concurrence with peaks in frontal plane moments at both hip and knee joints. The EMG activity in the GM muscle was significantly reduced by pain (?39.6%). All other muscles were unaffected. Peaks in the frontal plane hip and knee joint moments were significantly reduced during pain (?6.4% and ?4.2%, respectively). Lateral trunk lean angles and midstance hip joint adduction and knee joint extension angles were reduced by ?1°. Thus, the gait changes were primarily caused by reduced GM function. Walking with impaired GM muscle function due to pain significantly reduced the external knee adduction moment. This study challenge the notion that reduced GM function due to pain would lead to increased loads at the knee joint during level walking.  相似文献   

5.
In using musculoskeletal models, researchers can calculate muscle forces, and subsequently joint contact forces, providing insight into joint loading and the progression of such diseases as osteoarthritis (OA). The purpose of this study was to estimate the knee contact force (KCF) in patients with varying degrees of OA severity using muscle forces and joint reaction forces derived from OpenSim. Walking data was obtained from healthy individuals (n=14) and those with moderate (n=10) and severe knee OA (n=2). For each subject, we generated 3D, muscle-actuated, forward dynamic simulations of the walking trials. Muscle forces that reproduced each subject’s gait were calculated. KCFs were then calculated using the vector sum of the muscle forces and joint reaction forces along the longitudinal axis of the femur. Moderate OA subjects exhibited a similar KCF pattern to healthy subjects, with lower second peaks (p=0.021). Although subjects with severe OA had similar initial peak KCF to healthy and moderate OA subjects (more than 4 times BW), the pattern of the KCF was very different between groups. After an initial peak, subjects with severe OA continually unloaded the joint, whereas healthy and moderate OA subjects reloaded the knee during late stance. In subjects with symmetric OA grades, there appears to be differences in loading between OA severities. Similar initial peaks of KCF imply that reduction of peak KCF may not be a compensatory strategy for OA patients; however, reducing duration of high magnitude loads may be employed.  相似文献   

6.
Gait characteristics of patients with knee osteoarthritis.   总被引:15,自引:0,他引:15  
The knee kinematics and kinetics of 139 patients (47 males and 92 females) with Grade II knee osteoarthritis (OA) were measured during level walking, stair ascent and stair descent. There was no significant difference in knee motion between the patients and normal subjects. The patients with knee OA had a significantly reduced internal knee extensor moment compared to normal subjects. This difference reflects the patient's compensation to reduce the knee joint loading. Further, subjects with OA and a higher body mass index have a lower knee extensor moment. The female subjects had significantly greater knee flexion and a greater knee extensor moment. This gender difference may partially explain the increased prevalence of OA in females. Most tests of OA treatments are assessed by criteria that do not reflect functional activities. This study demonstrates that objective gait analysis can be used to document gait adaptations used by patients with knee OA.  相似文献   

7.
Clarifying proximal gait adaptations as a strategy to reduce knee joint loading and pain for individuals with knee osteoarthritis (OA) contributes to understanding the pathogenesis of multi-articular OA changes and musculoskeletal pain in other joints. We aimed to determine whether biomechanical alterations in knee OA patients during level walking is increased upper trunk lean in the frontal and sagittal planes, and subsequent alteration in external hip adduction moment (EHAM) and external hip flexion moment (EHFM). A literature search was conducted in PubMed, PEDro, CINAHL, and Cochrane CENTRAL through May 2018. Where possible, data were combined into a meta-analysis; pooled standardized mean differences (SMD) of between knee OA patients and healthy adults were calculated using a random-effect model. In total, 32 articles (2037 participants, mean age, 63.0 years) met inclusion criteria. Individuals with knee OA had significantly increased lateral trunk lean toward the ipsilateral limb (pooled SMD: 1.18; 95% CI: 0.59, 1.77) along with significantly decreased EHAM. These subjects also displayed a non-significantly increased trunk/pelvic flexion angle and EHFM. The GRADE approach judged all measures as “very low.” These results may indicate that biomechanical alterations accompanying knee OA are associated with increased lateral trunk lean and ensuing alterations in EHAM. Biomechanical alterations in the sagittal plane were not evident. Biomechanical adaptations might have negative sequelae, such as secondary hip abductor muscle weakness and low back pain. Thus, investigations of negative sequelae due to proximal gait adaptations are warranted.  相似文献   

8.
It has been hypothesized that changes in trunk muscle activity in chronic low back pain (CLBP) reflect an underlying “guarding” mechanism, which will manifest itself as increased superficial abdominal – and lumbar muscle activity. During a functional task like walking, it may be further provoked at higher walking velocities. The purpose of this cross sectional study was to investigate whether subjects with CLBP show increased co-activation of superficial abdominal – and lumbar muscles during walking on a treadmill, when compared to asymptomatic controls. Sixty-three subjects with CLBP and 33 asymptomatic controls walked on a treadmill at different velocities. Surface electromyography data of the erector spinae, rectus abdominis and obliquus abdominis externus muscles were obtained and averaged per stride. Results show that, compared to asymptomatic controls, subjects with CLBP have increased muscle activity of the erector spinae and rectus abdominis, but not of the obliquus abdominis externus. These differences in trunk muscle activity between groups do not increase with higher walking velocities. In conclusion, the observed increased trunk muscle activity in subjects with CLBP during walking supports the guarding hypothesis.  相似文献   

9.
In unloading condition the degree of activation of the central stepping program was investigated during passive leg movements in healthy subjects, as well as the excitability of spinal motoneurons during passive and voluntary stepping movement. Passive stepping movements with characteristics maximally approximated to those during voluntary stepping were accomplished by experimenter. The comparison of the muscle activity bursts during voluntary and imposed movements was made. In addition to that the influence of artificially created loading onto the foot to the leg movement characteristics was analyzed. Spinal motoneuron excitability was estimated by means of evaluation of amplitude modulation of the soleus H-reflex. The changes of H-reflexes under the fixation of knee or hip joints were also studied. In majority of subjects the passive movements were accompanied by bursts of EMG activity of hip muscles (and sometimes of knee muscles), which timing during step cycle was coincided with burst timing of voluntary step cycle. In many cases the bursts of EMG activity during passive movements exceeded activity in homonymous muscles during voluntary stepping. The foot loading imitation exerted essential influence on distal parts of moving extremity during voluntary as well passive movements, that was expressed in the appearance of movements in the ankle joint and accompanied by emergence and increasing of phasic EMG activity of shank muscles. The excitability of motoneurons during passive movements was greater then during voluntary ones. The changes and modulation of H-reflex throughout the step cycle without restriction of joint mobility and during exclusion of hip joint mobility were similar. The knee joint fixation exerted the greater influence. It is supposed that imposed movements activate the same mechanisms of rhythm generation as a supraspinal commands during voluntary movements. In the conditions of passive movements the presynaptic inhibition depend on afferent influences from moving leg in the most degree then on central commands. It seems that afferent inputs from pressure receptors of foot in the condition of "air-stepping" actively interact with central program of stepping and, irrespective of type of the performing movements (voluntary or passive), form the final pattern activity.  相似文献   

10.
Muscles are significant contributors to the high joint forces developed in the knee during human walking. Not only do muscles contribute to the knee joint forces by acting to compress the joint, but they also develop joint forces indirectly through their contributions to the ground reaction forces via dynamic coupling. Thus, muscles can have significant contributions to forces at joints they do not span. However, few studies have investigated how the major lower-limb muscles contribute to the knee joint contact forces during walking. The goal of this study was to use a muscle-actuated forward dynamics simulation of walking to identify how individual muscles contribute to the axial tibio-femoral joint force. The simulation results showed that the vastii muscles are the primary contributors to the axial joint force in early stance while the gastrocnemius is the primary contributor in late stance. The tibio-femoral joint force generated by these muscles was at times greater than the muscle forces themselves. Muscles that do not cross the knee joint (e.g., the gluteus maximus and soleus) also have significant contributions to the tibio-femoral joint force through their contributions to the ground reaction forces. Further, small changes in walking kinematics (e.g., knee flexion angle) can have a significant effect on the magnitude of the knee joint forces. Thus, altering walking mechanics and muscle coordination patterns to utilize muscle groups that perform the same biomechanical function, yet contribute less to the knee joint forces may be an effective way to reduce knee joint loading during walking.  相似文献   

11.
Altered muscle coordination strategies in persons with knee osteoarthritis (OA) result in an increase in co-contraction of the quadriceps and hamstrings during walking. While this may increase intersegmental joint contact force and expedite disease progression, it is not currently known whether the magnitude of co-contraction increases with a progressive loss of joint space or whether the level of co-contraction is dependent on walking speed. The purposes of this study were to (1) determine if co-contraction increased with OA severity and (2) discern whether differences in co-contraction were a result of altered freely chosen walking speeds or rather an inherent change associated with disease progression. Forty-two subjects with and without knee osteoarthritis were included in the study. Subjects were divided into groups based on disease severity. When walking at a controlled speed of 1.0 m/s, subjects with moderate and severe knee OA showed significantly higher co-contraction when compared to a healthy control group. At freely chosen walking speeds only the moderate OA group had significantly higher co-contraction values. Increased walking speed also resulted in a significant increase in co-contraction, regardless of group. The results of this study demonstrate that persons with knee OA develop higher antagonistic muscle activity. This occurs despite differences in freely chosen walking speed. Although subjects with OA had higher co-contraction than the control group, co-contraction may not increase with disease severity.  相似文献   

12.
Patellofemoral pain (PFP) may be related to unfavorable knee joint loading. Delayed and/or reduced activity of vastus medialis obliquus (VMO) and different movement patterns have been identified in individuals with PFP in some studies, whereas other studies have failed to show a difference compared to non-affected controls. The discrepancy between study results may depend on the different tasks that have been investigated. No previous study has investigated these variables in postural responses to unpredictable perturbations in PFP. Whole body three dimensional kinematics and surface EMG of quadriceps muscles activation was studied in postural responses to unpredictable support surface translations in 17 women with PFP who were pain free at the time of testing, and 17 matched healthy controls. The results of the present study showed earlier onset of VMO activity and associated changes in kinematics to anterior platform translation in the PFP subjects. We suggest that the relative timing between the portions quadriceps muscles may be task specific and part of an adapted response in attempt to reduce knee joint loading. This learned response appears to remain even when the pain is no longer present.  相似文献   

13.
Osteoarthritis (OA) is a chronic disorder resulting in degenerative changes to the knee joint. Three-dimensional gait analysis provides a unique method of measuring knee dynamics during activities of daily living such as walking. The purpose of this study was to identify biomechanical features characterizing the gait of patients with mild-to-moderate knee OA and to determine if the biomechanical differences become more pronounced as the locomotor system is stressed by walking faster. Principal component analysis was used to compare the gait patterns of a moderate knee OA group (n=41) and a control group (n=43). The subjects walked at their self-selected speed as well as at 150% of that speed. The two subject groups did not differ in knee joint angles, stride length, and stride time or walking speed. Differences in the magnitude and shape of the knee joint moment waveforms were found between the two groups. The OA group had larger adduction moment magnitudes during stance and this higher magnitude was sustained for a longer portion of the gait cycle. The OA group also had a reduced flexion moment and a reduced external rotation moment during early stance. Increasing speed was associated with an increase in the magnitude of all joint moments. The fast walks did not, however, increase or bring out any biomechanical differences between the OA and control groups that did not exist at the self-selected walks.  相似文献   

14.
This study analyses the relative contribution of the triceps surae and tibialis anterior (TA) muscles to tension development with reference to voluntary plantarflexion at two articular positions of the knee joint (extended and flexed at 90°) for various inertial loads. Subjects were instructed to perform plantarflexions at various sub-maximal and maximal velocities with no intention of stopping the movement. Whereas in one series of experiments the subjects were informed of the load countering the movement, in the other they were not. The average electromyographic (EMG) activity of the different muscles was recorded. The main results were that with loading: (a) greater maximal plantarflexion velocities were recorded in flexed as compared to extended-knee positions; (b) greater durations and amplitudes of agonist and antagonist EMG bursts were recorded; (c) the co-activation of the TA and triceps surae muscles was enhanced; (d) unexpected sub-maximal loads induced greater EMG activity and speed of movement. It is concluded that increasing the load during plantarflexion in humans brings about changes in neuromuscular strategies that contribute to the efficiency of contractile activity during rapid movements. The results also indicate that unexpected sub-maximal loading induces a potentiated neuromuscular activity which increases the speed of movement.  相似文献   

15.
Asymmetric osteoarthritis (OA) is a common type of OA in the ankle joint. OA also influences the muscles surrounding a joint, however, little is known about the muscle activation in asymmetric ankle OA. Therefore, the aim of this study was to characterize the patients’ muscle activation during isometric ankle torque measurements and level walking. Surface electromyography (EMG) was measured of gastrocnemius medialis (GM) and lateralis (GL), soleus (SO), tibialis anterior (TA), and peroneus longus (PL) in 12 healthy subjects and 12 ankle OA patients. To obtain time and frequency components of the EMG power a wavelet transformation was performed. Furthermore, entropy was introduced to characterize the homogeneity of the wavelet patterns.Patients produced lower plantar- and dorsiflexion torques and their TA wavelet spectrum was shifted towards lower frequencies. While walking, the patients’ muscles were active with a lower intensity and over a broader time–frequency region. In contrast to controls and varus OA patients, maximal GM activity of valgus OA patients lagged behind the activity of GL and SO. In both tasks, PL of the valgus patients contained more low frequency power. The results of this study will help to assess whether surgical interventions of ankle OA can reestablish the muscle activation patterns.  相似文献   

16.
There are several pathologies related to the patellofemoral joint, in which the patellofemoral syndrome is one of the most common and challenging to treat. The patellofemoral syndrome results from a malalignment of the knee extensor mechanism. The purpose of our study was to describe and compare EMG responses of the vastus medialis and vastus lateralis muscles while walking up and down stairs and other clinical and functional responses in PFS subjects before and after a physical therapy intervention. Eleven subjects were studied and divided in two groups: six subjects with clinically diagnosed patellofemoral syndrome and five healthy control subjects. Subjects were evaluated by a functional and biomechanical evaluation protocol: postural evaluation, pain and knee function evaluation, and electromyographic activity of vastus medialis and lateralis muscles while walking up and down a staircase. Results showed higher efficiency of the vastus medialis muscle in carrying out eccentric exercises and increased muscle activity in both the vastus medialis and vastus lateralis muscles while climbing stairs after physical therapy treatment. We were able to identify an improvement in postural alignment of lower limb muscles and knee functionality among patellofemoral syndrome group subjects after treatment.  相似文献   

17.
Exercise is recommended as a non-pharmacological, non-invasive intervention for osteoarthritis (OA) of the knee. Physiological data concerning the duration and intensity of muscle activity or physical activity profiles during normal daily activity for this population is lacking. Our aim was to explore this using surface Electromyography (EMG) and accelerometer-based activity monitoring. Thirty-four patients with knee OA, mean (SD) age 63.2 (9.8) years and 30 aged-matched asymptomatic controls 64.1 (10.9) years participated. The duration of recording was similar in knee OA and control groups – median (IRQ range) 12:34 (10:11–14:17) h and 13:10 (12:02–14:56) h, respectively (p = 0.514). VM and VL were quiescent for 81.8 (75.3–91.0) to 89.2 (81.5–94.7)% of the time. VM was active for significantly longer durations than VL in the highest intensity band for those with knee OA (p = 0.00), and for longer durations in those with knee OA compared to controls (p = 0.027). The median (IRQ range) percentage of the total recording time spent in an upright posture was 32.4 (28.3–43.9)% and 38.8 (33.6–45.8)%, and time spent stepping or walking was 12.7 (9.7–16.4)% and 16.0 (11.9–19.6)% for those with knee OA and controls respectively. These novel data may prove useful for designing therapeutic exercise programmes and lifestyle changes for those with knee OA.  相似文献   

18.

Introduction

High joint loading, knee muscle weakness, and poor proprioceptive acuity are important factors that have been linked to knee osteoarthritis (OA). We previously reported that those with unilateral hip OA and bilateral asymptomatic knees are more predisposed to develop progressive OA in the contralateral knee relative to the ipsilateral knee. In the present study, we evaluate asymmetries in muscle strength and proprioception between the limbs and also evaluate relationships between these factors and joint loading that may be associated with the asymmetric evolution of OA in this group.

Methods

Sixty-two participants with symptomatic unilateral hip OA and asymptomatic knees were evaluated for muscle strength, joint position sense and dynamic joint loads at the knees. Muscle strength and proprioception were compared between limbs and correlations between these factors and dynamic joint loading were evaluated. Subgroup analyses were also performed in only those participants that fulfilled criteria for severe hip OA.

Results

Quadriceps muscle strength was 15% greater, and in the severe subgroup, proprioceptive acuity was 25% worse at the contralateral compared to ipsilateral knee of participants with unilateral hip OA (P <0.05). In addition, at the affected limb, there was an association between decreased proprioceptive acuity and higher knee loading (Spearman’s rho = 0.377, P = 0.007) and between decreased proprioceptive acuity and decreased muscle strength (Spearman’s rho = −0.328, P = 0.016).

Conclusions

This study demonstrated asymmetries in muscle strength and proprioception between the limbs in a unilateral hip OA population. Early alterations in these factors suggest their possible role in the future development of OA at the contralateral ‘OA-predisposed knee’ in this group. Furthermore, the significant association observed between proprioception, loading, and muscle strength at the affected hip limb suggests that these factors may be interrelated.  相似文献   

19.
The purpose of this study was to examine lower extremity kinetics and muscle activity during backward slope walking to clarify the relationship between joint moments and powers and muscle activity patterns observed in forward slope walking. Nine healthy volunteers walked backward on an instrumented ramp at three grades (-39% (-21 degrees ), 0% (level), +39% (+21 degrees )). EMG activity was recorded from major lower extremity muscles. Joint kinetics were obtained from kinematic and force platform data. The knee joint moment and power generation increased significantly during upslope walking; hip joint moment and power absorption increased significantly during downslope walking. When compared to data from forward slope walking, these backward walking data suggest that power requirements of a task dictate the muscle activity pattern needed to accomplish that movement. During downslope walking tasks, power absorption increased and changes in muscle activity patterns were directly related to the changes in the joint moment patterns. In contrast, during upslope walking tasks, power generation increased and changes in the muscle activity were related to the changes in the joint moments only at the 'primary' joint; at adjacent joints the changes in muscle activity were unrelated to the joint moment pattern. The 'paradoxical' changes in the muscle activity at the adjacent joints are possibly related to the activation of biarticular muscles required by the increased power generation at the primary joint. In total, these data suggest that changing power requirements at a joint impact the control of muscle activity at that and adjacent joints.  相似文献   

20.
The aim of the study was to investigate the distribution of net joint moments in the lower extremities during walking on high-heeled shoes compared with barefooted walking at identical speed. Fourteen female subjects walked at 4 km/h across three force platforms while they were filmed by five digital video cameras operating at 50 frames/second. Both barefooted walking and walking on high-heeled shoes (heel height: 9 cm) were recorded. Net joint moments were calculated by 3D inverse dynamics. EMG was recorded from eight leg muscles. The knee extensor moment peak in the first half of the stance phase was doubled when walking on high heels. The knee joint angle showed that high-heeled walking caused the subjects to flex the knee joint significantly more in the first half of the stance phase. In the frontal plane a significant increase was observed in the knee joint abductor moment and the hip joint abductor moment. Several EMG parameters increased significantly when walking on high-heels. The results indicate a large increase in bone-on-bone forces in the knee joint directly caused by the increased knee joint extensor moment during high-heeled walking, which may explain the observed higher incidence of osteoarthritis in the knee joint in women as compared with men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号