首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyroglobulin, the major secretory product of thyrocytes, is the macromolecular precursor of thyroid hormones. After its synthesis, thyroglobulin follows a complex secretion, storage and recapture pathway to lysosomes. Porcine thyroglobulin was shown to carry the mannose 6-phosphate-(Man6P)-recognition marker on its N-linked glycans. Since the cation-independent Man6P receptor could also be found on the apical plasma membrane of porcine thyrocytes, we examined the significance of the Man6P signal for the transport of thyroglobulin. Here, we present data implying that Man6P receptors are not relevant for endocytosis of thyroglobulin in thyrocytes. Instead, we provide evidence for the existence of specific, low-affinity-binding sites for thyroglobulin on the apical plasma membrane of thyrocytes responsible for endocytosis of thyroglobulin. Binding studies with intact, polar-organized porcine thyrocytes grown on collagen-coated filters revealed cooperative and saturable binding of thyroglobulin to the apical-plasma-membrane domain at relatively high concentrations of thyroglobulin (20 microM). These observations show that low-affinity interactions between thyroglobulin and the apical plasma membrane play a key role in endocytosis of thyroglobulin and hormone formation in the thyroid. The data in this publication have been published as an abstract [Lemansky, P. and Herzog, V. (1991) J. Cell Biol. 115, 261a].  相似文献   

2.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays an essential role in the biogenesis of lysosomes by delivering newly synthesized lysosomal enzymes from the trans Golgi network to the endosomal system. The CI-MPR is expressed in most eukaryotes, with Saccharomyces cerevisiae and Caenorhabditis elegans being notable exceptions. Although the repertoire of glycans recognized by the bovine receptor has been studied extensively, little is known concerning the ligand-binding properties of the CI-MPR from non-mammalian species. To assess the evolutionary conservation of the CI-MPR, surface plasmon resonance analyses using lysosomal enzymes with defined N-glycans were carried out to probe the glycan-binding specificity of the Danio rerio CI-MPR. The results demonstrate that the D. rerio CI-MPR harbors three glycan-binding sites that, like the bovine CI-MPR, map to domains 3, 5 and 9 of its 15-domain-containing extracytoplasmic region. Analyses on a phosphorylated glycan microarray further demonstrated the unique binding properties of each of the three sites and showed that, similar to the bovine CI-MPR, only domain 5 of the D. rerio CI-MPR is capable of recognizing Man-P-GlcNAc-containing glycans.  相似文献   

3.
The small GTPase Rab7b localizes to late endosomes-lysosomes and to the Golgi, regulating the transport between these two intracellular compartments. We have recently demonstrated that depletion of Rab7b causes missorting of the cation-independent mannose 6-phosphate receptor (CI-MPR), suggesting that Rab7b may control the trafficking of this receptor. Here we further investigated the function of this small GTPase with special attention to its role in the trafficking of sorting receptors and dynamics in living cells. Using endosome-to-Golgi retrieval assays we show that Rab7b is involved not only in CI-MPR transport but also in the MPRs independent pathway. Indeed, we find that it regulates and interacts with sortilin, a mannose 6-phosphate-independent sorting receptor. CI-MPR and sortilin are sorted from the trans-Golgi network (TGN) in tubular structures and the expression of Rab7b mutants or its silencing reduces CI-MPR and sortilin tubulation. In addition, the constitutively active mutant Rab7b Q67L impairs the formation of carriers from TGN. Collectively, our observations show for the first time that Rab7b is required for transport from endosomes to the TGN, not only of the CI-MPR, but also of sortilin, and that alterations in this transport result in impaired carrier formation from TGN.  相似文献   

4.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays a critical role in the trafficking of newly synthesized mannose 6-phosphate-containing acid hydrolases to the lysosome. The receptor contains two high affinity carbohydrate recognition sites within its 15-domain extracytoplasmic region, with essential residues for carbohydrate recognition located in domain 3 and domain 9. Previous studies have shown that these two sites are distinct with respect to carbohydrate specificity. In addition, expression of truncated forms of the CI-MPR demonstrated that domain 9 can be expressed as an isolated domain, retaining high affinity (Kd approximately 1 nm) carbohydrate binding, whereas expression of domain 3 alone resulted in a protein capable of only low affinity binding (Kd approximately 1 microm) toward a lysosomal enzyme. In the current report the crystal structure of the N-terminal 432 residues of the CI-MPR, encompassing domains 1-3, was solved in the presence of bound mannose 6-phosphate. The structure reveals the unique architecture of this carbohydrate binding pocket and provides insight into the ability of this site to recognize a variety of mannose-containing sugars.  相似文献   

5.
Intracellular cycling of the cation-dependent mannose 6-phosphate receptor (CD-MPR) between different compartments is directed by signals localized in its cytoplasmic tail. A di-aromatic motif (Phe18-Trp19 with Trp19 as the key residue) in its cytoplasmic tail is required for the sorting of the receptor from late endosomes back to the Golgi apparatus. However, the cation-independent mannose 6-phosphate receptor (CI-MPR) lacks such a di-aromatic motif. Therefore the ability of amino acids other than aromatic residues to replace Trp19 in the CD-MPR cytoplasmic tail was tested. Mutant constructs with bulky hydrophobic residues (valine, isoleucine, or leucine) instead of Trp19 exhibited 30-60% decreases in binding to the tail interacting protein of 47 kDa (Tip47), a protein mediating this transport step, and partially prevented receptor delivery to lysosomes. Decreasing hydrophobicity of residues at position 19 resulted in further impairment of Tip47 binding and an increase of receptor accumulation in lysosomes. Intriguingly, mutants mislocalized to lysosomes did not completely co-localize with a lysosomal membrane protein, which might suggest the presence of subdomains within lysosomes. These data indicate that sorting of the CD-MPR in late endosomes requires a distinct di-aromatic motif with only limited possibilities for variations, in contrast to the CI-MPR, which seems to require a putative loop (Pro49-Pro-Ala-Pro-Arg-Pro-Gly55) along with additional hydrophobic residues in the cytoplasmic tail. This raises the possibility of two separate binding sites on Tip47 because both receptors require binding to Tip47 for endosomal sorting.  相似文献   

6.
Olson LJ  Yammani RD  Dahms NM  Kim JJ 《The EMBO journal》2004,23(10):2019-2028
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) mediates the intracellular transport of newly synthesized lysosomal enzymes containing mannose 6-phosphate on their N-linked oligosaccharides. In addition to its role in lysosome biogenesis, the CI-MPR interacts with a number of different extracellular ligands at the cell surface, including latent transforming growth factor-beta, insulin-like growth factor-II, plasminogen, and urokinase-type plasminogen activator receptor (uPAR), to regulate cell growth and motility. We have solved the crystal structure of the N-terminal 432 residues of the CI-MPR at 1.8 A resolution, which encompass three out of the 15 repetitive domains of its extracytoplasmic region. The three domains, which exhibit similar topology to each other and to the 46 kDa cation-dependent mannose 6-phosphate receptor, assemble into a compact structure with the uPAR/plasminogen and the carbohydrate-binding sites situated on opposite faces of the molecule. Knowledge of the arrangement of these three domains has allowed us to propose a model of the entire extracytoplasmic region of the CI-MPR that provides a context with which to envision the numerous binding interactions carried out by this multi-faceted receptor.  相似文献   

7.
The rat insulin-like growth factor II (IGF-II) receptor develops transmembrane signaling functions by directly coupling to a guanine nucleotide-binding protein (G protein) having a 40-kDa alpha subunit, Gi-2, whereas recent studies have indicated that the IGF-II receptor is a molecule identical to the cation-independent mannose 6-phosphate receptor (CI-MPR), a receptor implicated in lysosomal enzyme sorting. In this study, by using vesicles reconstituted with the clonal human CI-MPR and G proteins, we indicated that the CI-MPR could stimulate guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding and GTPase activities of Gi proteins in response to IGF-II. The stimulatory effect of IGF-II on Gi-2 depended on the reconstituted amount of the CI-MPR; it could not be found in vesicles reconstituted with Gi-2 alone; and it was also observed on Gi-1 reconstituted with the CI-MPR in phospholipid vesicles. Of interest, such stimulatory effect was not reproduced by Man-6-P in CI-MPR vesicles reconstituted with either G protein. Furthermore, the affinity for Man-6-P-mediated beta-glucuronidase binding to several kinds of native cell membranes was not reduced by 100 microM GTP gamma S. Instead, however, Man-6-P dose-dependently inhibited IGF-II-induced Gi-2 activation with an IC50 of 6 microM in vesicles reconstituted with the CI-MPR and Gi-2. The action of 100 nM IGF-II was completely abolished by 1 mM Man-6-P. Such an inhibitory effect of Man-6-P was reproduced by 4000 times lower concentrations of beta-glucuronidase or similar concentrations of fructose 1-phosphate, but not by mannose or glucose 6-phosphate. These results indicate that the human CI-MPR has two distinct signaling functions that positively or negatively regulate the activity of Gi-2 in response to the binding of IGF-II or Man-6-P.  相似文献   

8.
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46 kDa cation-dependent MPR (CD-MPR) are key components of the lysosomal enzyme targeting system that bind newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and divert them from the secretory pathway. Previous studies have mapped two high-affinity Man-6-P binding sites of the CI-MPR to domains 1-3 and 9 and one low-affinity site to domain 5 within its 15-domain extracytoplasmic region. A structure-based sequence alignment predicts that domain 5 contains the four conserved residues (Gln, Arg, Glu, Tyr) identified as essential for Man-6-P binding by the CD-MPR and domains 1-3 and 9 of the CI-MPR. Here we show by surface plasmon resonance (SPR) analyses of constructs containing single amino acid substitutions that these conserved residues (Gln-644, Arg-687, Glu-709, Tyr-714) are critical for carbohydrate recognition by domain 5. Furthermore, the N-glycosylation site at position 711 of domain 5, which is predicted to be located near the binding pocket, has no influence on the carbohydrate binding affinity. Endogenous ligands for the MPRs that contain solely phosphomonoesters (Man-6-P) or phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester, Man-P-GlcNAc) were generated by treating the lysosomal enzyme acid alpha-glucosidase (GAA) with recombinant GlcNAc-phosphotransferase and uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase). SPR analyses using these modified GAAs demonstrate that, unlike the CD-MPR or domain 9 of the CI-MPR, domain 5 exhibits a 14-18-fold higher affinity for Man-P-GlcNAc than Man-6-P, implicating this region of the receptor in targeting phosphodiester-containing lysosomal enzymes to the lysosome.  相似文献   

9.
The human colon adenocarcinoma cell lines SW 948, SW 1116, and SW 1222 were tested for their ability to sort and internalize lysosomal enzymes. The biosynthesis of the lysosomal enzymes cathepsin B, arylsulfatase A, and beta-hexosaminidase in these cell lines exhibits no significant differences to that in human fibroblasts. The intracellular targeting of newly synthesized hydrolases to the lysosomes relies in colon carcinoma cells on the mannose 6-phosphate receptor system. Both the cation-independent mannose 6-phosphate receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor are expressed in all colon carcinoma cell lines investigated. Endocytosis of lysosomal enzymes via mannose 6-phosphate receptors is reduced in colon carcinoma cells as compared with human fibroblasts. SW 1116 cells were shown to be deficient in receptor-mediated endocytosis of mannose 6-phosphate containing ligands. Ligands of other endocytic receptors as well as the fluid-phase marker horseradish peroxidase were internalized at normal rates. While antibodies against CI-MPR bind to the surface of SW 1116 cells, these antibodies cannot be internalized. These data suggest that the cycling of CI-MPR is specifically impaired in SW 1116 cells.  相似文献   

10.
The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are a group of inherited childhood-onset neurodegenerative disorders characterized by the lysosomal accumulation of undigested material within cells. To understand this dysfunction, we analysed trafficking of the cation-independent mannose 6-phosphate receptor (CI-MPR), which delivers the digestive enzymes to lysosomes. A common form of NCL is caused by mutations in CLN3, a multipass transmembrane protein of unknown function. We report that ablation of CLN3 causes accumulation of CI-MPR in the trans Golgi network, reflecting a 50% reduction in exit. This CI-MPR trafficking defect is accompanied by a fall in maturation and cellular activity of lysosomal cathepsins. CLN3 is therefore essential for trafficking along the route needed for delivery of lysosomal enzymes, and its loss thereby contributes to and may explain the lysosomal dysfunction underlying Batten disease.  相似文献   

11.
In higher eukaryotes, the transport of soluble lysosomal enzymes involves the recognition of their mannose 6-phosphate signal by two receptors: the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor (CD-MPR). It is not known why these two different proteins are present in most cell types. To investigate their relative function in lysosomal enzyme targeting, we created cell lines that lack either or both MPRs. This was accomplished by mating CD-MPR-deficient mice with Thp mice that carry a CI-MPR deleted allele. Fibroblasts prepared from embryos that lack the two receptors exhibit a massive missorting of multiple lysosomal enzymes and accumulate undigested material in their endocytic compartments. Fibroblasts that lack the CI-MPR, like those lacking the CD-MPR, exhibit a milder phenotype and are only partially impaired in sorting. This demonstrates that both receptors are required for efficient intracellular targeting of lysosomal enzymes. More importantly, comparison of the phosphorylated proteins secreted by the different cell types indicates that the two receptors may interact in vivo with different subgroups of hydrolases. This observation may provide a rational explanation for the existence of two distinct mannose 6-phosphate binding proteins in mammalian cells.  相似文献   

12.
The mammalian cation-independent mannose 6-phosphate receptor (CI-MPR) binds mannose 6-phosphate-bearing glycoproteins and insulin-like growth factor (IGF)-II. However, the CI-MPR from the opossum has been reported to bind bovine IGF-II with low affinity (Dahms, N. M., Brzycki-Wessell, M. A., Ramanujam, K. S., and Seetharam, B. (1993) Endocrinology 133, 440-446). This may reflect the use of a heterologous ligand, or it may represent the intrinsic binding affinity of this receptor. To examine the binding of IGF-II to a marsupial CI-MPR in a homologous system, we have previously purified kangaroo IGF-II (Yandell, C. A., Francis, G. L., Wheldrake, J. F., and Upton, Z. (1998) J. Endocrinol. 156, 195-204), and we now report the purification and characterization of the CI-MPR from kangaroo liver. The interaction of the kangaroo CI-MPR with IGF-II has been examined by ligand blotting, radioreceptor assay, and real-time biomolecular interaction analysis. Using both a heterologous and homologous approach, we have demonstrated that the kangaroo CI-MPR has a lower binding affinity for IGF-II than its eutherian (placental mammal) counterparts. Furthermore, real-time biomolecular interaction analysis revealed that the kangaroo CI-MPR has a higher affinity for kangaroo IGF-II than for human IGF-II. The cDNA sequence of the kangaroo CI-MPR indicates that there is considerable divergence in the area corresponding to the IGF-II binding site of the eutherian receptor. Thus, the acquisition of a high-affinity binding site for regulating IGF-II appears to be a recent event specific to the eutherian lineage.  相似文献   

13.
《The Journal of cell biology》1989,108(6):2149-2162
We have developed a method for the isolation of the subcellular organelles from bovine liver which are enriched in the cation- independent mannose 6-phosphate receptor (CI-MPR) and the cation- dependent mannose 6-phosphate receptor (CD-MPR). The purification scheme consists of sedimentation of a postnuclear supernatant fraction on a sucrose gradient followed by immunoisolation using specific anti- peptide antibodies conjugated to magnetic polystyrene beads. Antibodies that recognize the cytoplasmic domain of either the CI-MPR or the CD- MPR routinely give membrane preparations that are approximately 50-fold enriched in each of the respective receptors, as determined by quantitative Western blotting. The immunoisolated membranes are also enriched in the other MPR, as well as in the asialoglycoprotein receptor. They contain significantly lower levels of enzyme activities representative of the plasma membrane (5' nucleotidase) or the Golgi complex (galactosyltransferase and sialyltransferase). There is little or no enrichment for either the lysosomal enzymes beta-hexosaminidase and tartrate-resistant acid phosphatase, or the mitochondrial enzyme succinate-tetrazolium reductase. These data, together with electron microscopy of the immunoisolated material, suggest that the bulk of MPR- containing membranes we have isolated from bovine liver correspond to endosomes. Analysis by SDS-PAGE indicates that several proteins, including two with apparent molecular weights of 170 K and 400 K, are significantly enriched in the purified fractions and may represent potential markers for MPR-containing endosomes.  相似文献   

14.
A series of chemically synthesized oligomannosides that contain mannose 6-phosphate residues were utilized as inhibitors of the binding of beta-galactosidase to high (CI-MPR, 215 kDa) and low (CD-MPR, 41-46 kDa) molecular mass mannose 6-phosphate receptor from bovine testes in order to probe the specificity of each receptor. Mannobioside phosphorylated in the terminal position and linked alpha(1,2) was a 6-fold better inhibitor than the corresponding alpha(1,3)- and alpha (1,6)-linked isomers. Inhibition observed with a monophosphorylated alpha(1,2)-linked mannotrioside was approximately 6-fold greater than that with the corresponding mannobioside. Penultimate glycosidic linkages of the oligomannosides played little or no role in the inhibition of binding of ligand to the receptors. Monophosphorylated oligomannosides containing phosphomonoester groups on penultimate mannose residues were not inhibitors. Binding inhibition observed for biantennary oligomannosides with phosphate on terminal mannose residues of either alpha(1,3) or alpha(1,6) chains closely approximated the values obtained with analogous trimannosides. A biantennary oligomannoside on which each antennary chain contained a terminal phosphate exhibited approximately an 8-fold greater inhibition than monophosphorylated compounds. Although the receptors exhibited similar relative specificities for phosphomonoesters, phosphodiesters did not inhibit binding of ligand to CD-MPR and only weakly inhibited binding to CI-MPR.  相似文献   

15.
Dahms NM  Olson LJ  Kim JJ 《Glycobiology》2008,18(9):664-678
The two members of the P-type lectin family, the 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) and the 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR), are ubiquitously expressed throughout the animal kingdom and are distinguished from all other lectins by their ability to recognize phosphorylated mannose residues. The best-characterized function of the MPRs is their ability to direct the delivery of approximately 60 different newly synthesized soluble lysosomal enzymes bearing mannose 6-phosphate (Man-6-P) on their N-linked oligosaccharides to the lysosome. In addition to its intracellular role in lysosome biogenesis, the CI-MPR, but not the CD-MPR, participates in a number of other biological processes by interacting with various molecules at the cell surface. The list of extracellular ligands recognized by this multifunctional receptor has grown to include a diverse spectrum of Man-6-P-containing proteins as well as several non-Man-6-P-containing ligands. Recent structural studies have given us a clearer view of how these two receptors use related, but yet distinct, approaches in the recognition of phosphomannosyl residues.  相似文献   

16.
The endocytic trafficking of the cation-independent mannose 6-phosphate receptor (CI-MPR) involves multiple sorting steps. A cluster of acidic amino acids followed by a dileucine motif in the cytoplasmic tail has been proposed to mediate receptor sorting from the trans Golgi network (TGN) to late endosomes. Mutations in this motif impair lysosomal enzyme sorting by preventing association of CI-MPR with coat proteins. The role of the acidic cluster/dileucine motif in the post-endocytic transport of the receptor was examined using the CI-MPR mutants, AC01 and D160E (Chen HJ, Yuan J, Lobel P. J Biol Chem 1997;272:7003-7012). Following internalization, wild type (WT) CI-MPR is transported through sorting endosomes into the endocytic recycling compartment (ERC), after which it traffics to the TGN and other organelles. However, the mutants localize mostly to the ERC and only a small portion reaches the TGN, suggesting that the sorting of the CI-MPR mutants from the ERC into the TGN is severely impaired. We observed no defect in receptor internalization or in the rate of tail mutant recycling to the cell surface compared to the WT. These results demonstrate that the acidic cluster/dileucine motif of CI-MPR is critical for receptor sorting at early stages of intracellular transport following endocytosis.  相似文献   

17.
An established mechanism for directing newly made acid hydrolases to lysosomes involves acquisition of mannose 6-phosphate residues by the carbohydrate portion of acid hydrolases followed by binding to specific membrane-bound transport receptors and delivery to lysosomes. Two distinct phosphomannosyl receptors (CI-MPR and CD-MPR) have been identified. Alternative mechanisms for trafficking acid hydrolases exist. This report examines means for the possible receptor-mediated intracellular transport of -l-fucosidase in lymphoid cells. The binding of -l-fucosidase to intact cells and to total cell membrane preparations, in conjunction with immunoassays of solubilized membrane preparations, revealed the presence of CI-MPR and CD-MPR on human lymphoid and fibroblast cell lines. The mean level of CD-MPR in nine lymphoid cell lines was 7.2-fold greater than CI-MPR. The mean level of CI-MPR in two fibroblast lines was 3.8-fold greater than CD-MPR. The mean content of CI-MPR was 19.5-fold greater in the fibroblasts than in the lymphoid cells. The CD-MPR content of fibroblasts and lymphoid cells was nearly equivalent. Among these cell lines were a fibroblast and a lymphoid line from the same individual. These results indicate that human B-lymphoid cells are deficient in CI-MPR and suggest that modulation of expression of CI-MPR and CD-MPR in lymphoid cells differs from that in fibroblasts, including cell lines with identical genomes. No specific receptor capable of binding -l-fucosidase independent of mannose 6-phosphate was demonstrable, despite published results that support the existence of a mannose 6-phosphate independent trafficking mechanism in lymphoid cells for this enzyme.  相似文献   

18.
Mouse L cells deficient in expression of the murine cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor (CI-MPR/IGF-IIR) were stably transfected with a plasmid containing the cDNA for the human receptor. Transfected cells expressed high levels of the human receptor which functioned in the transport of lysosomal enzymes and was capable of binding 125I-IGF-II, both at the cell surface and intracellularly. Cell surface binding of 125I-IGF-II by the receptor could be inhibited by pretreatment of cells with antibodies to the receptor or by coincubation with the lysosomal enzyme, beta-glucuronidase. Expression of the receptor conferred on transfected cells the ability to internalize and degrade 125I-IGF-II. Cells transfected with the parental vector and those expressing the human CI-MRP/IGF-IIR were found to express an atypical binding site for IGF-II that was distinct from the CI-MPR/IGF-IIR and the type I IGF-receptor. The availability of two cell lines, one of which overexpresses the human CI-MPR/IGF-IIR and one deficient in expression of the murine receptor, may help in the analysis of the role of the receptor in mediating the biological effects of IGF-II. They should also be useful in examining the significance of binding of ligands, such as transforming growth factor-beta 1 precursor and proliferin to this receptor.  相似文献   

19.
We have previously shown that two serine residues present in two conserved regions of the bovine cation-independent mannose 6-phosphate receptor (CI-MPR) cytoplasmic domain are phosphorylated in vivo (residues 2421 and 2492 of the full length bovine CI-MPR precursor). In this study, we have used CHO cells to investigate the phosphorylation state of these two serines along the different steps of the CI-MPR exocytic and endocytic recycling pathways. Transport and phosphorylation of the CI-MPR in the biosynthetic pathway were examined using deoxymannojirimycin (dMM), a specific inhibitor of the cis-Golgi processing enzyme alpha-mannosidase I which leads to the accumulation of N-linked high mannose oligosaccharides on glycoproteins. Upon removal of dMM, normal processing to complex-type oligosaccharides (galactosylation and then sialylation) occurs on the newly synthesized glycoproteins, including the CI-MPR which could then be purified and analyzed on lectin affinity columns. Phosphorylation of the newly synthesized CI-MPR was concomitant with the sialylation of its oligosaccharides and appeared as a major albeit transient modification. Phosphorylation of the cell surface CI-MPR was examined during its endocytosis as well as its return to the Golgi using antibody tagging and exogalactosylation. The cell surface CI-MPR was not phosphorylated when it entered clathrin-coated pits or when it moved to the early and late endosomes. In contrast, the surface CI-MPR was phosphorylated when it had been resialylated upon its return to the trans-Golgi network. Subcellular fractionation experiments showed that the phosphorylated CI- MPR and the corresponding kinase were found in clathrin-coated vesicles. Collectively, these results indicate that phosphorylation of the two serines in the CI-MPR cytoplasmic domain is associated with a single step of transport of its recycling pathways and occurs when this receptor is in the trans-Golgi network and/or has left this compartment via clathrin-coated vesicles.  相似文献   

20.
Summary A sugar-binding protein, or endogenous lectin, was localized on fixed and paraffin-embedded thyroid sections by means of fluorescein-labelled neoglycoproteins. Fluorescence microscopy showed the binding of this lectin to be dependent on calcium ions and acidic pH and indicated sugar specificity for GlcNAc moieties only. In human, porcine and murine thyrocytes, specific binding was observed mainly on subcellular organelles. Conversely, in rabbit thyrocytes, specific labelling was seen mostly at the apical cell surface facing the follicular lumen. The possibility that this novel endogenous lectin is involved in the Tg metabolism is considered.Abbreviations BSA bovine serum albumin - F BSA Fluoresceinylated BSA - GlcNAc N-Acetylglucosamine - Lac lactose - Man mannose - Man 6-P mannose-6-phosphate - MES morpholino ethanesulfonic acid - PBS phosphate buffered saline - Tg thyroglobulin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号