首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of Mn2+ and Co2+ with glucose isomerases from three microbial sources have been studied using various direct physical methods. Co2+ was found to activate each enzyme, although the degree of activation varied significantly for enzymes from different organisms. EPR spectroscopy measurements revealed that dissimilarities in the coordination sphere of enzyme-bound Mn2+ accompanied the differences in enzyme activity. Variations in the EPR spectra of a nitroxide spin label coupled to two of the three isomerases, possibly near their active sites, were also observed. In no case was the EPR spectrum influenced by Co2+ addition, a result discordant with the hypothesis that Co2+ activates the enzyme by inducing a conformational change. The proximal biochemical environment of enzymebound Co2+ was also examined using EXAFS spectroscopy. This method showed that glucose causes notable changes in the ligand environment of the enzyme-bound metal, suggesting the formation of an enzyme-metal-substrate bridge complex. The significance of these results relative to possible reaction mechanisms is discussed.  相似文献   

2.
Complex formation between Arsenazo III and Mn2+ and Co2+ at equilibrium has been investigated at pH 7.2, and the stoichiometry and stability of the complexes have been determined. The data indicate that Arsenazo III is suitable for determination of Mn2+ and Co2+ on the micromolar scale. The dissociation constants of the phosphate complexes of Mn2+ and Co2+ at pH 7.2 were estimated with Arsenazo III as 3.6 and 10 mM, respectively.  相似文献   

3.
31P-nmr has been used to investigate the specific interaction of three divalent metal ions, Mg2+, Mn2+, and Co+2, with the phosphate groups of DNA. Mg2+ is found to have no significant effect on any of the 31P-nmr parameters (chemical shift, line-width, T1, T2, and NOE) over a concentration range extending from 20 to 160 mM. The two paramagnetic ions, Mn2+ and Co2+, on the other hand, significantly change the 31P relaxation rates even at very low levels. From an analysis of the paramagnetic contributions to the spin–lattice and spin–spin relaxation rates, the effective internuclear metal–phosphorus distances are found to be 4.5 ± 0.5 and 4.1 ± 0.5 Å for Mn2+ and Co2+, respectively, corresponding to only 15 ± 5% of the total bound Mn2+ and Co2+ being directly coordinated to the phosphate groups (inner-sphere complexes). This result is independent of any assumptions regarding the location of the remaining metal ions which may be bound either as outer-sphere complexes relative to the phosphate groups or elsewhere on the DNA, possibly to the bases. Studies of the temperature effects on the 31P relaxation rates of DNA in the absence and presence of Mn2+ and Co2+ yielded kinetic and thermodynamic parameters which characterize the association and dissociation of the metal ions from the phosphate groups. A two-step model was used in the analysis of the kinetic data. The lifetimes of the inner-sphere complexes are 3 × 10?7 and 1.4 × 10?5 s for Mn2+ and Co2+, respectively. The rates of formation of the inner-sphere complexes with the phosphate are found to be about two orders of magnitude slower than the rate of the exchange of the water of hydration of the metal ions, suggesting that expulsion of water is not the rate-determining step in the formation of the inner-sphere complexes. Competition experiments demonstrate that the binding of Mg2+ ions is 3–4 times weaker than the binding of either Mn2+ or Co2+. Since the contribution from direct phosphate coordination to the total binding strength of these metal ion complexes is small (~15%), the higher binding strength of Mn2+ and Co2+ may be attributed either to base binding or to formation of stronger outer-sphere metal–phosphate complexes. At high levels of divalent metal ions, and when the metal ion concentration exceeds the DNA–phosphate concentration, the fraction of inner-sphere phosphate binding increases. In the presence of very high levels of Mg2+ (e.g., 3.1M), the inner-sphere ? outer-sphere equilibrium is shifted toward ~100% inner-sphere binding. A comparison of our DNA results and previous results obtained with tRNA indicates that tRNA and DNA have very similar divalent metal ion binding properties. A comparison of the present results with the predictions of polyelectrolyte theories is presented.  相似文献   

4.
Summary The toxicity of chromium and tin on growth, photosynthetic carbon-fixation, oxygen evolution, heterocyst differentiation and nitrogenase activity ofAnabaena doliolum and its interaction with bivalent cations has been studied. Some interacting cations, viz. Ca2+, Mg2+ and Mn2+, substantially antagonised the toxic effects of chromium and tin with reference to growth, heterocyst differentiation and nitrogenase activity in the following hierarchal sequence: Ca2+ > Mg2+ > Mn2+. However, the sequence of hierarchy was Mg2+ > Ca2+ > Mn2+ for carbon fixation and Mn2+ > Mg2+ > Ca2+ for photosynthetic oxygen evolution. Synergistically inhibitory patterns were noticed for all the parameters, viz. growth,14CO2 uptake, oxygen evolution, heterocyst differentiation and nitrogenase activity ofA. doliolum when Ni2+, Co2+ and Zn2+ were combined with the test metals in the growth medium. These cations followed the following sequence of synergistic inhibition: Ni2+ > Co2+ > Zn2+. Among all the interacting cations, Ca2+, Mg2+ and Mn2+ exhibited antagonistic effects which relieved the test cyanobacterium from metal toxicity. In contrast to this, Ni2+, CO2+ and Zn2+ showed synergistic inhibition which potentiating the toxicity of test metals in the N2-fixing cyanobacteriumA. doliolum. It is evident from the present study that bivalent cations, viz. Ca2+, Mg2+, Mn2+, Ni2+, Co2+ and Zn2+, may appreciably regulate the toxicity of heavy metals in N2-fixing cyanobacteria if present in aquatic media.  相似文献   

5.
Electron paramagnetic resonance spectra at 35 GHz of Mn2+ ion bound to highly purified membrane-bound (Na+ + K+)-ATPase from sheep kidney medulla are much narrower than the corresponding spectra at 9 GHz. As a result, the sensitivity of the enzyme-Mn2+ spectrum to added substrates is much greater at the higher frequency. ATP and AMP-PNP, which caused very little broadening at low frequency, effect dramatic decreases in intensity of the Mn2+ EPR signal at 35 GHz. On the other hand, virtually no changes are observed upon addition of ADP and AMP, suggesting that the γ-phosphate of ATP plays a key role in the interaction between Mn2+ and ATP on the enzyme. The data indicate that ATP and AMP-PNP, binding at low affinity substrate sites, induce a severe distortion of the Mn2+ coordination geometry. The data also support the suggestion that the enzyme-bound Mn2+ does not enter into a typical M2+-ATP complex in this system.  相似文献   

6.
Interaction of l-lysine with Co(II) and Cu(II) ions has been studied using 1H- and 13C-NMR and solution absorption spectrometry. In l-lysine-Co2+ solution in D2O (100: 1 in concentration), coordination interaction of the α-amino and carboxyl groups with Co2+ occurs from the neutral to alkaline pD region, whereas no interaction of the ?-amino group was observed throughout the whole pD region. On the other hand, in l-lysine-Cu2+ solution, the ?-amino group also takes part in complexation in the higher pD region (pD≧10). Structural changes in complexation of l-lysine with the divalent cations along with pD variations in aqueous solution are discussed. Dissociation constants of the three functional groups were obtained by 1H-NMR chemical shifts; pKa1 = 2.2, pKa2 = 9.5 and pKa3 = 11.2.  相似文献   

7.
Soluble manganese in the intermediate +III oxidation state (Mn3+) is a newly identified oxidant in anoxic environments, whereas acetate is a naturally abundant substrate that fuels microbial activity. Microbial populations coupling anaerobic acetate oxidation to Mn3+ reduction, however, have yet to be identified. We isolated a Shewanella strain capable of oxidizing acetate anaerobically with Mn3+ as the electron acceptor, and confirmed this phenotype in other strains. This metabolic connection between acetate and soluble Mn3+ represents a new biogeochemical link between carbon and manganese cycles. Genomic analyses uncovered four distinct genes that allow for pathway variations in the complete dehydrogenase‐driven TCA cycle that could support anaerobic acetate oxidation coupled to metal reduction in Shewanella and other Gammaproteobacteria. An oxygen‐tolerant TCA cycle supporting anaerobic manganese reduction is thus a new connection in the manganese‐driven carbon cycle, and a new variable for models that use manganese as a proxy to infer oxygenation events on early Earth.  相似文献   

8.
Spinach leaf phosphoenolpyruvate carboxylase has been purified to homogeneity using salt fractionatjon, chromatography, and immunologie procedures to remove contaminating ribulose diphosphate carboxylase. From gel filtration and isoelectric focusing, the molecular weight (~560,000) and isoelectric point (pI = 4.9) are indistinguishable from those of ribulose diphosphate carboxylase. The subunit molecular weight of phosphoenolpyruvate carboxylase (130,000) suggests that the native enzyme is a tetramer.Kinetic studies using Mg2+ or Mn2+ as the activator indicate that the divalent cation lowers the Km of the substrate phosphoenolpyruvate by an order of magnitude and conversely, that the presence of the substrate similarly lowers the Km of the metal ion, suggesting an enzyme-metal-substrate bridge complex. Three analogs of phosphoenolpyruvate, lphospholactate, d-phospholactate, and phosphoglycolate are potent competitive inhibitors. The inhibitor constant (Ki) of l-phospholactate (2 μm) is 49-fold lower with Mn2+ as the activator than with Mg2+. An analysis of the competitive inhibition by portions of the l-phospholactate molecule (i.e., l-lactate, methyl phosphate, and phosphite) indicates this 49-fold lowering is due to increased interaction of the phosphoryl group and, to a lesser extent, of the carboxyl and C-O-P bridge oxygen of l-phospholactate with the enzyme metal complex. The results provide indirect evidence for phosphoryl coordination by the enzyme-bound divalent cation.  相似文献   

9.
A CO2 hydration activity for Mn(II) human carbonic anhydrase B (MnHCAB) of 7% of the activity of the native Zn2+ enzyme has been determined using a 13C magnetization—transfer NMR approach, that involves two complementary experiments. As this approach also allows a determination of the individual relaxation rates of the enzyme-bound CO2 and HCO?3, an evaluation could be made of the distances between these substrates and the paramagnetic Mn2+ in the active site. Thus HCO?3 is found to bind directly to Mn2+, whereas CO2 is attached relatively weakly to the enzyme without a direct bond to the metal ion.  相似文献   

10.
The extent and modes of binding of the divalent metal ions Mn2+ and Co2+ to DNA and the effects of salt on the binding have been studied by measurements of the effects of these paramagnetic metal ions on the longitudinal and transverse relaxation rates of the protons of the solvent water molecules, a technique that is sensitive to overall binding. The number of water molecules coordinated to the DNA–bound Mn2+ and Co2+ is found to be between five and six, and the electron spin relaxation times and the electron-nuclear hyperfine constants associated with Mn2+ and Co2+ are little or not affected by the binding. These observations indicate little disturbance of the hydration sphere of Mn2+ and Co2+ upon binding to DNA. An average 2–3-fold reduction in the exchange rate of the water of hydration of the bound metal ions and an order-of-magnitude increase in their rotational correlation time are attributed to hydrogen-bond formation with the DNA. The binding constants of Mn2+ to DNA, at metal concentrations approaching zero, are found to be inversely proportional to the second power of the salt concentration, in agreement with the predictions of Manning's polyelectrolyte theory. A remarkable quantitative agreement with the polyelectrolyte theory is also obtained for the anticooperativity in the binding of Mn2+ to DNA, although the experimental results can be well accounted for by another simple electrostatic model. The various modes of binding of divalent metal ions to DNA are discussed.  相似文献   

11.
In inside-out red cell membrane vesicles ATP-dependent calcium transport is activated by the divalent metal ions Mg2+, Mn2+, Co2+, Ni2+ and Fe2+. This activation is based on the formation of Me2+-ATP complexes which can serve as energy-donor substrates for the calcium pump, and probably, satisfy the requirement for free Me2+ in this transport process. Higher Me2+ concentrations inhibit calcium transport with various efficiencies. Mn2+ directly competes with Ca2+ at the transport site, while other divalent metal ions investigated have no such effect. The formation of the hydroxylamine-sensitive phosphorylated intermediate (EP) of the red cell membrane calcium pump from [γ-32P]ATP is induced by Ca2+ while rapid dephosphorylation requires the presence of Mg2+. At higher concentrations Mn2+ and Ni2+ inhibit predominantly the formation of EP, while Co2+ and Fe2+ block dephosphorylation. The possible sites and nature of the divalent metal interactions with the red cell calcium pump are discussed. Hydroxylamine-insensitive membrane phosphorylation in inside-out vesicles from [γ-32P]ATP is significantly stimulated by Mn2+ and Co2+, as compared to that produced by Mg2+, Fe2+ and Ni2+. Part of this labelling is found in phospholipids, especially in phosphatidylinositol. The results presented for the metal dependency of protein and lipid phosphorylation in red cell membranes may help in the characterization of ATP consumptions directly related to the calcium pump and those involved in various regulatory processes.  相似文献   

12.
In recent time, vanadium compounds are being used as antidiabetic drug and in orthopedic implants. However, the exact role of this incorporated vanadium in improving the quality of bone structure and morphology is not known. The impact of vanadium ion was studied and compared to other trace metal ions with respect to the proliferation and osteoblast differentiation of C3H10t1/2 cells. Toxicity profile of these trace metal ions revealed a descending toxicity trend of Fe2+ > Zn2+ > Cu2+ > Co2+ > Mn2+ > V5+ > Cr2+. The effect of vanadium and other trace metal ions on osteoblast differentiation was evaluated by culturing the cells for 10 days in osteoblastic medium supplemented with different trace ions at concentrations lower than their cytotoxic doses. The results indicated that vanadium has maximum impact on the induction of osteoblast differentiation by upregulating alkaline phosphatase activity and mineralization by up to 145 and 150 %, respectively (p?<?0.05), over control. Cu2+ and Zn2+ had a mild inhibitory effect, while Mn2+, Fe2+, and Co2+ demonstrated a clear decrease in osteoblast differentiation when compared to the control. The data as presented here demonstrate that orthopedic implants, if supplemented with trace metals like vanadium, may provide a source of better model for bone formation and its turnover.  相似文献   

13.
C Zimmer  G Luck  H Triebel 《Biopolymers》1974,13(3):425-453
The effects of metal ions of the first-row transition and of alkaline earth metals on the DNA helix conformation have been studied by uv difference spectra, circular dichroism, and sedimentation measurements. At low ionic strength (10?3 M NaClO4) DNA shows a maximum in the difference absorption spectra in the presence of Zn2+, Mn2+, Co2+, Cd2+, and Ni2+ but not with Mg2+ or Ca2+. The amplitude of this maximum is dependent on GC content as revealed by detailed studies of the DNA-Zn2+ complex of eight different DNA's. Pronounced changes also occur in the CD spectra of DNA transition metal complexes. A transition appears up to a total ratio of approximately 1 Zn2+ per DNA phosphate at 10?3 M NaClO4; then no further change was observed up to high concentrations. The characteristic CD changes are strongly dependent on the double-helical structure of DNA and on the GC content of DNA. Differences were also observed in hydrodynamic properties of DNA metal complexes as revealed by the greater increase of the sedimentation coefficient of native DNA in the presence of transition metal ions. Spectrophotometric acid titration experiments and CD measurements at acidic pH clearly indicate the suppression of protonation of GC base-pair regions on the addition of transition metal ions to DNA. Similar effects were not observed with DNA complexes with alkaline earth metal ions such as Mg2+ or Ca2+. The data are interpreted in terms of a preferential interaction of Zn2+ and of other transition metal ions with GC sites by chelation to the N-7 of guanine and to the phosphate residue. The binding of Zn2+ to DNA disappears between 0.5 M and 1 M NaClO4, but complex formation with DNA is observable again in the presence of highly concentrated solutions of NaClO4 (3?7.2 M NaClO4) or at 0.5 to 2 M Mn2+. At relatively high cation concentration Mg2+ is also effective in changing the DNA comformation. These structural alterations probably result from both the shielding of negatively charged phosphate groups and the breakdown of the water structure along the DNA helix. Differential effects in CD are also observed between Mn2+, Zn2+ on one hand and Mg2+ on the other hand under these conditions. The greater sensitivity of the double-helical conformation of DNA to the action of transition metal ions is due to the affinity of the latter to electron donating sites of the bases resulting from the d electronic configuration of the metal ions. An order of the relative phosphate binding ability to base-site binding ability in native DNA is obtained as follows: Mg2+, Ba2+, < Ca2+ < Fe2+, Ni2+, Co2+ < Mn2+, Zn2+ < Cd2+ < Cu2+. The metal-ion induced conformational changes of the DNA are explained by alternation of the winding angle between base pairs as occurs in the transition from B to C conformation. These findings are used for a tentative molecular interpretation of some effects of Zn2+ and Mn2+ in DNA synthesis reported in the literature.  相似文献   

14.
ABSTRACT

Two strains of thermophilic bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus, were employed to investigate the biosorption of heavy metals including Cd2+, Cu2+, Co2+, and Mn2+ ions. The effects of different biosorption parameters such as pH (2.0–10.0), initial metal concentrations (10.0–300.0 mg L?1), amount of biomass (0.25–10 g L?1), temperature (30–80°C), and contact time (15–120 min) were investigated. Concentrations of metal ions were determined by using an inductively coupled plasma optical emission spectrometry (ICP-OES). Optimum pHs for Cd2+, Cu2+, Co2+, and Mn2+ biosorption by Geobacillus thermantarcticus were found to be 4.0, 4.0, 5.0, and 6.0, respectively. For Anoxybacillus amylolyticus, the optimum pHs for Cd2+, Cu2+, Co2+, and Mn2+ biosorption were found to be 5.0, 4.0, 5.0, and 6.0, respectively. The Cd2+, Cu2+, Co2+, and Mn2+ removals at 50 mg L?1 in 60 min by 50 mg dried cells of Geobacillus thermantarcticus were 85.4%, 46.3%, 43.6%, and 65.1%, respectively, whereas 74.1%, 39.8%, 35.1%, and 36.6%, respectively, for Anoxybacillus amylolyticus. The optimum temperatures for heavy metal biosorption were near the optimum growth temperatures for both strains. Scatchard plot analysis was employed to obtain more compact information about the interaction between metal ions and biosorbents. The plot results were further studied to determine if they fit Langmuir and Freundlich models.  相似文献   

15.
In liver homogenate the biosynthesis ofN-acetylneuraminic acid usingN-acetylglucosamine as precursor can be followed stepwise by applying different chromatographic procedures. In this cell-free system 16 metal ions (Zn2+, Mn2+, La3+, Co2+, Cu2+, Hg2+, VO 3 , Pb2+, Ce3+, Cd2+, Fe2+, Fe3+, Al3+, Sn2+, Cs+ and Li+) and the selenium compounds, selenium(IV) oxide and sodium selenite, have been checked with respect to their ability to influence a single or possible several steps of the biosynthesis ofN-acetylneuraminic acid. It could be shown that the following enzymes are sensitive to these metal ions (usually applied at a concentration of 1 mmoll–1):N-acetylglucosamine kinase (inhibited by Zn2+ and vandate), UDP-N-acetylglucosamine-2-epimerase (inhibited by zn2+, Co2+, Cu2+, Hg2+, VO 3 , Pb2+, Cd2+, Fe3+, Cs+, Li+, selenium(IV) oxide and selenite), andN-acetylmannosamine kinase (inhibited by Zn2+, Cu2+, Cd2+, and Co2+). Dose dependent measurements have shown that Zn2+, Cu2+ and selenite are more efficient inhibitors of UDP-N-acetylglucosamine-2-epimerase than vanadate. As for theN-acetylmannosamine kinase inhibition, a decreasing inhibitory effect exists in the following order Zn2+, Cd2+, Co2+ and Cu2+. In contrast, La3+, Al3+ and Mn2+ (1 mmoll–1) did not interfere with the biosynthesis ofN-acetylneuraminic acid. Thus, the conclusion that the inhibitory effect of the metal ions investigated cannot be regarded as simply unspecific is justified.Dedicated to Professor Theodor Günther on the occasion of his 60th birthday  相似文献   

16.
The effect of Mn2+ and Ca2+ ions on the rate of trypsin autolysis was studied at pH 7.0 and at 34.4-60.2°C. For comparison, the kinetic constants of esterolytic activity of trypsin in the presence of the metal ion were determined at pH 7.4 and at 36° and 40°C. There was no significant difference in the rate of autolysis between Mn2+ and Ca2+ in the temperature range 34-47°C, but at 56.8° and 60.2° autolysis was slightly more rapid in the presence of Mn2+. The Mn2+ or Ca2+ ion bound to trypsin is supposed to control the conformation and thereby the stability and the activity of the enzyme. This indirect effect of Mn2+ and Ca2+ is discussed on a structural basis of the enzyme molecule.  相似文献   

17.
An α-carbonic anhydrase (CA, EC 4.2.1.1) was purified and characterized kinetically from gill of Acipenser gueldenstaedtii as an endangered sturgeon species. The carbonic anhydrase was purified 66-folds with yield 20.7% by Sepharose-4B-l-tyrosine-sulfanilamide affinity column and the specific activity was determined as 222.2?EU/mg protein. Km and Vmax kinetic values for gill carbonic anhydrase were calculated by a Lineweaver–Burk graph using p-nitrophenol acetate (p-NPA) as a substrate, and was defined as 2.5?mM and 5?×?106?μM/min, respectively. It was observed that CA from the sturgeon gill in the presence of the sulfanilamide and acetazolamide as an inhibitor had very low IC50 values such as 13.0 and 0.1?μM, respectively. In addition, it was determined that the enzyme was inhibited by Fe2+, Co2+, Ni2+, and Zn2+–Ba2+ with the IC50 values of 0.2, 1.7, 1.2, and 1.1?mM, respectively.  相似文献   

18.
Synthesis and crystal structure of two coordination polymers of composition [MnII(H2bpbn)1.5][ClO4]2 · 2MeOH · 2H2O (1) and [CoII(H2bpbn)(H2O)2]Cl2 · H2O (2) [H2bpbn = N,N′-bis(2-pyridinecarboxamido)-1,4-butane], formed from the reaction between [Mn(H2O)6][ClO4]2/CoCl2 · 4H2O with H2bpbn in MeCN, are described. In 1 each MnII ion is surrounded by three pyridine amide units, providing three pyridine nitrogen and three amide oxygen donors. Each MnII center in 1 has distorted MnN3O3 coordination. In 2 each CoII ion is coordinated by two pyridine amide moieties in the equatorial plane and two water molecules provide coordination in the axial positions. Thus, the metal center in 2 has trans-octahedral geometry. In both 1 and 2, the existence of 1D zigzag network structure has been revealed. Owing to π-π stacking of pyridine rings from adjacent layers 1 forms 2D network; 2 forms 2D and 3D network assemblies via N-H?Cl and O-H?Cl secondary interactions. Both the metal centers are high-spin.  相似文献   

19.
Protein phosphatase 2C (PP2C) family is characterized by requirement of metal cation for phosphatase activity. We previously established that PPM1H is a cancer-associated member of the PP2C family. Here we further characterized the phosphatase activity of PPM1H, focusing on its dependence on metal cation. PPM1H possesses the potential to dephosphorylate p-nitrophenyl phosphate (pNPP), casein and phosphopeptides. Interestingly, PPM1H shows the metal preference that is varied depending on the substrate (substrate-dependent metal preference); PPM1H prefers Mn2+ when pNPP or phosphopeptides is used as a substrate. Meanwhile, a preference for Mg2+ is displayed by PPM1H with casein as a substrate. When both cations are added to the reaction, the degree of the effect is always closer to that with Mn2+ alone, irrespective of the substrate. This preponderance of Mn2+ is explained by its greater affinity for PPM1H than Mg2+. From the literature the substrate-dependent metal preference appears to be shared by other PP2Cs. According to the crystal structure, a binuclear metal center of PP2C plays an important role for coordinating the substrate and nucleophilic waters in the active site. Therefore, the differences in the size, preferred geometry and coordination requirements between two metals, in relation to the substrate, may be responsible for this intriguing property.  相似文献   

20.
Among the numerous virulance factors produced byPseudomonas aeruginosa, elastase is the one most often associated with pathogenesis. In this study, effects of various metal ions on elastase from a new isolate ofP. aeruginosa (Strain SES-938-1) was investigated. Crude elastase was prepared from culture supernatant via salting out by ammonium sulfate, and then desalting and concentrating the sample using a centricon microconcentrator. Activities were measured at 450 nm usingN-succinyl-l-(ala)3-p-nitroanilide as the substrate. The metal chelating agents EDTA and EGTA inhibited thePseudomonas elastase, which shows that the enzyme is a typical metalloproteinase. At a 10-mM concentration, Mn2+, Ni2+, and Zn2+ strongly inhibited the elastase, whereas Mg2+ effect was negligable. There was a gradual decrease in the enzyme activity in accordance with an increase in the concentration of metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号