首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When hybrid cells are created, not only nuclear genomes of parental cells unite but their cytoplasm as well. Mitochondrial DNA (mtDNA) is a convenient marker of cytoplasm allowing one to gain insight into the organization of hybrid cell cytoplasm. We analyzed the parental mtDNAs in hybrid cells resulting from fusion of Mus musculus embryonic stem (ES) cells with splenocytes and fetal fibroblasts of DD/c mice or with splenocytes of M. caroli. Identification of the parental mtDNAs in hybrid cells was based on polymorphism among the parental mtDNAs for certain restrictases. We found that intra- and inter-specific ES cell-splenocyte hybrid cells lost entirely or partially mtDNA derived from the somatic partner, whereas ES cell-fibroblast hybrids retained mtDNAs from both parents in similar ratios with a slight bias. The lost of the "somatic" mitochondria by Es-splenocyte hybrids implies non-random segregation of the parental mitochondria as supported by a computer simulation of genetic drift. In contrast, ES cell-fibroblast hybrids show bilateral random segregation of the parental mitochondria judging from analysis of mtDNA in single cells. Preferential segregation of "somatic" mitochondria does not depend on the differences in sequences of the parental mtDNAs but depends on replicative state of the parental cells.  相似文献   

2.
Unequal segregation of parental chromosomes in embryonic stem cell hybrids   总被引:4,自引:0,他引:4  
Chromosome segregation was studied in 14 intra- and 20 inter-specific hybrid clones generated by fusion of Mus musculus embryonic stem (ES) cells with fibroblasts or splenocytes of DD/c mice or Mus caroli. As a control for in vitro evolution of tetraploid karyotype we used a set of hybrid clones obtained by fusion of ES cells (D3) with ES cells (TgTP6.3). Identification of the parental chromosomes in the clones was performed by microsatellite analysis and in situ hybridization with labeled species-specific probes. Both analyses have revealed three types of clones: (i) stable tetraploid, observed only for ES x ES cell hybrids; (ii) bilateral loss of chromosomes of both ES and somatic partners; (iii) unilateral segregation of chromosomes of the somatic partner. Observed unilateral segregation was extensive in ES-splenocyte cell hybrids, but lower in ES-fibroblast hybrid clones. Developmental state of the somatic partner is presumably responsible for directional chromosome loss. Nonrandom segregation implies that initial differences in the parental homologous chromosomes were not immediately equalized implying at least transient persistence of the differentiated epigenotype.  相似文献   

3.
4.
Developmental potential was assessed in 8 intra-specific and 20 inter-specific hybrid clones obtained by fusion of embryonic stem (ES) cells with either splenocytes or fetal fibroblasts. Number of chromosomes derived from ES cells in these hybrid clones was stable while contribution of somatic partner varied from single chromosomes to complete complement. This allowed us to compare pluripotency of the hybrid cells with various numbers of somatic chromosomes. Three criteria were used for the assessment: (i) expression of Oct-4 and Nanog genes; (ii) analyses of teratomas generated by subcutaneous injections of the tested cells into immunodeficient mice; (iii) contribution of the hybrid cells in chimeras generated by injection of the tested cells into C57BL blastocysts. All tested hybrid clones showed expression of Oct-4 and Nanog at level comparable to ES cells. Histological and immunofluorescent analyses demonstrated that most teratomas formed from the hybrid cells with different number of somatic chromosomes contained derivatives of three embryonic layers. Tested hybrid clones make similar contribution in various tissues of chimeras in spite of significant differences in the number of somatic chromosomes they contained. The data indicate that pluripotency is manifested as a dominant trait in the ES hybrid cells and does not depend substantially on the number of somatic chromosomes. The latter suggests that the developmental potential derived from ES cells is maintained in ES-somatic cell hybrids by cis-manner and is rather resistant to trans-acting factors emitted from the somatic one.  相似文献   

5.
Variability of 31 somatic hybrids of Solanum pinnatisectum Dun. with Solanum tuberosum L. for leaf morphology, plant vigor, resistance to Phytophthora infestans, ploidy level, and cytoplasm type was evaluated in vitro. The composition of these somatic hybrids was as follows: [S. pinnatisectum Dun. (2n = 2x = 24; cytoplasmic type Wγ) + S. tuberosum L. (2n = 4x = 48; cytoplasmic type Tß)]. Based on leaf morphology and plant growth vigor, plants were divided into three groups, including plants close to tbr parent with unlobed leaves, small plants with scarcely dissected leaves, and vigorous plants with asymmetrically and pinnately lobed leaves. Nine of the somatic hybrids were found to be highly resistant to P. infestans. Somatic hybrids were either tetraploid or hexaploid, with hexaploids being predominant. The cytoplasm of somatic hybrids was either Tßγ or Wßγ, with Tßγ being more common. Overall, in contrast to leaf morphology and growth vigor, level of resistance to P. infestans was not related to either ploidy level or type of cytoplasm. These findings demonstrate that early in vitro selection of promising hybrids can be useful in breeding programs.  相似文献   

6.

Key message

Using DArT analysis, we demonstrated that all Solanum × michoacanum (+) S. tuberosum somatic hybrids contained all parental chromosomes. However, from 13.9 to 29.6 % of the markers from both parents were lost in the hybrids.

Abstract

Somatic hybrids are an interesting material for research of nucleus-cytoplasm interaction and sources of new nuclear and cytoplasmic combinations. Analyses of genomes of somatic hybrids are essential for studies on genome compatibility between species, its evolution and are important for their efficient exploitation. Diversity array technology (DArT) permits analysis of the composition of nuclear DNA of somatic hybrids. The nuclear genome compositions of 97 Solanum × michoacanum (+) S. tuberosum [mch (+) tbr] somatic hybrids from five fusion combinations and 11 autofused 4x mch were analyzed for the first time based on DArT markers. Out of 5358 DArT markers generated in a single assay, greater than 2000 markers were polymorphic between parents, of which more than 1500 have a known chromosomal location on potato genetic or physical map. DArT markers were distributed along the entire length of 12 chromosomes. We noticed elimination of markers of wild and tbr fusion components. The nuclear genome of individual somatic hybrids was diversified. Mch is a source of resistance to Phytophthora infestans. From 97 mch (+) tbr somatic hybrids, two hybrids and all 11 autofused 4x mch were resistant to P. infestans. The analysis of the structure of particular hybrids’ chromosomes indicated the presence of markers from both parental genomes as well as missing markers spread along the full length of the chromosome. Markers specific to chloroplast DNA and mitochondrial DNA were used for analysis of changes within the organellar genomes of somatic hybrids. Random and non-random segregations of organellar DNA were noted.
  相似文献   

7.
In the hybrid cells obtained by fusion of embryonic stem cells with adult differentiated cells, homologous chromosomes are in two ontogenetic configurations: pluripotent and differentiated. In order to assess the role of cis- and trans-regulation in the maintenance of these states, we studied a set of clones of hybrid cells of the type embryonic stem cells–splenocytes and used two approaches: segregation of parental chromosomes and comparison of pluripotency of the past hybrid cells and embryonic stem cells. The segregation test showed that the hybrid cells lost only the homologs of the somatic partner and this process was sharply accelerated when the cells were cultivated in nonselective conditions, thus suggesting the full or partial preservation of the initial differences in the organization of parental homologs. The descendants of the former hybrid cells, which had the karyotype similar to that of embryonic stem cells, demonstrated the level of pluripotency, comparable with that of embryonic stem cells despite the long-term effect of trans-acting factors from the somatic partner in the genome of hybrid cells. The data obtained are interpreted in the framework of the concept of chromosome memory, in the maintenance of which the key role is played bycis-regulatory factors.  相似文献   

8.
Prunus yedoensis Matsumura is one of the popular ornamental flowering cherry trees native to northeastern Asia, and its wild populations have only been found on Jeju Island, Korea. Previous studies suggested that wild P. yedoensis (P. yedoensis var. nudiflora) is a hybrid species; however, there is no solid evidence on its exact parental origin and genomic organization. In this study, we developed a total of 38 nuclear gene-based DNA markers that can be universally amplifiable in the Prunus species using 586 Prunus Conserved Orthologous Gene Set (Prunus COS). Using the Prunus COS markers, we investigated the genetic structure of wild P. yedoensis populations and evaluated the putative parental species of wild P. yedoensis. Population structure and phylogenetic analysis of 73 wild P. yedoensis accessions and 54 accessions of other Prunus species revealed that the wild P. yedoensis on Jeju Island is a natural homoploid hybrid. Sequence-level comparison of Prunus COS markers between species suggested that wild P. yedoensis might originate from a cross between maternal P. pendula f. ascendens and paternal P. jamasakura. Moreover, approximately 81% of the wild P. yedoensis accessions examined were likely F1 hybrids, whereas the remaining 19% were backcross hybrids resulting from additional asymmetric introgression of parental genotypes. These findings suggest that complex hybridization of the Prunus species on Jeju Island can produce a range of variable hybrid offspring. Overall, this study makes a significant contribution to address issues of the origin, nomenclature, and genetic relationship of ornamental P. yedoensis.  相似文献   

9.
The presence and extent of hybridization within the Chenopodium album aggregate (Amaranthaceae) is still unclear. Although many hybrid combinations have been described, their existence in the field has never been systematically studied and verified. The main aim of this study was to ascertain the extent of interspecific hybridization between the diploid species C. ficifolium and C. suecicum using highly variable nuclear microsatellite markers. Due to the absence of such kind of molecular markers for the whole C. album group, we divided the analysis into two steps: (1) Eleven microsatellite loci designed for the closely related species C. quinoa were cross-amplified in five Eurasian species of the C. album diploid–polyploid complex, i.e. C. album s.s. (6x), C. striatiforme (4x), C. strictum (4x), C. ficifolium (2x) and C. suecicum (2x); (2) For the detection of interspecific hybridization between C. ficifolium and C. suecicum, we sampled 480 individuals from five localities in Central Europe. We also investigated morphological differences between the parental taxa and their hybrid and devised a key for their determination. Analysis of variation in microsatellite loci using Bayesian methods, PCoA and Neighbour-joining tree identified 32 F1 hybrids. These F1 hybrids, described here as C. paradoxum Mandák, formed a cluster between well-differentiated parental species, combining the morphological characters of both their parents. Moreover, genetic analyses also recognized several F2 or backcross hybrids, whose delimitation, mainly from C. suecicum and F1 hybrids, based on morphological characters, is problematic.  相似文献   

10.
Meiosis in anthers and mitosis in somatic cells were studied in reciprocal F1 hybrids of the accession VIR320, which belonged to wild Pisum sativum ssp. elatius (Bieb.) Schmal., and the laboratory line Sprint-1. When VIR320 was used as a maternal form, the hybrids displayed nuclear-cytoplasmic conflict, which caused chlorophyll defects and meiotic abnormalities. One or two chromosomes lagged in the equatorial region during chromosome segregation to the poles, distorting cytokinesis and yielding abnormal microspores. Chlorophyll defects were not observed, and meiotic abnormalities were far less frequent in reciprocal hybrids and in the case of an abnormal paternal inheritance of plastids from Sprint-1. Mitosis lacked overt abnormalities in all of the hybrids.  相似文献   

11.

Key message

The portfolio of available Reduced height loci (Rht-B1, Rht-D1, and Rht24) can be exploited for hybrid wheat breeding to achieve the desired heights in the female and male parents, as well as in the hybrids, without adverse effects on other traits relevant for hybrid seed production.

Abstract

Plant height is an important trait in wheat line breeding, but is of even greater importance in hybrid wheat breeding. Here, the height of the female and male parental lines must be controlled and adjusted relative to each other to maximize hybrid seed production. In addition, the height of the resulting hybrids must be fine-tuned to meet the specific requirements of the farmers in the target regions. Moreover, this must be achieved without adversely impacting traits relevant for hybrid seed production. In this study, we explored Reduced height (Rht) loci effective in elite wheat and exploited their utilization for hybrid wheat breeding. We performed association mapping in a panel of 1705 wheat hybrids and their 225 parental lines, which besides the Rht-B1 and Rht-D1 loci revealed Rht24 as a major QTL for plant height. Furthermore, we found that the Rht-1 loci also reduce anther extrusion and thus cross-pollination ability, whereas Rht24 appeared to have no adverse effect on this trait. Our results suggest different haplotypes of the three Rht loci to be used in the female or male pool of a hybrid breeding program, but also show that in general, plant height is a quantitative trait controlled by numerous small-effect QTL. Consequently, marker-assisted selection for the major Rht loci must be complemented by phenotypic selection to achieve the desired height in the female and male parents as well as in the wheat hybrids.
  相似文献   

12.
13.
Efficient protocols for somatic embryogenesis of papaya (Carica papaya L.) have great potential for selecting elite hybrid genotypes. Addition of polyethylene glycol (PEG), a nonplasmolyzing osmotic agent, to a maturation medium increases the production of somatic embryos in C. papaya. To study the effects of PEG on somatic embryogenesis of C. papaya, we analyzed somatic embryo development and carbohydrate profile changes during maturation treatments with PEG (6%) or without PEG (control). PEG treatment (6%) increased the number of normal mature somatic embryos followed by somatic plantlet production. In both control and PEG treatments, pro-embryogenic differentiation to the cotyledonary stage was observed and was significantly higher with PEG treatment. Histomorphological analysis of embryonic cultures with PEG revealed meristematic centers containing small isodiametric cells with dense cytoplasm and evident nuclei. Concomitant with the increase in the differentiation of somatic embryos in PEG cultures, there was an increase in the endogenous content of sucrose and starch, which appears to be related to a rising demand for energy, a key point in the conversion of C. papaya somatic embryos. The endogenous carbohydrate profile may be a valuable parameter for developing optimized protocols for the maturation of somatic embryos in papaya.  相似文献   

14.
Two closely related grasshopper species Chorthippus albomarginatus and Ch. oschei are known to hybridize in the narrow contact zone at the territory of Ukraine and Moldova. Different isolaton mechanisms providing reproductive isolation between the two species were studied. In choice mating experiments, females of the both species demonstrated a strong assortative mating (80–90% preference for the conspecific males). Comparison of the parental and hybrid viability revealed a reduced hatching and increased larval mortality in F1 and F2 hybrids. In choice mating experiments, the hybrid females mated less assortatively than the parental females. An assymmetry was found in mating preferences and in viability of hybrids. The results demonstrate the existence of pre-and post-mating isolation between Ch. albomarginatus and Ch. oschei. A possible fate of the hybrid zone is discussed.  相似文献   

15.
S. B. Jones 《Brittonia》1967,19(2):161-164
Vernonia georgiana Bartlett was demonstrated to be of hybrid origin by means of hybridization experiments and comparisons of the artificial F1 hybrids with herbarium specimens ofV. georgiana. The two parental species areV. angustifolia Michx. andV. acaulis (Walt.) Gleason.  相似文献   

16.
The role of hybridization through multi-specific synchronous spawning in the evolution of reef-building corals has been discussed since the 1990s, particularly for the genus Acropora. However, F1 hybrids have been reported as common in only one case in the Caribbean, with no evidence of mechanisms that would allow continuous reproduction of the hybrids. In this study, we report for the first time the fecundity of two F1 hybrid colonies produced experimentally from two Indo-Pacific species, A. intermedia and A. florida. These F1 hybrids spawned at the same time as the parental corals. Backcrossing and F1 hybrid crossing were successful in both directions. Furthermore, more than 90% self-fertilization was achieved in an F1 hybrid, although it was negligible in the parental corals. While it is possible that the F1 hybrid was a chimera, these results suggest that some products of interspecific hybridization may persist as the offspring of self-fertilizing F1 hybrids.  相似文献   

17.
Two nothospecies, Ranunculus × luizetii and R. × peredae (Ranunculaceae), were analyzed and discussed. For this purpose, Amplified Fragment Length Polymorphism (AFLP) markers, nuclear rDNA sequences (ITS1, 5.8S and ITS2) and pollen viability were conducted. The profiles of these hybrid samples were compared to their putative progenitors. Several additive polymorphic sites detected in the ITS sequences of the hybrid samples (R. × luizetii and R. × peredae) also confirmed their derived origins from ribotypes of their parental taxa (R. parnassiifolius subsp. parnassiifolius × R. pyrenaeus; R. amplexicaulis × R. cabrerensis subsp. cabrerensis, respectively). Despite the lack of exclusive AFLP markers reported in both hybrids, presumably due to effects of introgression, the concerted evolution of many rDNA polymorphisms towards either of the parental ribotypes indicated their ancient origin. Pollen fertility estimation in R. × luizetii presented a mean value of 60.58%, which showed that hybrid samples are well established and fertile. However, a larger difference was observed in R. × peredae, where the mean value of pollen fertility was very low (18.91%).  相似文献   

18.
The Fujian Abortion cytoplasmic male sterility (CMS-FA) system, a new type of sporophytic CMS system in indica rice (Oryza sativa L.), was developed using the cytoplasm and the corresponding fertility-restoring gene from a wild rice (O. rufipogon L.), which originated from Fujian Province, China. Previous studies in combination with several years of production practice demonstrated that CMS-FA hybrid rice was superior to CMS-WA hybrid rice, a prevailing hybrid rice worldwide, and that the male fertility restoration was controlled by a pair of dominant alleles. We tentatively designated the fertility restoration gene as Rf(fa). The analysis of the polymorphism between the fertile and sterile pool DNAs from a mapping segregation population (BC1F1) indicated that Rf(fa) was located on rice chromosome 10. We further delimited the Rf(fa) locus to a 121.1-kb region flanked by RM6100 and MM2023, which were approximately 0.26 cM and 0.18 cM away from Rf(fa), respectively, by simple sequence repeat molecular marker linkage genetic analysis. These results would facilitate the map-based cloning of Rf(fa), the elucidation of a novel molecular mechanism underlying cytoplasm–nucleus interaction in the CMS-FA system, and the production application of this hybrid rice.  相似文献   

19.
Precise chromosome segregation is vital for speciation and hybrid formation. The aim of this work was to study the chromosomes behavior and inheritance of maternal and paternal genomes in Arabidopsis regenerants obtained from in vitro cultured cells on the medium with para-fluorophenyalanine (PFPA). The Arabidopsis thaliana model hybrid between Columbia and Landsberg erecta ecotypes was developed, which chromosomes were easy to distinguish using the 12 SSLP selected markers. Also, the influence of PFPA on callus formation and regeneration of plants was analyzed. 20 regenerated plants cultured with PFPA were derived, three of which were shown to loss the heterozygosity in six loci by DNA markers analysis. Different models are certainly required to understand how and when the mechanisms leading to proper chromosome segregation are established in species and hybrids.  相似文献   

20.
Chromosome segregation of the parental chromosomes was studied in 20 interspecific hybrid clones obtained by fusion of Mus musculus embryonic stem cells with Mus caroli splenocytes. FISH analysis with labeled species specific probes and microsatellite markers was used for identification of the parental chromosomes. Cytogenetic analysis has shown significant intra- and interclonal variability in chromosome numbers and ratios of the parental chromosomes in the hybrid cells: six clones contained all M. caroli chromosomes, nine clones showed moderate segregation of M. caroli chromosomes (from 1 to 7), and five clones showed extensive loss of M. caroli chromosomes (from 12 to complete loss of all M. caroli autosomes). Both methods demonstrated cryptic segregation of the somatic partner chromosomes. For instance, five clones with near-tetraploid chromosome sets contained only few M. caroli chromosomes (from 1 to 8). The data obtained suggest that the tetraploid chromosome set per se is not a sufficient criterion for conclusion on the absence of chromosome loss in the hybrid cells. Note that cryptic chromosome segregation occurred at a high frequency in the examined hybrid clones. Thus, cryptic segregation should be borne in mind for assessing pluripotency and genome reprogramming of embryonic stem hybrid cells.__________Translated from Ontogenez, Vol. 36, No. 2, 2005, pp. 151–158.Original Russian Text Copyright © 2005 by Pristyazhnyuk, Temirova, Menzorov, Kruglova, Matveeva, Serov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号