首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Candida albicans is a prevalent human fungal pathogen. Rapid genomic change, due to aneuploidy, is a common mechanism that facilitates survival from multiple types of stresses including the few classes of available antifungal drugs. The stress survival of aneuploids occurs despite the fitness costs attributed to most aneuploids growing under idealized lab conditions. Systematic study of the aneuploid state in C. albicans has been hindered by the lack of a comprehensive collection of aneuploid strains. Here, we describe a collection of diploid C. albicans aneuploid strains, each carrying one extra copy of each chromosome, all from the same genetic background. We tested the fitness of this collection under several physiological conditions including shifts in pH, low glucose, oxidative stress, temperature, high osmolarity, membrane stress, and cell wall stress. We found that most aneuploids, under most conditions, were less fit than their euploid parent, yet there were specific conditions under which specific aneuploid isolates provided a fitness benefit relative to the euploid parent strain. Importantly, this fitness benefit was attributable to the change in the copy number of specific chromosomes. Thus, C. albicans can tolerate aneuploidy of each chromosome and some aneuploids confer improved growth under conditions that the yeast encounters in its host niches.  相似文献   

2.
The effectiveness of radiation-generated HO
radicals in initiating erythrocyte hemolysis in the presence of oxygen and under anaerobic conditions and prehemolytic structural changes in the plasma-erythrocyte membrane were studied. Under anaerobic conditions the efficacy of HO
radicals in induction of hemolysis was 16-fold lower than under air. In both conditions, hemolysis was the final consequence of changes of the erythrocyte membrane. Preceding hemolysis, the dominating process under anaerobic conditions was the aggregation of membrane proteins. The aggregates were principally formed by -S-S- bridges. A decrease in spectrin and protein of band 3 content suggests their participation in the formation of the aggregates. These processes were accompanied by changes in protein conformation determined by means of 4-maleimido-2,2,6,6-tetramethylpiperidine-N-oxyl (MSL) spin label attached to membrane proteins. Under anaerobic conditions, in the range of prehemolytical doses, the reaction of HO
with lipids caused a slight (10-16%) increase in fluidity of the lipid bilayer in its hydrophobic region with a lack of lipid peroxidation. However, in the presence of oxygen, hemolysis was preceded by intense lipid peroxidation and by profound changes in the conformation of membrane proteins. At the radiation dose that normally initiates hemolysis a slight aggregation of proteins was observed. Changes were not observed in particular protein fractions. It can be suggested the cross-linking induced by HO
radicals under anaerobic conditions and a lack of lipid peroxidation are the cause of a decrease in erythrocyte sensitivity to hemolysis. Contrary, under aerobic conditions, molecular oxygen suppresses cross-linking, catalysing further steps of protein and lipid oxidation, which accelerate hemolysis.  相似文献   

3.
Energy metabolism and its relation to survival of the infective juveniles (IJ) of S. carpocapsae under anaerobic and oxygen-deficient conditions were studied by monitoring changes in survival rate, levels of key energy reserve materials, oxygen consumption, and respiratory quotient (RQ). The effects of various factors on the survival of IJ under anaerobic conditions were also investigated. Under anaerobic conditions, the IJ were inactivated but could survive for several days in an immobile state, using the carbohydrate reserves glycogen and trehalose for energy supply. The survival time of IJ was mainly dependent on the availability of energy supply, which, in turn, was influenced by factors such as temperature and metabolic by-products. Surviving, anaerobically incubated IJ fully recovered upon return to aerobic conditions. Recovering IJ were characterized by regaining mobility and restoration of carbohydrate reserves consumed during the anaerobic period. Carbohydrate reserves were restored by conversion from lipid reserves and possibly from anaerobic metabolic by-products. The infectivity of IJ recovered from the anaerobic state was not affected. At 1% oxygen level, IJ were also immobile and mainly depended on carbohydrate reserves for energy supply and the RQ was greater than 1. However, some oxygen was consumed; the survival time of these IJ was shorter than those kept in natural air but longer than those under anaerobic conditions. When IJ were incubated at oxygen levels of 3% to 21%, the RQs were maintained at 0.7 to 0.8. Oxygen consumption rates and the reduction in both mean dry weight and lipid levels were proportional to oxygen levels while the survival time of IJ was inversely proportional to oxygen levels.  相似文献   

4.

Background and Aims

Although most studies on plant defence strategies have focused on a particular defence trait, some plant species develop multiple defence traits. To clarify the effects of light on the development of multiple defence traits, the production of direct and indirect defence traits of young plants of Mallotus japonicus were examined experimentally under different light conditions.

Methods

The young plants were cultivated under three light conditions in the experimental field for 3 months from May to July. Numbers of ants and pearl bodies on leaves in July were examined. After cultivation, the plants were collected and the developments of trichomes and pellucid dots, and extrafloral nectaries (EFNs) on the leaves were examined. On plants without nectar-collecting insects, the size of EFNs and the volume of extrafloral nectar secreted from the EFNs were examined.

Key results

Densities of trichomes and pellucid dots did not differ significantly among the plants under the different light conditions, suggesting that the chemical and physical defences function under both high and low light availability. The number of EFNs on the leaves did not differ significantly among the plants under the different light conditions, but there appeared to be a trade-off between the size of EFNs and the number of pearl bodies; the largest EFNs and the smallest number of pearl bodies were found under high light availability. EFN size was significantly correlated with the volume of extrafloral nectar secreted for 24 h. The number of ants on the plants was smaller under low light availability than under high and moderate light availability.

Conclusions

These results suggest that direct defence traits function regardless of light conditions, but light conditions affected the development of indirect defence traits.  相似文献   

5.
Three groups of cows representing three ranges of welfare in the production system were included in the study: two groups of Bruna dels Pirineus beef cattle maintained under different management systems (good and semiferal conditions) and a group of Alberes cows, a breed that lives in the mountains (hardest conditions). In order to identify new stress/welfare biomarkers, serum from Bruna cows living in both environments was subjected to DIGE labelling, two-dimensional electrophoresis and MALDI-MS or ion trap MS. Identification was achieved for 15 proteins, which mainly belonged to three biological functions, the oxidative stress pathway (glutathione peroxidase (GPx) and paraoxonase (PON-1)), the acute phase protein family (Heremans Schmid glycoprotein alpha2 (α2-HSG)) and the complement system. Biological validation included the Alberes breed. GPx and PON-1 were validated by an enzymatic assay and found to be higher and lower, respectively, in cows living in hard conditions. α2-HSG was validated by ELISA and found to be reduced in hard conditions. Other biomarkers of the redox status were also altered by living conditions: protein carbonyl content, superoxide dismutase (SOD) and glutathione reductase (GR). Our results show that changes in the redox system are the main adaptation of cows living in challenging environmental conditions.  相似文献   

6.
There is growing concern about the relevance of in vitro antimicrobial susceptibility tests when applied to isolates of P. aeruginosa from cystic fibrosis (CF) patients. Existing methods rely on single or a few isolates grown aerobically and planktonically. Predetermined cut-offs are used to define whether the bacteria are sensitive or resistant to any given antibiotic. However, during chronic lung infections in CF, P. aeruginosa populations exist in biofilms and there is evidence that the environment is largely microaerophilic. The stark difference in conditions between bacteria in the lung and those during diagnostic testing has called into question the reliability and even relevance of these tests. Artificial sputum medium (ASM) is a culture medium containing the components of CF patient sputum, including amino acids, mucin and free DNA. P. aeruginosa growth in ASM mimics growth during CF infections, with the formation of self-aggregating biofilm structures and population divergence. The aim of this study was to develop a microtitre-plate assay to study antimicrobial susceptibility of P. aeruginosa based on growth in ASM, which is applicable to both microaerophilic and aerobic conditions. An ASM assay was developed in a microtitre plate format. P. aeruginosa biofilms were allowed to develop for 3 days prior to incubation with antimicrobial agents at different concentrations for 24 hours. After biofilm disruption, cell viability was measured by staining with resazurin. This assay was used to ascertain the sessile cell minimum inhibitory concentration (SMIC) of tobramycin for 15 different P. aeruginosa isolates under aerobic and microaerophilic conditions and SMIC values were compared to those obtained with standard broth growth. Whilst there was some evidence for increased MIC values for isolates grown in ASM when compared to their planktonic counterparts, the biggest differences were found with bacteria tested in microaerophilic conditions, which showed a much increased resistance up to a > 128 fold, towards tobramycin in the ASM system when compared to assays carried out in aerobic conditions. The lack of association between current susceptibility testing methods and clinical outcome has questioned the validity of current methods. Several in vitro models have been used previously to study P. aeruginosa biofilms. However, these methods rely on surface attached biofilms, whereas the ASM biofilms resemble those observed in the CF lung. In addition, reduced oxygen concentration in the mucus has been shown to alter the behavior of P. aeruginosa and affect antibiotic susceptibility. Therefore using ASM under microaerophilic conditions may provide a more realistic environment in which to study antimicrobial susceptibility.  相似文献   

7.
• Background and Aims Mixed reproductive strategies may have evolved as a response of plants to cope with environmental variation. One example of a mixed reproductive strategy is dimorphic cleistogamy, where a single plant produces closed, obligately self-pollinated (CL) flowers and open, potentially outcrossed (CH) flowers. Frequently, optimal environmental conditions favour production of more costly CH structures whilst economical and reliable CL structures are produced under less favourable conditions. In this study we explore (1) the effect of light and water on the reproductive phenology and (2) the effect of pollen supplementation on resource allocation to seeds in the cleistogamous weed Ruellia nudiflora.• Methods Split-plot field experiments were carried out to assess the effect of shade (two levels: ambient light vs. a reduction of 50 %) and watering (two levels: non-watered vs. watered) on the onset, end and duration of the production of three reproductive structures: CH flowers, CH fruit and CL fruit. We also looked at the effect of these environmental factors on biomass allocation to seeds (seed weight) from obligately self-pollinated flowers (CL), open-pollinated CH flowers and pollen-supplemented CH flowers.• Key Results CH structures were produced for a briefer period and ended earlier under shaded conditions. These conditions also resulted in an earlier production of CL fruit. Shaded conditions also produced greater biomass allocation to CH seeds receiving extra pollen.• Conclusions Sub-optimal (shaded) conditions resulted in a briefer production period of CH structures whilst these same conditions resulted in an earlier production of CL structures. However, under sub-optimal conditions, plants also allocated more resources to seeds sired from CH flowers receiving large pollen loads. Earlier production of reproductive structures and relatively larger seed might improve subsequent success of CL and pollen-supplemented CH seeds, respectively.  相似文献   

8.
Changes in the volumes of second-stage juveniles of Meloidogyne incognita were monitored in aqueous solutions of polyethylene glycol supplemented with dilute balanced salts. At key points within a 48-hour cycle of fluctuating water potential, nematodes were placed under hypoxic conditions or exposed to the respiratory inhibitor, sodium cyanide, to detect any respiration-dependent process that regulates volume. Aerobic respiratory arrest at -500 kPa induced pronounced water loss, lateral and dorsoventral collapse of the body wall, and abnormal failure to shorten longitudinally. Durations of hypoxia that were innocuous in dilute solutions were lethal during 500 kPa increases and decreases in water potential; the same water potential changes under aerobic conditions had no effect on viability. Data are consistent with the hypothesis that respiration is essential to survive water potential changes.  相似文献   

9.
Freshwater populations of three-spined sticklebacks (Gasterosteus aculeatus) in northern Germany are found as distinct lake and river ecotypes. Adaptation to habitat-specific parasites might influence immune capabilities of stickleback ecotypes. Here, naive laboratory-bred sticklebacks from lake and river populations were exposed reciprocally to parasite environments in a lake and a river habitat. Sticklebacks exposed to lake conditions were infected with higher numbers of parasite species when compared with the river. River sticklebacks in the lake had higher parasite loads than lake sticklebacks in the same habitat. Respiratory burst, granulocyte counts and lymphocyte proliferation of head kidney leucocytes were increased in river sticklebacks exposed to lake when compared with river conditions. Although river sticklebacks exposed to lake conditions showed elevated activation of their immune system, parasites could not be diminished as effectively as by lake sticklebacks in their native habitat. River sticklebacks seem to have reduced their immune-competence potential due to lower parasite diversity in rivers.  相似文献   

10.
【目的】本研究旨在阐明长足大竹象Cyrtotrachelus buqueti内切葡聚糖酶最适反应条件,并挖掘长足大竹象消化道内切葡聚糖酶关键基因。【方法】采用3,5-二硝基水杨酸(DNS)法,设置以羧甲基纤维素钠(MC)为反应底物的单因素和正交优化试验测定内切葡聚糖酶反应的最适条件。通过对长足大竹象发育转录组内切葡聚糖酶编码基因进行生物信息学分析,并将基因表达量与酶活性数据进行关联分析,筛选出发育时期中关键内切葡聚糖酶基因,采用实时荧光定量PCR对不同发育时期长足大竹象消化道内切葡聚糖酶关键基因表达量进行验证确定。【结果】研究表明,长足大竹象成虫内切葡聚糖酶的最适反应条件为:温度45℃,pH 5.6,底物浓度2%,酶比活力59.85 U/mg(雌)和52.87 U/mg(雄);幼虫内切葡聚糖酶的最适反应条件为:温度35℃,pH 4.8,底物浓度2%,酶比活力38.34 U/mg。筛选出长足大竹象消化道内切葡聚糖酶关键基因c64192_g1和c57057_g1。实时荧光定量PCR结果表明c64192_g1和c57507_g1基因在成虫时期表达量高于幼虫。【结论】长足大竹象雌雄成虫的内切葡聚糖酶比活力均高于幼虫,存在两个影响内切葡聚糖酶活性的关键基因c64192_g1和c57507_g1。这些研究成果丰富了内切葡聚糖酶来源,并为长足大竹象内切葡聚糖酶异源表达提供数据参考,进而为木质纤维素预处理和生物质能源的开发利用奠定理论基础。  相似文献   

11.
Background and Aims Halophytic eudicots are characterized by enhanced growth under saline conditions. This study combines physiological and anatomical analyses to identify processes underlying growth responses of the mangrove Avicennia marina to salinities ranging from fresh- to seawater conditions.Methods Following pre-exhaustion of cotyledonary reserves under optimal conditions (i.e. 50 % seawater), seedlings of A. marina were grown hydroponically in dilutions of seawater amended with nutrients. Whole-plant growth characteristics were analysed in relation to dry mass accumulation and its allocation to different plant parts. Gas exchange characteristics and stable carbon isotopic composition of leaves were measured to evaluate water use in relation to carbon gain. Stem and leaf hydraulic anatomy were measured in relation to plant water use and growth.Key Results Avicennia marina seedlings failed to grow in 0–5 % seawater, whereas maximal growth occurred in 50–75 % seawater. Relative growth rates were affected by changes in leaf area ratio (LAR) and net assimilation rate (NAR) along the salinity gradient, with NAR generally being more important. Gas exchange characteristics followed the same trends as plant growth, with assimilation rates and stomatal conductance being greatest in leaves grown in 50–75 % seawater. However, water use efficiency was maintained nearly constant across all salinities, consistent with carbon isotopic signatures. Anatomical studies revealed variation in rates of development and composition of hydraulic tissues that were consistent with salinity-dependent patterns in water use and growth, including a structural explanation for low stomatal conductance and growth under low salinity.Conclusions The results identified stem and leaf transport systems as central to understanding the integrated growth responses to variation in salinity from fresh- to seawater conditions. Avicennia marina was revealed as an obligate halophyte, requiring saline conditions for development of the transport systems needed to sustain water use and carbon gain.  相似文献   

12.
To evaluate the relevance of a simple carbon balance model (Seginer et al., 1994, Scientia Horticulturae 60: 55-80) in source-limiting conditions, the dynamics of growth, respiration and carbohydrate reserves of tomato plants were observed in prolonged darkness. Four days prior to the experiments, plants were exposed to high or low light levels and CO(2) concentrations. The concentration of carbohydrates in vegetative organs was 30-50 % lower in plants that were exposed to low carbon assimilation conditions compared with those exposed to high carbon assimilation conditions. During prolonged darkness, plants with low carbohydrate reserves exhibited a lower whole-plant respiration rate, which decreased rapidly to almost zero after 24 h, and carbohydrate pools were almost exhausted in leaves, roots and flowers. In plants with high carbohydrate reserves, the whole-plant respiration rate was maintained for a longer period and carbohydrates remained available for at least 48 h in leaves and flowers. In contrast, fruits maintained fairly stable and identical concentrations of carbohydrates and the reduction in their rate of expansion was moderate irrespective of the pre-treatment carbon assimilation conditions. The time-course of asparagine and glutamine concentrations showed the occurrence of carbon stress in leaves and flowers. Estimation of source and sink activities indicated that even after low carbon assimilation, vegetative organs contained enough carbohydrates to support fruit growth provided their own growth stopped. The time of exhaustion of these carbohydrates corresponded grossly to the maintenance stage simulated by the model proposed by Seginer et al. (1994), thus validating the use of such a model for optimizing plant growth.  相似文献   

13.
 We assessed nectar and honey potential of Phacelia tanacetifolia, an American plant, under Mediterranean conditions. Its flowering occurred during the major flowering season unless intensely irrigated, whereas duration and flower life span were shorter compared to continental conditions. Mediterranean climate limitations to nectar secretion were assessed on plants grown under natural conditions (xeric) vs. regular irrigation. May flowering xeric plants produced less nectar per flower than the irrigated ones, but had the same nectar potential per surface area. On the contrary, at the cost of intense irrigation, July flowering plants produced much higher nectar per flower and per surface area compared to xeric ones. In all flowering periods and sections honeybees were the most constant and numerous visitors, visiting the flowers mainly for nectar, whereas solitary bees were scarce. Based on our results, we suggest that although the plant may be a good nectar source for honeybees in some cases, we have serious reservations for a generalised use in the Mediterranean. Received September 3, 2002; accepted November 18, 2002 Published online: June 2, 2003  相似文献   

14.
Background and Aims The occurrence of Arabidopsis thaliana semi-dwarf accessions carrying inactive alleles at the gibberellin (GA) biosynthesis GA5 locus has raised the question whether there are pleiotropic effects on other traits at the root level, such as rooting depth. In addition, it is unknown whether semi-dwarfism in arabidopsis confers a growth advantage under water-limiting conditions compared with wild-type plants. The aim of this research was therefore to investigate whether semi-dwarfism has a pleiotropic effect in the root system and also whether semi-dwarfs might be more tolerant of water-limiting conditions.Methods The root systems of different arabidopsis semi-dwarfs and GA biosynthesis mutants were phenotyped in vitro using the GROWSCREEN-ROOT image-based software. Semi-dwarfs were phenotyped together with tall, near-related accessions. In addition, root phenotypes were investigated in soil-filled rhizotrons. Rosette growth trajectories were analysed with the GROWSCREEN-FLUORO setup based on non-invasive imaging.Key Results Mutations in the early steps of the GA biosynthesis pathway led to a reduction in shoot as well as root size. Depending on the genetic background, mutations at the GA5 locus yielded phenotypes characterized by decreased root length in comparison with related wild-type ones. The semi-dwarf accession Pak-3 showed the deepest root system both in vitro and in soil cultivation experiments; this comparatively deep root system, however, was independent of the ga5 loss-of-function allele, as shown by co-segregation analysis. When the accessions were grown under water-limiting conditions, semi-dwarf accessions with high growth rates were identified.Conclusions The observed diversity in root system growth and architecture occurs independently of semi-dwarf phenotypes, and is probably linked to a genetic background effect. The results show that there are no clear advantages of semi-dwarfism at low water availability in arabidopsis.  相似文献   

15.
Environmental conditions experienced during early life may have long‐lasting effects on later‐life phenotypes and fitness. Individuals experiencing poor early‐life conditions may suffer subsequent fitness constraints. Alternatively, individuals may use a strategic “Predictive Adaptive Response” (PAR), whereby they respond—in terms of physiology or life‐history strategy—to the conditions experienced in early life to maximize later‐life fitness. Particularly, the Future Lifespan Expectation (FLE) PAR hypothesis predicts that when poor early‐life conditions negatively impact an individual''s physiological state, it will accelerate its reproductive schedule to maximize fitness during its shorter predicted life span. We aimed to measure the impact of early‐life conditions and resulting fitness across individual lifetimes to test predictions of the FLE hypothesis in a wild, long‐lived model species. Using a long‐term individual‐based dataset, we investigated how early‐life conditions are linked with subsequent fitness in an isolated population of the Seychelles warbler Acrocephalus sechellensis. How individuals experience early‐life environmental conditions may vary greatly, so we also tested whether telomere length—shorter telomers are a biomarker of an individual''s exposure to stress—can provide an effective measure of the individual‐specific impact of early‐life conditions. Specifically, under the FLE hypothesis, we would expect shorter telomeres to be associated with accelerated reproduction. Contrary to expectations, shorter juvenile telomere length was not associated with poor early‐life conditions, but instead with better conditions, probably as a result of faster juvenile growth. Furthermore, neither juvenile telomere length, nor other measures of early‐life conditions, were associated with age of first reproduction or the number of offspring produced during early life in either sex. We found no support for the FLE hypothesis. However, for males, poor early‐life body condition was associated with lower first‐year survival and reduced longevity, indicating that poor early‐life conditions pose subsequent fitness constraints. Our results also showed that using juvenile telomere length as a measure of early‐life conditions requires caution, as it is likely to not only reflect environmental stress but also other processes such as growth.  相似文献   

16.
beta-amyloid peptide (Abeta) is one of the main protein components of senile plaques associated with Alzheimer's disease (AD). Abeta readily aggregates to forms fibrils and other aggregated species that have been shown to be toxic in a number of studies. In particular, soluble oligomeric forms are closely related to neurotoxicity. However, the relationship between neurotoxicity and the size of Abeta aggregates or oligomers is still under investigation. In this article, we show that different Abeta incubation conditions in vitro can affect the rate of Abeta fibril formation, the conformation and stability of intermediates in the aggregation pathway, and toxicity of aggregated species formed. When gently agitated, Abeta aggregates faster than Abeta prepared under quiescent conditions, forming fibrils. The morphology of fibrils formed at the end of aggregation with or without agitation, as observed in electron micrographs, is somewhat different. Interestingly, intermediates or oligomers formed during Abeta aggregation differ greatly under agitated and quiescent conditions. Unfolding studies in guanidine hydrochloride indicate that fibrils formed under quiescent conditions are more stable to unfolding in detergent than aggregation associated oligomers or Abeta fibrils formed with agitation. In addition, Abeta fibrils formed under quiescent conditions were less toxic to differentiated SH-SY5Y cells than the Abeta aggregation associated oligomers or fibrils formed with agitation. These results highlight differences between Abeta aggregation intermediates formed under different conditions and provide insight into the structure and stability of toxic Abeta oligomers.  相似文献   

17.
18.

Background and Aims

The successful spread of invasive plants in new environments is often linked to multiple introductions and a diverse gene pool that facilitates local adaptation to variable environmental conditions. For clonal plants, however, phenotypic plasticity may be equally important. Here the primary adaptive strategy in three non-native, clonally reproducing macrophytes (Egeria densa, Elodea canadensis and Lagarosiphon major) in New Zealand freshwaters were examined and an attempt was made to link observed differences in plant morphology to local variation in habitat conditions.

Methods

Field populations with a large phenotypic variety were sampled in a range of lakes and streams with different chemical and physical properties. The phenotypic plasticity of the species before and after cultivation was studied in a common garden growth experiment, and the genetic diversity of these same populations was also quantified.

Key Results

For all three species, greater variation in plant characteristics was found before they were grown in standardized conditions. Moreover, field populations displayed remarkably little genetic variation and there was little interaction between habitat conditions and plant morphological characteristics.

Conclusions

The results indicate that at the current stage of spread into New Zealand, the primary adaptive strategy of these three invasive macrophytes is phenotypic plasticity. However, while limited, the possibility that genetic diversity between populations may facilitate ecotypic differentiation in the future cannot be excluded. These results thus indicate that invasive clonal aquatic plants adapt to new introduced areas by phenotypic plasticity. Inorganic carbon, nitrogen and phosphorous were important in controlling plant size of E. canadensis and L. major, but no other relationships between plant characteristics and habitat conditions were apparent. This implies that within-species differences in plant size can be explained by local nutrient conditions. All together this strongly suggests that invasive clonal aquatic plants adapt to a wide range of habitats in introduced areas by phenotypic plasticity rather than local adaptation.  相似文献   

19.
Kwon YM  Ricke SC 《Anaerobe》1998,4(6):251-256
Propionic acid is commonly found as a fermentation product in the gastrointestinal tracts of food animals and has also been used to limit the microbial contaminants in animal feeds. Because propionic acid is known to have antibacterial activity, the propionic acid encountered by foodborne pathogens during their life cycles may play an important role in inhibiting the survival of the pathogens. The survival patterns of Salmonella typhimurium poultry isolate were determined both in aerobic and anaerobic tryptic soy broth (TSB; pH 5.0 or 7.0) containing various concentrations of propionic acid (0-200 mM). The levels of recovered cells were consistently greater at pH 7.0 compared to those at pH 5.0. For the first 4 days, the levels were significantly decreased by incubation under anaerobic conditions as compared to aerobic condition at pH 7.0 (P<0.05). However, there were fluctuations of cell populations with different patterns depending on both concentrations and growth conditions. To characterize the nature of the capability which allowed the cell multiplication following decreases in cell population during incubation at pH 7.0, the cells isolated from the outgrowth cultures were tested for survival in aerobic or anaerobic TSB (pH 5.0 or pH 7.0) containing propionic acid (50 mM). The outgrowth isolates did not show significant differences in the level of recovered cells in the presence of propionic acid when compared to the wild type strain (P>0.05), suggesting that the cells in the outgrowth cultures did not harbour mutation(s) conferring increased resistance to propionic acid. In addition, the level of recovered cells of isogenic rpoS mutant strain of S. typhimurium was not significantly different from that of the wild type strain in the same assay conditions (P<0.05). The results of this study show that the bactericidal activity of propionic acid on S. typhimurium can be affected by environmental conditions such as acidic pH levels and anaerobiosis in food materials and gastrointestinal tracts. However, S. typhimurium is also able to multiply in the presence of sublethal concentrations of propionic acid at neutral pH during prolonged incubation under both aerobic and anaerobic conditions.  相似文献   

20.
The ever growing amount of new substances released onto the market and the limited predictability of current in vitro test systems has led to a high need for new solutions for substance testing. Many drugs that have been removed from the market due to drug-induced liver injury released their toxic potential only after several doses of chronic testing in humans. However, a controlled microenvironment is pivotal for long-term multiple dosing experiments, as even minor alterations in extracellular conditions may greatly influence the cell physiology. We focused within our research program on the generation of a microengineered bioreactor, which can be dynamically perfused by an on-chip pump and combines at least two culture spaces for multi-organ applications. This circulatory system mimics the in vivo conditions of primary cell cultures better and assures a steadier, more quantifiable extracellular relay of signals to the cells. For demonstration purposes, human liver equivalents, generated by aggregating differentiated HepaRG cells with human hepatic stellate cells in hanging drop plates, were cocultured with human skin punch biopsies for up to 28 days inside the microbioreactor. The use of cell culture inserts enables the skin to be cultured at an air-liquid interface, allowing topical substance exposure. The microbioreactor system is capable of supporting these cocultures at near physiologic fluid flow and volume-to-liquid ratios, ensuring stable and organotypic culture conditions. The possibility of long-term cultures enables the repeated exposure to substances. Furthermore, a vascularization of the microfluidic channel circuit using human dermal microvascular endothelial cells yields a physiologically more relevant vascular model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号